

Improving HPC Productivity Through Monitoring, Analysis, and Feedback Jim Brandt (09328)

Meet The Team

- SNL: Omar Aaziz, Ben Allan, Jim Brandt, Ann Gentile, Ben Schwaller
- Open Grid Computing: Nichamon Naksinehaboon, Narate Taerat, Nick Tucker, Tom Tucker
- BU: Burak Aksar, Emre Ates, Prof. Ayse Coskun
- NMSU: Prof. Jon Cook
- UIUC: Saurabh Jha, Archit Patke
- UCF: Prof. Damian Dechev, Ramin Izadpanah
- NU: Prof. Devesh Tiwari, Tirthak Patel

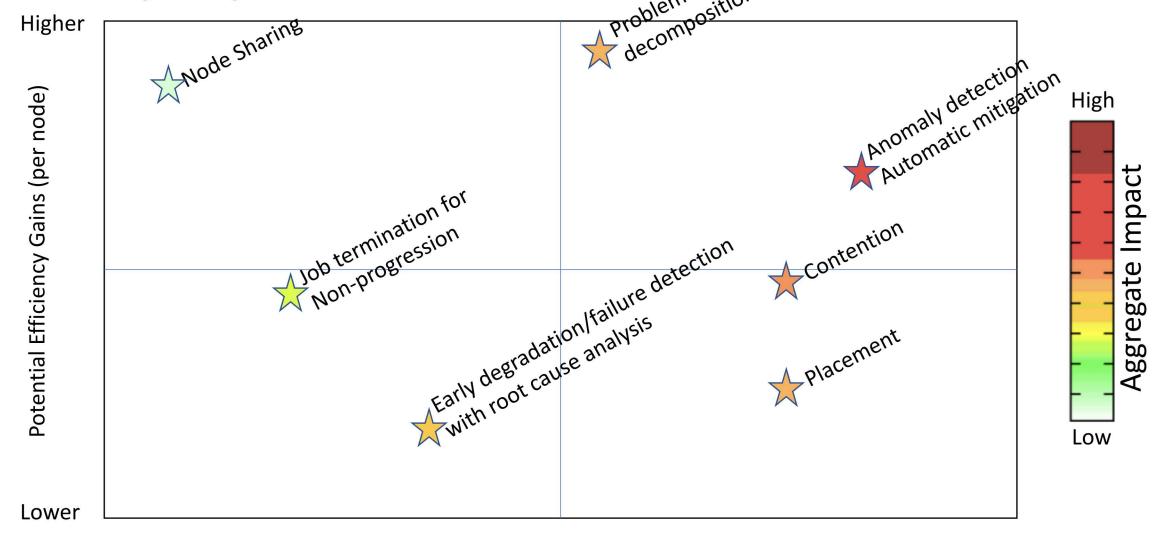
Sandia Production HPC Consistently Runs at 100% of Capacity

			Processor		Memory/	Memory	TFLOPS	Processor
System	Vendor	Nodes	cores total	Processor:Sockets:Cores/Socket	Node	/ Core	(peak)	Hours/Year
				Available 10/2019				
Attaway	Penguin	1,488	53,568	2.3 GHz Intel Skylake 2SL:18C	192	5.33	1,800	469,255,680
Serrano	Penguin	1,122	40,392	2.1 GHz Intel Broadwell:2S:18C	128	3.56	1,357	353,833,920
Sky Bridge	Cray	1,848	29,568	2.6 GHz Intel Sandy Bridge:2S:8C	64	4.00	588	259,015,680
Chama	Appro	1,232	19,712	2.6 GHz Intel Sandy Bridge:2S:8C	64	4.00	392	172,677,120
Uno	Dell	251	3,344	2.7 GHz Intel Sandy Bridge:2S:8C/4S:8C	64/128	4/8	71	29,293,440
Eclipse	Penguin	1,488	53,568	2.1 GHz Intel Broadwell:2S:18C	128	3.56	1,800	469,255,680
Doom (GPU)	Penguin	30	431,160	2.1 GHz Intel Broadwell:2S:18C 4X Nvidia P100 GPUs/node	512	14.22	565	3,776,961,600
Ghost	Penguin	740	26,640	2.1 GHz Intel Broadwell:2S:18C	128	3.56	895	233,366,400
Black Total: 6,711			604,384				5,668	5,294,403,840
Cayenne	Penguin	1,122	40,392	2.1 GHz Intel Broadwell:2S:18C	128	3.56	1,357	353,833,920
Jemez	HP	288	4,608	2.6 GHz Intel Sandy Bridge:2S:8C	32	2.00	95	40,366,080
Pecos	Appro	1,232	19,712	2.6 GHz Intel Sandy Bridge:2S:8C	64	4.00	392	172,677,120
Red Total:		2,642	64,712				1,844	566,877,120
Solo	Penguin	374	13464	2.1 GHz Intel Broadwell:2S:18C	128	3.56	452	117,944,640
Green Total:		374	13,464				452	117,944,640
Bridge	Appro	1,848	29,568	2.6 GHz Intel Sandy Bridge:2S:8C	64	4.00	588	259,015,680
Sand	Appro	924	14,784	2.6 GHz Intel Sandy Bridge:2S:8C	64	4	294	129,507,840
Orange Total:		2,772	44,352				882	388,523,520
TOTALS:		40.400					0.000	

