

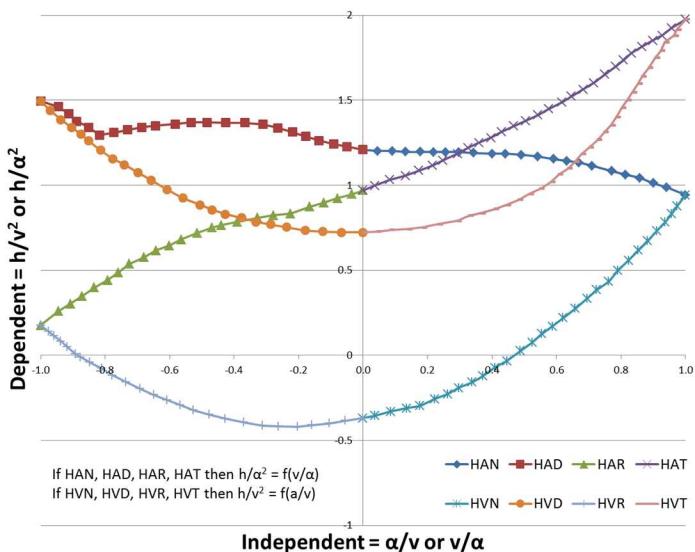
New MELCOR Models Homologous Pumps

PRESENTED BY

Larry Humphries

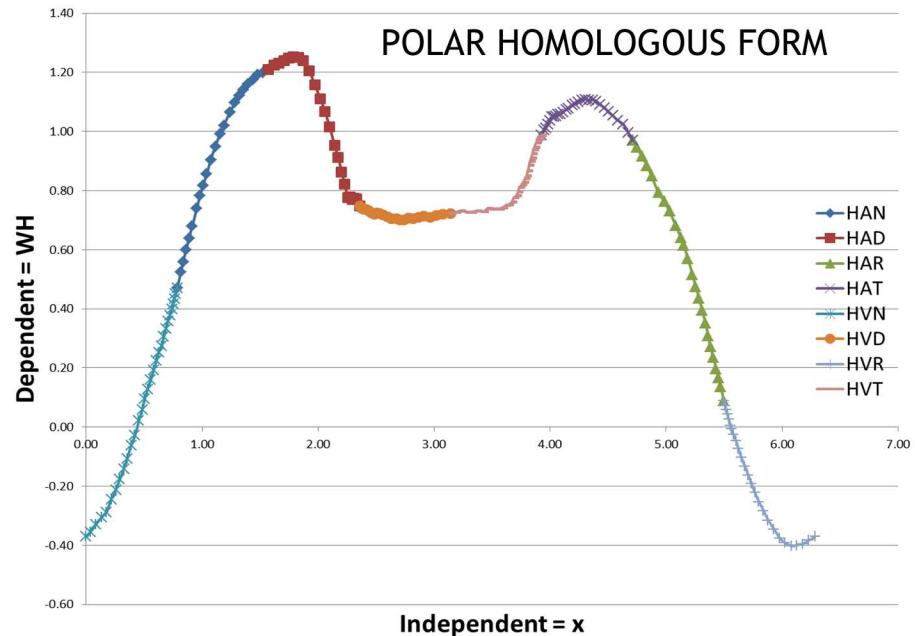
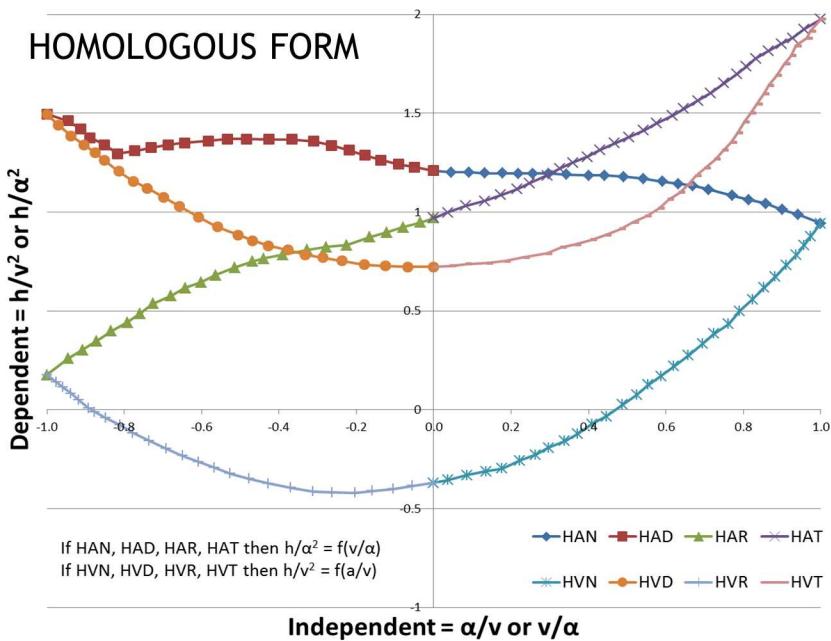
SAND2019-13343PE

