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I Outline

• Nanofiber design and production

• Dual color nanofiber atom trap

• Trapping results

• Atom interferometry

• Future goals



1
Project Goal: 

Perform atom interferometry with atoms trapped in the evanescent field of
a nanofiber

Motivation: 

Fundamental Physics: Probe surface interactions
o Casimir-Polder forces

O inverse square law violations

O fundamental constants measurements

Inertial navigation without GPS



What is a nanofiber?



I Tapered Fibers

• Typical step in fibers guide light using total internal reflection

core

core

• Reducing the diameter allows the light to get to the surface



6 I Tapered Nanofiber Characteristics
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Fundamental HE 1 l mode of a nanofiber
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• Radial intensity decays away from
the nanofiber surface

• Azimuthally symmetry is
dependent on field polarization
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8 Nanofiber Trap Potential

Trap geometry and configuration
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Dual-color evanescent field nanofiber atom trap: 2-D
configuration
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• dipole trap configuration with the magic-wavelength trap of Cs atoms
• Atoms confined in 2-D: azimuthal and radial confinement

• Free axis is along fiber axis

• P938nm = 2.5mW, P685nm = 25mW, Utrap = -435µK
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10 I Nanofiber Manufacturing at Sandia
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11 I Nanofiber Manufacturing at Sandia
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• Target diameter: 500 nm

• Five samples show the repeatability

of fiber production

Pixel Size = 1.914 nm

nm
EHT = 5.00 kV WD = 5.3 rnm Signal A = lnLens Width = 1.960 pm
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I Experimental Apparatus

• Retroreflected MOT beams
reduces complexity

• Enclosed in mu-metal magnetic
shield

• Enclosure is about 2' cubed

• Orthogonal cameras used for
setting trap beam polarization

• 5 L/s ion pump maintains ultra-
high vacuum pressure (-10-9 Torr)



Modifications in the past year: Extended Cell and custom fiber
mount

-10 cm

• 3d printed titanium alloy

• Sturdy rigid design reduces vibrations
• High resistivity —> quickly dissipates

eddy currents

-30 cm

 ►

• Longer mount —> adiabatic mode transfer increases
transmission efficiency

• Allows greater fiber bend radius reducing radiative loss
and extending fiber lifetime



I Trap Sequence

• Overlap MOT (-106 atoms) with
nanofiber and optimize position
using absorption measurement

• Perform timing sequence using
LabVIEW control software
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I Transmission Signal
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• ODN = 3.95, OD1 = 0.078

• Trapped atom number = 50

• Trap depth = -435uK, PProbe; 852nm = 30pW (Cs atoms)

• Estimated MOT atom number — 5x106 and its temperature = 28µK
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Light Pulse Atom lnterferometry



I Optical Trap design for atom interferometry

• Requirements
• Long nanofiber section for

measurement axis

• 1 cm allows —45 ms of freefall

• Optical guide complications
• Time-dependent potential due to atom

thermal motion leads to dephasing

• Magic wavelengths for the D2 1 F =
4,m=0> to F' manifold (A . = 937 nm)
and À = 685 nm)



18 I Controlling Atomic trajectories with Raman pulses

Atom Beam Splitter: —72 Pulse
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19 Detecting Gravitational Acceleration with Light Pulse Atom
Interferometry

Atomic Mach-Zehnder Interferometer
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0A7 1
20 Nanofiber Atom Interferometer

• All fields are coupled into the

nanofiber: trap, probe, and
Raman

• Use transmission for readout

• Measurement axis is along

fiber axis
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Slide 20

0A7 Try to make it more clear how the atom inteferometer will work
Orozco, Adrian, 10/23/2019



I Not so future goals

• Drive microwave Rabi oscillations using trapped atoms
• Measure decoherence time
• Identify decoherence mechanisms

• Drive Raman transitions
• Doppler free (co-propagating fields)
• Doppler sensitive (counterpropagating fields)

• Apply nanofiber based atom cooling
• Degenerate Raman cooling
• Raman cooling