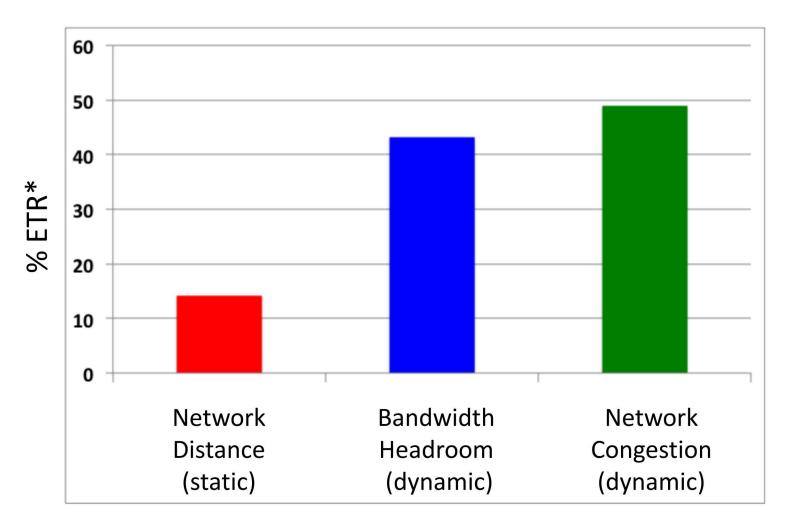
Traditional CPU's: 12,469 295,752 8,282 2,590,787,520

Black Multi-Cluster file systems: 16 PB Lustre (/gscratch,/nscratch) 4 PB GPFS (/gpfs1) 70 TB NAS (home and projects) Red Multi-Cluster file systems: 16 PB Lustre (iscratch,mscratch) 4 PB GPFS (/gpfs1) 70 TB NAS (home and projects)

Potentials For Data-driven Efficiency Improvements



Using LDMS to Enable Run-Time Assessment and Response



Remapping based on dynamic network assessment recovered ~50% of the time otherwise lost to heavy congestion.

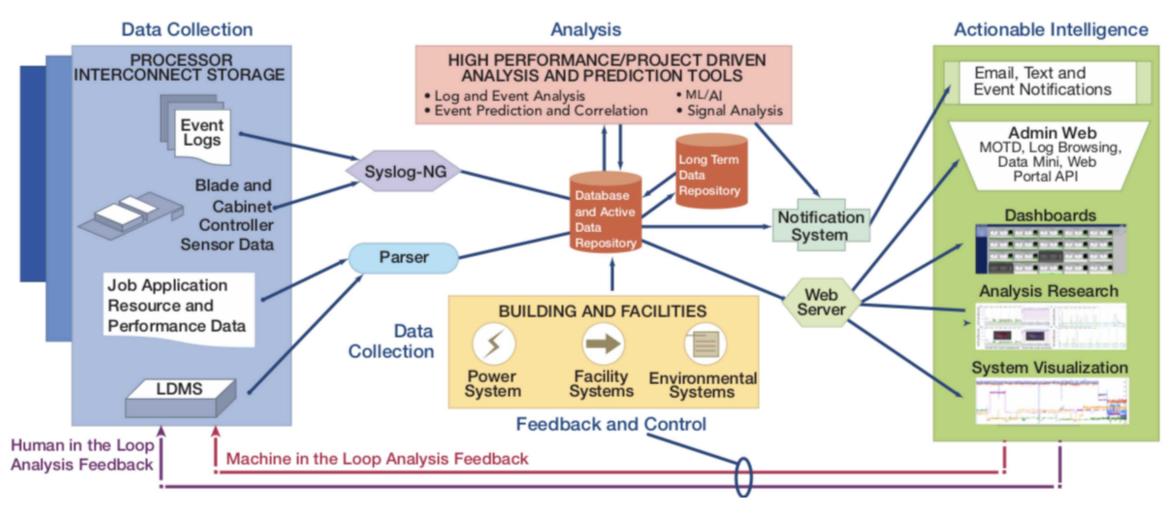
Graph edges weighted by network:

- network distance (hops)
- bandwidth headroom
- congestion (credit stalls)

G

National

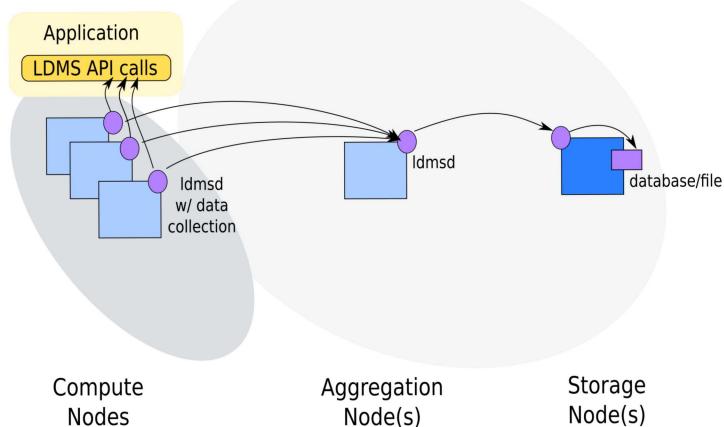
Holistic HPC Monitoring and Analysis System Architectural Overview



Technical Challenges

- Whole-system data collection and transport cannot impact performance
- Data management must efficiently support run-time and historical analysis
- Extraction of actionable information (analysis) from high volume (~10s of TB/day) and high dimension (100s to 1000s of discreet variables) data
- Relevant raw data may be un-exposed or unknown and change from architecture-toarchitecture
- How raw and derived data can be quantifiably associated with application impact may be unknown
- Explainable and interpretable Machine Learning (ML) application to active feedback systems
- Analytical approaches need to support incorporation of architecture-relevant information, and provide confidence bounds for response
- Unknown which application runs should have similar performance, to detect abnormal performance
- Getting early access to machines: "rare" events occur more frequently
- Cleansing and releasing data for analysis research is problematic

Lightweight Distributed Metric Service (LDMS) High Level Overview



* Only the current data is retained on-node

Node(s)

Differentiating LDMS Features

Feature	Benefit				
Optimized Data Structures	Low Overhead (cpu, network) and Bounded Footprint				
Synchronized Data Sampling	System State "Snapshot" for Coherent Analysis				
Resilience	Automated Failover & Recovery of Aggregators				
Large Array of Transports	Run on IB, Ethernet, OmniPath, Aries, Gemini				
Plugin Based	Easy to contribute to: samplers, stores, authentication				
RDMA based PUB/SUB	Low Overhead Compared With Kafka, Rabbit				
On-the-Fly Sampling Interval Change	High Fidelity On Demand				
Sampling and Transport Rate Independent	Low Overhead and Network Resiliency				
RDMA & Socket Communication	Lightweight Over Any RDMA Enabled Transport				
Job & Application Info. With Data	Simplifies Job Based Analysis				
Platform Independent	Run On X86, ARM, Power				
Large Fan-in	Minimal Additional Infrastructure				
Security	Range of authentication plugins (e.g., munge)				

MemAvailable

SwapCached Active

Active(anon)

Active(file)

Inactive(anon)

Inactive

Buffers

Cached

D u64


```
voltrino:/opt/ovis/etc/ldms # ldms_ls -h nid00006 -x sock -p 412 -a munge -lv nid00063/meminfo
              Instance
                                      Flags Msize Dsize UID
                                                                                   Update
Schema
                                                                                                    Duration
                                                                                                                      Info
                                               1976 416
                                                               0 44476 -rwxrwx--- 1570023154.002980
                                                                                                             0.000031 "updt_hint_us"="1000000:300000"
Total Sets: 1, Meta Data (kB): 1.98, Data (kB) 0.42, Memory (kB): 2.39
nid00063/meminfo: consistent, last update: Wed Oct 02 07:32:34 2019 -0600 [2980us]
M u64
            component_id
            job_id
D u64
                                                      0
D u64
            app_id
            MemTotal
                                                      131899768
D u64
            MemFree
                                                      129865232
D u64
```