Homologous Pump Model Overview


- ◆ More mechanistic centrifugal pump model than previously available
- ◆ Model integrated into FL package, predicts the pump momentum source as a function of impeller speed, capacity (volumetric flow)
- ◆ Model computes:
 - Pressure head (hydraulic power = head x flow)
 - Hydraulic torque (brake power = hydraulic torque x speed)
 - Pump dissipation energy and pump efficiency
 - Pump speed via torque-inertia equation (also user-defined, optional trips)
 - Two-phase degradation effects
- ◆ For pump performance modeling, predict head and torque given speed and flow using built-in or user-defined data in a specialized “homologous” form

Homologous Pump Theory

- ◆ Pump performance model - homologous and polar homologous
 - Inputs: Impeller speed, ω , and pump volumetric flow (capacity), Q
 - Outputs: Pump head (H), hydraulic torque (T) exerted by fluid on impeller
 - Two-phase head/torque degradation via two-phase multiplier approach
 - Also a “universal correlation” option requiring less information from user
- ◆ Semi-implicit treatment of pump head in phasic velocity equations
- ◆ Pump speed control and the torque-inertia equation (TIE)
 - User controls and/or TIE can govern speed at different problem times
 - Pump trips available to arbitrarily model start-up, steady run, coast-down
- ◆ Other features
 - Friction torque generally modeled as a polynomial in ω/ω_R
 - Pump inertia generally modeled as a polynomial in ω/ω_R
 - Pump energy dissipation and efficiency



Homologous Pump Theory Pump Performance Model

- ◆ Non-dimensional speed ($v = \omega / \omega_R$), flow ($\alpha = Q / Q_R$) with “rated” conditions
- ◆ Non-dimensional head ($h = H / H_R$), torque ($\tau = T / T_R$) with “rated” conditions
- ◆ Construct a plot covering the entire domain of pump operation
 - Four quadrants (normal, turbine, dissipation, reversal modes)
 - Two pieces per quadrant for a total of eight octants
 - Indep. var's v/α or α/v
 - If $|v/\alpha| \leq 1$, then use v/α
 - If $|v/\alpha| > 1$, then $|\alpha/v| < 1$ and use α/v
 - Independent variable bounded on $[-1, 1]$
 - Dep var's for single/two-phase head/torque
 - If x is v/α , dependent variable is h/α^2 or τ/α^2
 - If x is α/v , dependent variable is h/v^2 or τ/v^2

Homologous Pump Theory Pump Performance Model

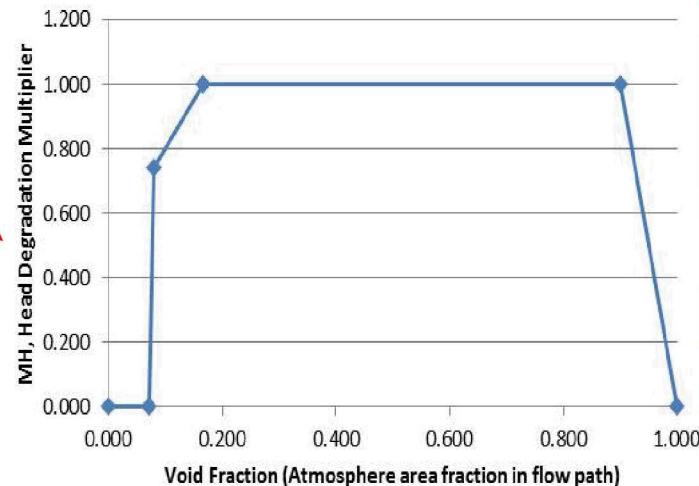
User gives homologous data, code converts to “polar homologous”

Practical difficulties with interpolation

- Which ind/dep variable forms apply
- Independent variable crosses zero

- Positive definite indep. var domain $[0, 2\pi]$
- Single, non-overlapping curve
- Simply convert ind/dep variable space

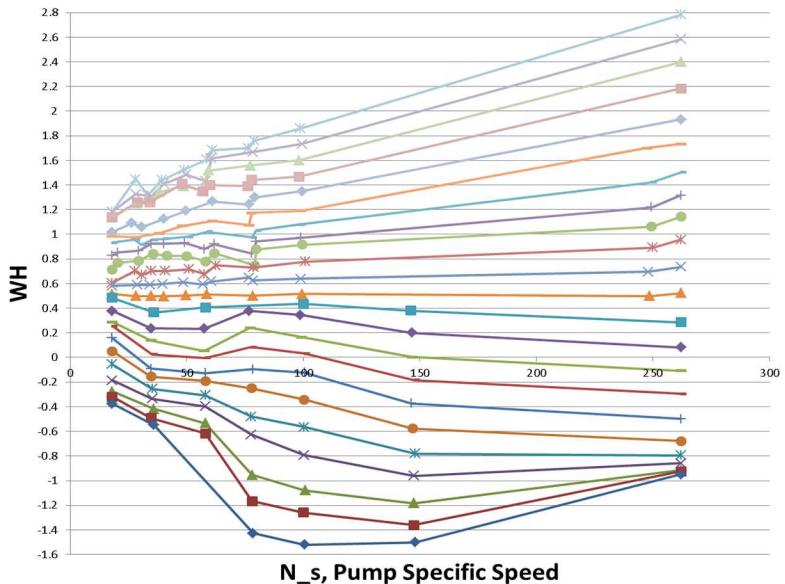
Homologous Pump Theory Pump Performance Model

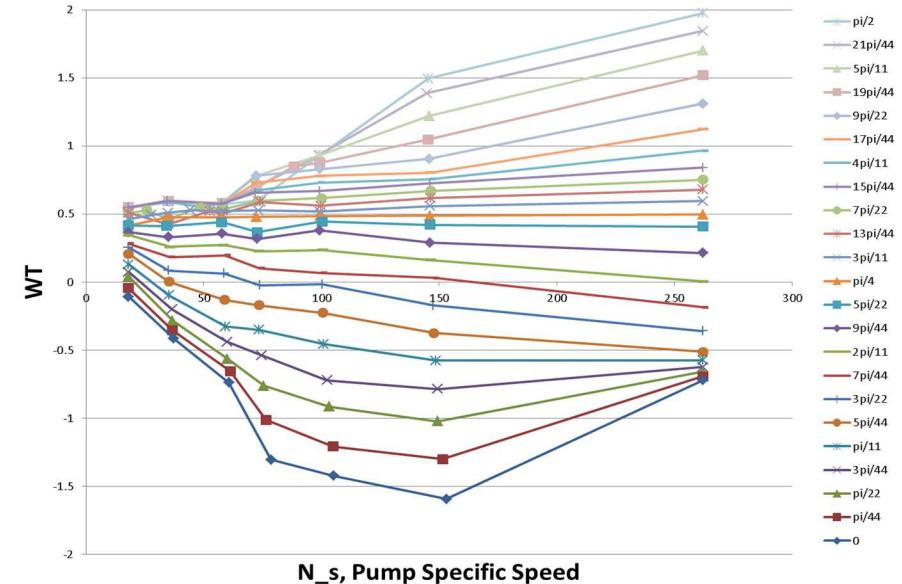

- ◆ Two-phase effects from two-phase head/torque curves and multipliers
- ◆ “Fully-degraded” curves for worst performance in two-phase conditions
- ◆ Use void-fraction-dependent “degradation multipliers”
- ◆ Overall equals single phase head/torque less a two-phase term