129416140

23380

508992

277760

307892

193908

184852

83852

Metric Set "syspapi"


```
voltrino:/opt/ovis/etc/ldms # ldms_ls -h nid00006 -x sock -p 412 -a munge -lv nid00063/syspapi
                                                                                                          Duration
Schema
               Instance
                                         Flags Msize Dsize UID
                                                                                                                            Info
               nid00063/syspapi
                                                                           0 -rwxrwxrwx 1570023691.008566
                                                                                                                   0.004697 "updt_hint_us"="1000000:300000"
syspapi
                                                         5704
Total Sets: 1, Meta Data (kB): 0.68, Data (kB) 5.70, Memory (kB): 6.38
nid00063/syspapi: consistent, last update: Wed Oct 02 07:41:31 2019 -0600 [8566us]
M u64
             component id
D u64
             job id
D u64
             app_id
                                                         35962599040,33992506816,35016600026,34797373446,34579431570,34600633036,34866212892,35120182994,3
D u64[]
             PAPI_TOT_INS
4647555149,34187973522,36058949119,42688377667,44405137911,43070075781,39425173545,38523220124,82390828804,77743186601,56745278099,54416189686,4827372438
4,49570082931,48293353594,46769113539,46073901733,43311232326,43761299041,42782782577,42745101204,42900537963,43035807262,43403273118,42673441079,3915072
0271,96524480804,69094274050,102400075682,241895203414,42615199699,41434918343,42160727972,41640611193,42809823414,33640896301,32903940720,33804660746,46
749061082,45350156751,35889486313,35658688722,35233565448,43172353875,34502476895,35716981879,35572136501,34847601434,34842029631,33103620319,32842315011
,32324849160,32301258050,32580067510,33029662641,78591868588
D u64[]
             PAPI TOT CYC
                                                         1091371150343, 1074482294242, 1075856872394, 1007361704285, 1047474321368, 1070600164757, 1060578247208
,1068145172379,1065221777202,1033641916867,1046781299237,1048708645507,1056821194745,1063166574299,1273045767276,1265521218824,1145321347062,116919526242
5,1106759879593,1062340319720,1043320992729,1073142063380,1090214088094,1095190871410,1115609545140,1098615119177,1068226323764,1077484495170,10795218837
42,1077241702960,1087609948114,1033060164149,871582062019,888198426532,1102824860297,913000708653,1093591218121,1835082078673,870873545096,868985415262,8
75819215958,944906582576,958630620152,849662992559,840151846041,857964093239,763520739966,747993675182,1195050125939,1236902581229,1221504257051,11920721
00388, 1140989105013, 1189871177680, 1193022222152, 1189308106075, 1219874884039, 1208104501799, 1144802530038, 1164099423137, 1161444479999, 1177150316373, 1182536
171084,1505220945939
D u64[]
             PAPI_LD_INS
                                                         14251682388, 12749639917, 13666872842, 13763405180, 13950309203, 12647251640, 13104328219, 13334681962, 1
3427661219, 11988400650, 12328489316, 14364972540, 14562701610, 14415386254, 20306398779, 19679719376, 32843837244, 28969476391, 21876024268, 20358724627, 1892530368
9,19105143594,18927425167,18500434180,18423431144,17942491383,18013074508,17737635374,17699555908,17814161762,17765160158,18266044502,24806214894,2529241
7452,42097753013,33221459130,43434361660,94531460611,25517034945,25029921947,25377767841,23101290622,23672534844,24200240512,23915997328,24270879669,2768
2639706, 27959812405, 24952895443, 24939427388, 24768692145, 27201876895, 24531202462, 24918645614, 12288287508, 12201030582, 12220899474, 11917990036, 11926292606, 1
1829570744,11847731021,11832208938,12123376320,20919526663
```

Installations & Active Contributors

- NNSA
 - LANL ATS (Trinity), CTS, and other
 - LLNL CTS
 - SNL ART, CTS
 - TOSS stack
- Office of Science:
 - NERSC Cori, Edison
- NSF
 - NCSA Blue Waters
- Industry
 - Cray*
 - Exxon Mobile
- Non-US
 - AWE
 - HLRS
- Misc Universities