$$WH_{overall} = WH - \boxed{MH} * (WH - WH2)$$

$$WT_{overall} = WT - MT * (WT - WT2)$$

Subtract part of the difference between single/two phase


e.g. Semiscale MH


Homologous Pump Theory Pump Performance Model

- Universal correlation uses ω and Q to find H and T via data interpolation
- Use a data set compiled from several pump experiments
 - User gives pump specific speed, defined from rated quantities as: $N_s = \frac{\omega_R \sqrt{Q_R}}{H_R^{3/4}}$
 - Use N_s , ω , and Q to interpolate H and T functions
 - Valid for “normal”, single-phase operation

$X=f(\omega, Q)$

$X=f(\omega, Q)$

Homologous Pump Theory, Semi-Implicit Head Treatment

$$\begin{aligned}
 & \left(1 + \frac{K_{j,\varphi}^* \Delta t}{2L_j} |V_{j,\varphi}^{n-} + V'_{j,\varphi}| + \frac{\alpha_{j,-\varphi} f_{2,j} L_{2,j} \Delta t}{\rho_{j,\varphi} L_j} \right) V_{j,\varphi}^n - \frac{\alpha_{j,-\varphi} f_{2,j} L_{2,j} \Delta t}{\rho_{j,\varphi} L_j} V_{j,-\varphi}^n + \sum_{s,\psi} C(j,\varphi:s,\psi) V_{s,\psi}^n \\
 &= V_{j,\varphi}^{o+} + \frac{K_{j,\varphi}^* \Delta t}{2L_j} |V'_{j,\varphi}| V_{j,\varphi}^{n-} + \frac{\Delta t}{\rho_{j,\varphi} L_j} \left(\hat{P}_i + \boxed{\Delta P_j} - \hat{P}_k \right) + (\rho g \Delta z)_{j,\varphi}^o + \frac{\partial(\rho g \Delta z)_{j,\varphi}}{\partial M_{i,P}} (\hat{M}_{i,P}^o - M_{i,P}^{o+}) + \frac{\partial(\rho g \Delta z)_{j,\varphi}}{\partial M_{k,P}} (\hat{M}_{k,P}^o - M_{k,P}^{o+})
 \end{aligned}$$

Phasic Velocity Equation, FP j

Explicit pressure head term, expand for semi-implicit treatment (new-time velocity factors into new-time head):

$$\Delta P_j = \Delta P_j^{n-1} + \left(\frac{d\Delta P}{dQ} \right)^{n-1} (Q_j^n - Q_j^{n-}) \left\{ \begin{array}{l} \left(\frac{d\Delta P}{dQ} \right)^{n-1} = \rho_m g \left(\frac{dH}{dQ} \right)^{n-1} \quad Q_j = Af(V_{j,P} + V_{j,A}) \\ \Delta P_j^{n-1} = \rho_m g H_j^{n-1} \quad H_j^n = H_j^{n-1} + \left(\frac{dH}{dQ} \right)^{n-1} (Q_j^n - Q_j^{n-}) \end{array} \right.$$

Final expanded term:

$$\Delta P_j = \rho_m g H_j^{n-1} - \rho_m g Af \left(\frac{dH}{dQ} \right)^{n-1} (V_{j,P}^{n-}) - \rho_m g Af \left(\frac{dH}{dQ} \right)^{n-1} (V_{j,A}^{n-}) + \rho_m g Af \left(\frac{dH}{dQ} \right)^{n-1} (V_{j,\varphi}^n) + \rho_m g Af \left(\frac{dH}{dQ} \right)^{n-1} (V_{j,-\varphi}^n)$$

New phasic velocity equation:

$$\begin{aligned}
 & V_{j,\varphi}^n \left(1 + \left(\frac{K_{j,\varphi}^* \Delta t}{2L_j} \right) |V_{j,\varphi}^{n-} + V'_{j,\varphi}| + \left(\frac{\alpha_{j,-\varphi} f_{2,j} L_{2,j} \Delta t}{\rho_{j,\varphi} L_j} \right) - \zeta \left(\frac{\Delta t}{\rho_{j,\varphi} L_j} \right) \rho_m g Af \left(\frac{dH}{dQ} \right)^{n-1} \right) - V_{j,-\varphi}^n \left(\frac{\alpha_{j,-\varphi} f_{2,j} L_{2,j} \Delta t}{\rho_{j,\varphi} L_j} + \zeta \left(\frac{\Delta t}{\rho_{j,\varphi} L_j} \right) \rho_m g Af \left(\frac{dH}{dQ} \right)^{n-1} \right) \\
 & + \sum_{s,\psi} [C(j,\varphi:s,\psi) V_{s,\psi}^n] = V_{j,\varphi}^{o+} + \left(\frac{K_{j,\varphi}^* \Delta t}{2L_j} \right) (|V'_{j,\varphi}| V_{j,\varphi}^{n-}) + \left(\frac{\Delta t}{\rho_{j,\varphi} L_j} \right) \left(\hat{P}_i + \left(\rho_m g H_j^{n-} - \zeta \rho_m g Af \left(\frac{dH}{dQ} \right)^{n-1} (V_{j,\varphi}^{n-} + V_{j,-\varphi}^{n-}) \right) - \hat{P}_k \right) \\
 & + (\rho g \Delta z)_{j,\varphi}^o + \frac{\partial(\rho g \Delta z)_{j,\varphi}}{\partial M_{i,P}} (\hat{M}_{i,P}^o - M_{i,P}^{o+}) + \frac{\partial(\rho g \Delta z)_{j,\varphi}}{\partial M_{k,P}} (\hat{M}_{k,P}^o - M_{k,P}^{o+})
 \end{aligned}$$

If $\zeta = 1$ use semi-implicit formulation
if $\zeta=0$ revert to fully explicit formulation

Homologous Pump Theory Semi-Implicit Head Treatment

- ◆ Derivative dH/dQ must be evaluated at time level $n-1$ (i.e. at $Q|_{n-1}$ or equivalently at polar homologous variable $x(\omega|_{n-1}, Q|_{n-1})$)
- ◆ Recently switched from a Lagrange polynomial approach
- ◆ Use a cubic spline fit to polar homologous head such that, for any given polar homologous independent variable $x(\omega, Q)$, can interpolate dH/dQ
- ◆ Calculated once to evaluate the fitting and uses spline fit parameters during the transient

Homologous Pump Theory Speed Control

- ◆ Three options:
 1. Pump speed always under CF/TF control
 2. Pump speed always governed by TIE
 3. Pump speed under CF/TF control until a pump trip transfers control to TIE

◆ TIE: $I_p \frac{d\omega}{dt} = \tau_{net} = \tau_{motor} - (\tau_H + \tau_{fr})$

- User-supplied motor and friction torque, hydraulic torque from model
- Net positive torque causes speed increase and vice-versa
- Pump-to-motor connection subject to trip
 - If no trip applies (option 2 above), motor torque always under user control
 - If trip applies (option 3 above), then:
 - OFF state of trip - pump speed under CF/TF control
 - ON-FORWARD state of trip - pump disconnected from motor, thus τ_{motor} is zero
 - ON-REVERSE state of trip - pump connected to motor, τ_{motor} given by CF/TF

◆ Solve by FE: $\omega^n = \omega^{n-1} + \frac{\tau_{net}(\omega^{n-1})}{I_p(\omega^{n-1})} \Delta t$ OR BE/FPE:

$$\omega^n_{[0]} = \omega^{n-1}$$

$$\omega^n_{[i+1]} = \omega^{n-1} + \frac{\tau_{net}(\omega^n_{[i]})}{I_p(\omega^n_{[i]})} \Delta t$$