*Cray has Integrated LDMS into its Shasta platform monitoring solution

DOE HPC Facilities

Pre-Exascale Systems

2016 2012 2018 ORNL ORNL Cray/AMD/ NVIDIA Cray/Intel IBM/NVIDIA ANL LBNL IBM BG/Q Cray/Intel LANL/SNL Cray/Intel LLNL LLNL SEQUOIA SIERRA IBM/NVIDIA IBM BG/Q

Future Exascale Systems

-- Deployed or planned deployment

-- Being evaluated for deployment

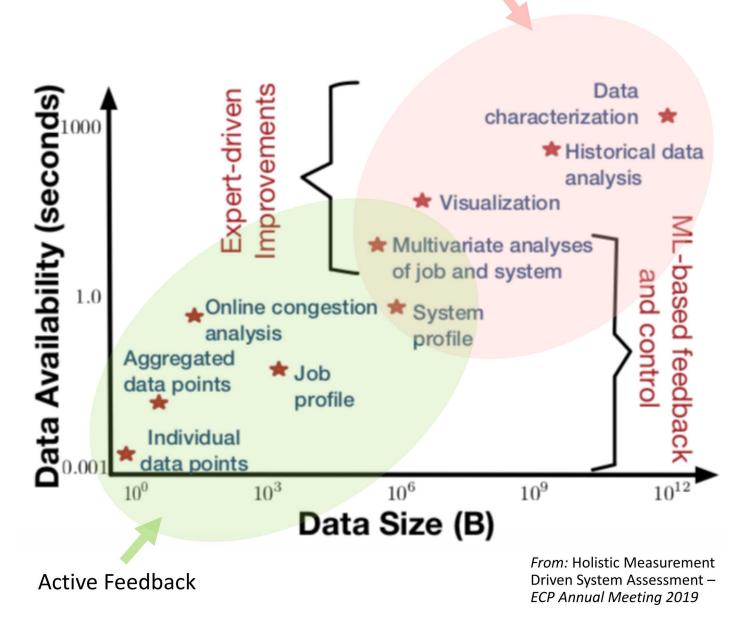
Base Source: hpcwire

Actionable Data Analytics

Human in the loop

Sandia National Laboratories

- Data features:
 - High volume (~10s of TB/day)
 - High dimension (100s to 1000s of discreet variables) data
 - Getting data is not a challenge!
- ASC Machine Learning (ML) focus areas:
 - Validated and explainable ML
 - Physics/boundary-constrained ML (e.g., domain-relevant)



University Collaborations

Collaborations with five universities on advanced data analytics and sampler development

Machine Learning (ML) based anomaly detection and characterization

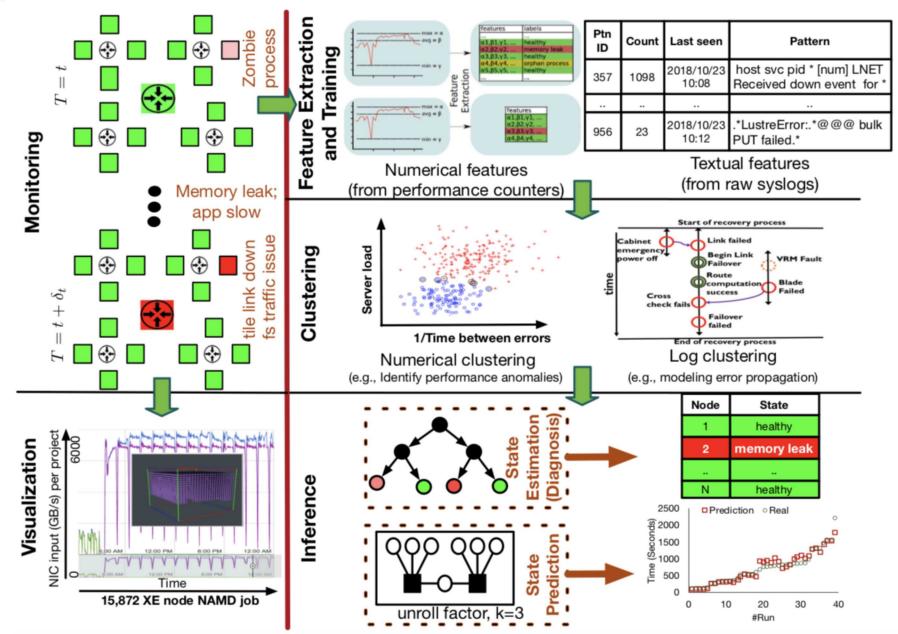
Statistics and ML based network congestion characterization and mitigation