FE= Forward Explicit

BE=Backwards Explicit

Homologous Pump Theory Other Features

- ◆ Pump friction torque (factors into TIE), generally a polynomial function:

$$\tau_{fr} = \begin{cases} \pm \tau_{frn}, \text{ for } \left| \frac{\omega}{\omega_R} \right| < S_{PF} \\ \pm \left(\tau_{fr0} + \tau_{fr1} \left| \frac{\omega}{\omega_R} \right|^{x1} + \tau_{fr2} \left| \frac{\omega}{\omega_R} \right|^{x2} + \tau_{fr3} \left| \frac{\omega}{\omega_R} \right|^{x3} \right), \text{ for } \left| \frac{\omega}{\omega_R} \right| \geq S_{PF} \end{cases}$$

- ◆ Pump inertia (factors into TIE), generally a polynomial function:

$$I_p = \begin{cases} I_{pn}, \text{ for } \left| \frac{\omega}{\omega_R} \right| < S_{PI} \\ \left(I_{p0} + I_{p1} \left| \frac{\omega}{\omega_R} \right| + I_{p2} \left| \frac{\omega}{\omega_R} \right|^2 + I_{p3} \left| \frac{\omega}{\omega_R} \right|^3 \right), \text{ for } \left| \frac{\omega}{\omega_R} \right| \geq S_{PI} \end{cases}$$

- ◆ Pump energy dissipation and efficiency

- Total power delivered by impeller to fluid (“brake power”) : $\tau_H * \omega * \frac{2\pi}{60}$
- Not all brake power translates into “hydraulic power”: $gH \left((1 - \alpha_g) \rho_f V_f + \alpha_g \rho_g V_g \right) Af$
- The difference is “dissipation” due to inefficiency:

$$DISS = \tau_H \omega \frac{2\pi}{60} - gH \left((1 - \alpha_g) \rho_f V_f + \alpha_g \rho_g V_g \right) Af$$

$$EFF = \frac{gH \left((1 - \alpha_g) \rho_f V_f + \alpha_g \rho_g V_g \right) Af}{\tau_H * \omega * \frac{2\pi}{60}}$$

- Add dissipation as thermal energy to pump discharge CV

Homologous Pump Theory Other Features

- ◆ Model is implemented through FP, expand existing **FL_PMP**
- ◆ **FL_PMP**, field 4, now has two new possibilities for **PTYPE**
 - **HOM** – User specifies a complement of homologous pump data or use built-in
 - New fields 5 and 6 if field 4 sets **PTYPE** to **HOM**
 - Field 5 is **PHSOPT**, set to **ONE** for single-phase, set to **TWO** for two-phase
 - Field 6 is **DATOPT**, set to **USER** for user data, set to **SEMI** or **LOFT** for built-in
 - **UNIV** – User gives specific speed, opts for interpolation of **UNIV** model data
 - New fields 5 and 6 if field 4 sets **PTYPE** to **UNIV**
 - Field 5 is **PHSOPT**, same as above but note if a departure from single phase occurs, the model defaults to **PTYPE = HOM** and **DATOPT = SEMI**
 - Field 6 is **DATOPT**, pertains to single phase dissipation, normal, and reversal

```
FL_PMP 3 ! N      PNAME      FLNAME    PTYPE    PHSOPT  DATOPT  ITRIP    CF/TFNAME
          1 'PUMP_1'  'FL101'   HOM      ONE     USER     ON          ! ITRIP is ON, pump not subject to trip
          2 'PUMP_2'  'FL102'   HOM      TWO     SEMI     CF      'CF101'    ! Use a built-in Semiscale data, CF trip
          3 'PUMP_3'  'FL103'   UNIV    ONE     SEMI     TF      'TF101'    ! Use UNIV model, TF trip
```