Application characterization using application instrumentation and run-time analysis

MPI I/O monitoring and application network resource characterization

Characterization and mitigation of network congestion effects using application instrumentation

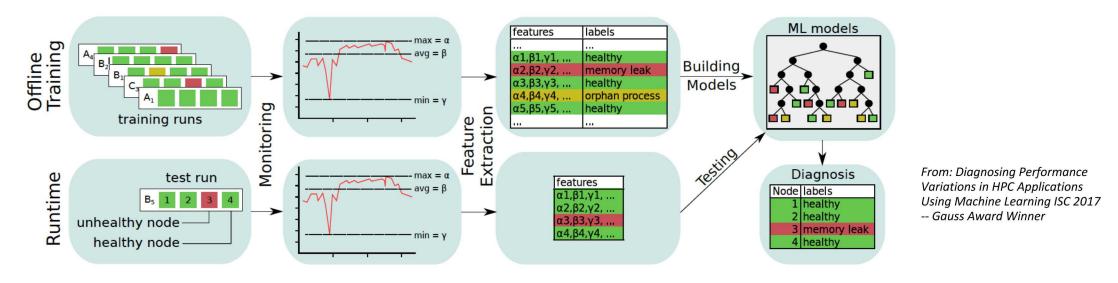
Analytics and Feedback (High Level)



From: Holistic Measurement Driven System Assessment – ECP Annual Meeting 2019

Anomaly Detection and Problem Diagnosis

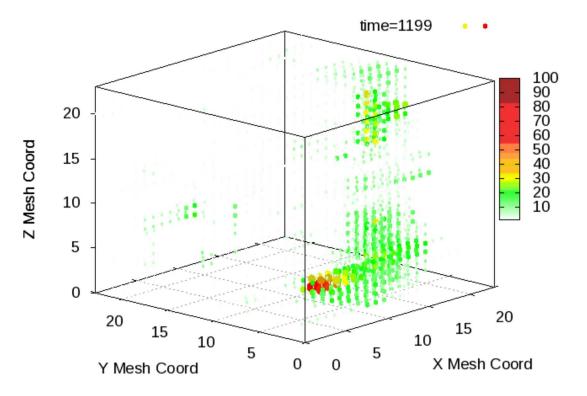
- Analysis: Use Machine Learning (ML) to build models of normal and abnormal behavior for each condition. Detect and diagnose run time performance/security problems through classifying data with respect to models.
- Detect and diagnose performance issues associated with learned behavioral characteristics: memory leaks, network contention, I/O contention, rogue processes, etc.



Machine learning models built offline are used for classifying observations and runtime assessment

Visualization of Congestion in a Gemini Network

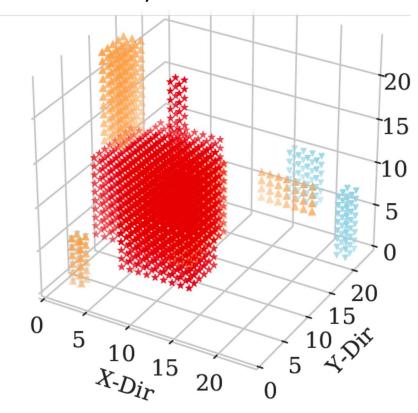
X+ Gemini Link: Percent Time Spent in Credit Stalls (1 min intervals)