Homologous Pump User Input

- ◆ New records for rated pump conditions, pump performance model data:
 - **FL_RPD** – Specify rated pump data, required if **PTYPE** is **HOM** or **UNIV**
 - Pump object number and object name
 - Complement of rated conditions: **OMEGAR**, **SPDRAT**, **QR**, **HR**, **PSHR**, **RHOR**
 - Rated speed, initial-to-rated speed, rated capacity, head, shaft power, density

```
FL_RPD 1 ! N  PNAME  OMEGAR  SPDRAT    QR      HR      PSHR      RHOR
          1 'PUMP1' 3560.0  0.0  0.0114 58.52 1.769E+4 997.95  ! PSHR = (rated hyd torque)*OMEGAR
```

- **FL_SPH** – Single phase head performance data, required if **PTYPE** is **HOM** and **DATOPT** is **USER**
 - Name TF's for pump data, the two N mode octants are required (other 6 optional)
 - Fields for each octant: **HAN**, **HVN**, **HAD**, **HVD**, **HAT**, **HVT**, **HAR**, **HVR**
 - Use placeholders '-' for excluded octants
 - Also have analogous **FL_SPT**, **FL_TPH**, and **FL_TPT** for single phase torque and two phase head/torque

```
FL_SPH 2 ! N  PNAME      HAN      HVN      HAD      HVD      HAT      HVT      HAR      HVR
          1 'PUMP1' 'HANTF' 'HVNTF' 'HADTF' 'HVDTF' 'HATTF' 'HVTTF' 'HARTF' 'HVRTF'
          2 'PUMP2' 'HANTF' 'HVNTF' 'HADTF' 'HVDTF'    '-'      '-'      '-'      '-'
```

Homologous Pump User Input

- ◆ New records for friction torque and inertia, numerical treatment:
 - **FL_PFR** – Specify coefficients, exponents of pump friction torque polynomial
 - Four coefficients, three exponents, one critical speed ratio
 - Recall a constant friction torque is used if below a critical speed ratio

```
FL_PFR 1 ! N  PNAME      TCOEFFC  TCOEFF1  TCOEFF2  TCOEFF3  TEXP1  TEXP2  TEXP3  TFRC  TSPCRT
          1 'PUMP1'  451.0  100.0   50.0   25.0   1.1   2.2   3.3  451.0  0.25
```

- **FL_PIN** – Specify coefficients of the pump inertia polynomial
 - Four coefficients, one critical speed ratio
 - Recall a constant inertia is used if below a critical speed ratio
- **FL_PNT** – Pump numerical treatment (in velocity eqns, for diss. energy)
 - First field is **PNOTOPT**, either **SIMP** or **EXP** for semi-implicit or explicit head
 - Second field is **DISOPT**, either **YES** or **NO** to dissipation energy source term

```
FL_PNT 1 ! N  PNAME      PNOTOPT  DISOPT
          1 'PUMP1'  SIMP    YES
```

Homologous Pump User Input

- ◆ New record for pump speed control and motor torque specification
 - **FL_SMT** – Specify speed control mechanism, motor torque, and CFs/TFs
 - Speed control, third through fifth fields
 - 3rd : **SMOPT** – **CFTF-ONLY|CFTF-TIE|TIE**
 - 4th : **SFLAG** – **NO|CF|TF** (NO CF/TF control, CF control, or TF control)
 - 5th : ‘-’, ‘CFNAME’, ‘TFNAME’
 - Motor torque, fifth through seventh fields
 - 6th : **MTFLAG** – **NO|CF|TF** (NO CF/TF control, CF control, or TF control)
 - 7th : ‘-’, ‘CFNAME’, ‘TFNAME’
 - If no motor torque CF/TF, the constant value is implied by rated conditions

FL_SMT 1	N	PNAME	SMOPT	SFLAG	CF/TFNAME	MTFLAG	CF/TFNAME
	1	‘PUMP1’	CFTF-ONLY	CF	‘OMEGA_CF’	CF	‘TAUMOT_CF’
	2	‘PUMP2’	CFTF-TIE	TF	‘OMEGA_TF’	NO	‘’
	3	‘PUMP3’	TIE	NO	‘’	TF	‘TAUMOT_TF’