Plays at 10 real minutes per second

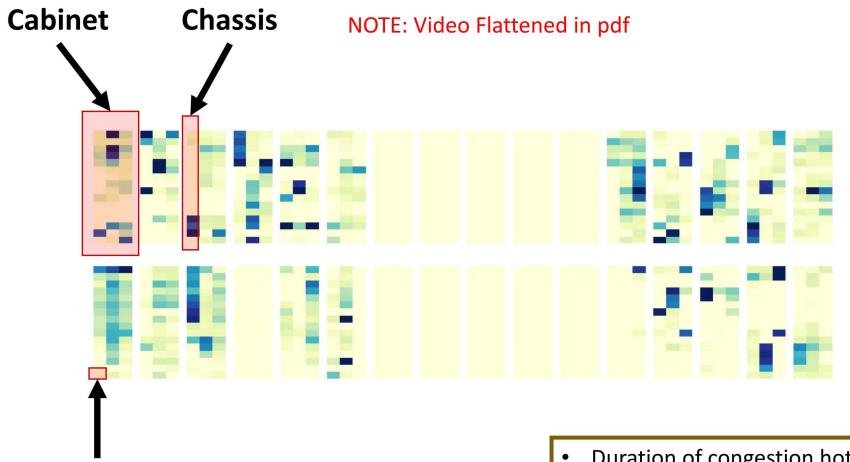
NOTE: Video Flattened in pdf

Automated Characterization of "Congestion Clouds" In Cray Gemini Networks



Long duration congestion clouds (direction independent)
(NCSA Blue Waters)

Five Minutes of Congestion on Edison



>15% Percent Time Stalled (PTS) is dark blue 0% - 15% green gradient

Aries Blade/Switch

Network congestion assessments based on ~800 metrics per-router/sec

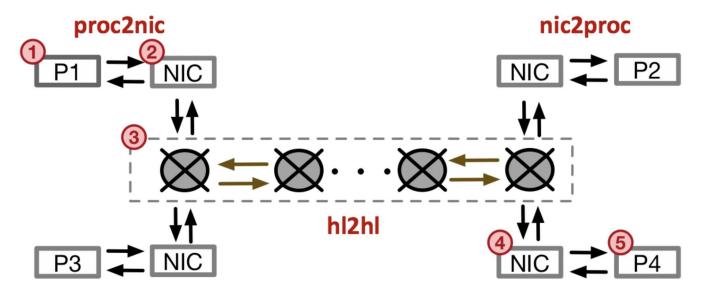
* 1000 routers in Edison

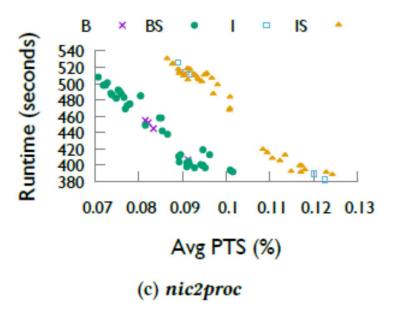
- Duration of congestion hotspots is short
- Hotspots move rapidly and application continues experience congestion

Indicators of Performance Impact

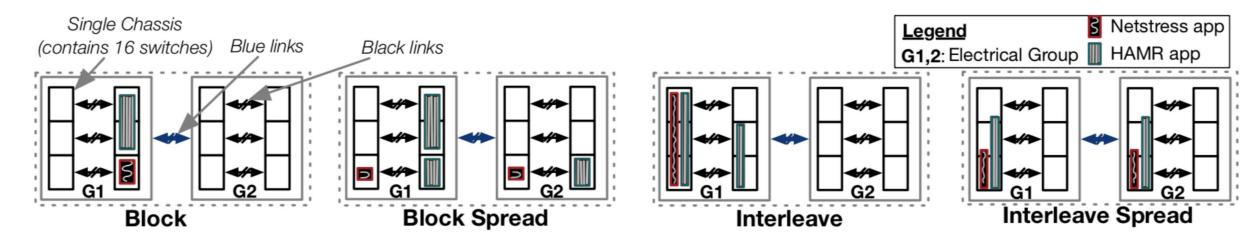
(allocation related)

Traffic flowing from P1 to P4





Illustrative Example: Scatter Plots of avg. PTS on link connecting NIC to processor and HAMR runtime



ML-driven Performance-Feature Discovery in Aries

Use of ML to identify Features most highly correlated with application performance

k-Fold Voting Cross Validation Ensemble Models

Information to be used for:

- Diagnosis for understanding performance variation
- Understanding performance sensitivity to each configuration parameter
- Scheduling policy

Feature Type	Feature List	Avg R2*
Application and Scheduler Specific	app,hugepages,place ment, balance, avg hops	0.64
Network Specific	nic2proc,proc2nic,hl2 hl PTS & SPF	0.86
All features	All the above	0.91

^{*}R2 is the coefficient of determination (higher is better)

Sandia National Laboratories

Web Interface Example -- Showing Performance Figures of Merit for System and Application Performance Diagnosis

Job ID 💠	App ID 🍦	Node ID 🔷	Runtime (s) 💠	Back Pressure	Mem Score 🍦	Anomalies	PAPI Perf 🛊	App Perf 🛊
42093	miniAMR	nid000[52-55]	439	0.0	2	None	Back	1.45
42092	miniGhost	nid000[21;29-31]	1043	49.07	2	Cache	Back	-1.93
42091	miniMD	nid000[57-60]	617	5.24	3	Cache	Back	No data
42089	CoMD	nid000[52-55]	742	91.68	1	Cache	Back	1.52
42088	miniAMR	nid000[21;29-31]	447	0.0	2	Cache	Back	1.45
42087	miniGhost	nid000[57-60]	1043	73.88	2	Cache	Back	-0.27
42086	miniMD	nid000[21;29-31]	619	13.33	3	Cache	Back	No data
42084	CoMD	nid000[52-55]	742	90.88	1	Cache	Back	1.81
42034	miniGhost	nid000[52-55]	1022	98.59	1	None	Back	No data
42028	kripke	nid000[57-58	748	0.0	1	Mem	No data	No data
42027	kripke	nid000[21;29-31]	751	0.0	1	Mem	Back	No data
42019	kripke	nid000[52-55]	1092	0.0	1	Mem	Front, Back	No data

Mission Impact of SNL's HPC Monitoring Project

- Developed, deployed, and continue to evolve, efficient productionhardened HPC monitoring software stack
- Widespread use is enabling:
 - More data --> more measurement based understanding and better HPC platforms
 - Across DOE complex Tri-Labs, NERSC, NCSA
 - Cray
 - Other sites using HPC resources
 - User contributions that provide additional functionality at no additional cost to DOE
- Cray's adoption means integration into DOE's next generation mission computing platforms from the outset
 - Collection of data during high occurrence of rare event period
 - Researchers can spend their time on data analysis and feedback aspects → more efficient computing both now and in the future

Planned & Ongoing Work (next 3 – 5 years)

LDMS:

- Enhancements to core and plugin capabilities
 - Ease of configuration
 - Expanded and enhanced transports
 - Plugins to support new architectures, subsystems, and functionalities
- Direct support for efficient scalable storage architectures
- Continue to improve on overhead and robustness to system failures
- Incorporate new data transport constructs to keep in step with changing technologies (e.g., pub/sub technologies, json formats)

Advanced analytics:

- Application and development of analytics with domain-relevancy
- Integration of log and facilities data
- Explainable machine-learning methods for extracting responses and future designs
 - Assessment of confidence in analytical results and associated response options
- Research and development of technologies to facilitate higher efficiency storage and queries to support advanced run-time analytics
- Continued collaborative research, including experiments and analysis of production scenarios on extreme-scale systems of collaborative partners

Feedback

- Automate Feedback of actionable data to applications and system software (e.g., schedulers)
- Enhanced forms of feedback to users and operations staff

Production Sustainability

- As we develop, validate, and production harden components of both analytics and monitoring infrastructure we will continue to deploy both at SNL and at partner sites
- Building a self-sustaining support community currently have a users group, tutorials, documented contribution processes

Questions?

- Project Objective
 - Increase the performance of current and future HPC systems through improved, data-driven approaches to operations and systems design.
 - Improve understanding of application ←→ system interaction
 - Automate run-time data-driven responses to problem identification
- Strategy/Goals
 - Perform continuous high fidelity system wide monitoring on large scale HPC systems (SNL and collaborator sites)
 - Gain new insights about application and HPC sub-system interactions through large-scale analysis of whole-HPCecosystem data
 - Utilize new understanding to build platform-independent infrastructure and tools to enable effective automated run-time analysis and feedback
- Technical Challenges
 - Whole-system data collection and transport cannot impact performance
 - Data management must efficiently support run-time and historical analysis
 - Extraction of actionable information (analysis) from high volume (~10s of TB/day) and high dimension (100s to 1000s of discreet variables) data
 - Relevant raw data may be un-exposed or unknown and change from architecture-to-architecture
 - How raw and derived data can be quantifiably associated with application impact may be unknown
 - Explainable and interpretable Machine Learning (ML) application to active feedback systems
 - Analytical approaches need to support incorporation of architecture-relevant information, and provide confidence bounds for response
 - Unknown which application runs should have similar performance, to detect abnormal performance
 - Getting early access to machines: "rare" events occur more frequently
 - Cleansing and releasing data for analysis research is problematic