

**US-Japan
BLC-CNWG**

Sandia Research and Development on Sodium-Concrete Reaction

Important Severe Accident Phenomena

- Accident initiation
- Loss of heat sink
- Loss of core coolant
- Loss of primary heat source
- Reactor vessel failure
- Reactor vessel failure in RCS and Containment
- Containment thermal dynamics
- Containment thermal hydraulics
- Containment fire
- Containment fire and explosion
- Containment safety systems - sprays, fan controls, etc.
- Containment chemistry and more

David L.Y. Louie, Ph.D.

SNL/JAEA Collaboration on Sodium Fire Studies 11th Expert Meeting

October 25, 2019

1

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

DOE **NASA**

Outline

- Experimental works in 1980s
- Laboratory-scale experiments [NUREG/CR-3401, SAND83-1502]
- Intermediate-scale experiments [NUREG/CR-3288, SAND83-1064]
- Sodium-Limestone Concrete Ablation Model (SLAM) [NUREG/CR-3379, SAND83-7114]
- Future implementation of SLAM into MELCOR

According to SAND83-1502, the reaction mechanisms for SCR on basalt and magnetite concretes were understood. And for carbonate concretes, such as limestones, the mechanisms were not well understood.

We will also examine other types of concretes, even though the SLAM is ready for us to implement into MELCOR.

3 Purpose of Sandia's Sodium Concrete Reaction (SCR) Experiments

- Many SCR tests were done before Sandia's tests – to study the mechanism on reactions to basalt, magnetite and carbonate concretes
- Reactions between sodium and carbonate concretes, particularly the mechanisms not understood. Clinch River LMFBR used carbonate concretes
- The intermediate tests were done as a companion tests to those tests done at HEDL to allow comparisons between two laboratories.
- Due to uncertainty with the larger tests, laboratory-scale tests were conducted to better characterize the reaction (or interaction) between sodium and concrete (carbonate/limestone).
- To develop SCR model, such as Sodium-limestone ablation model (SLAM) from these Sandia tests.

Laboratory-Scale Experiments at Sandia

4

- Horizontal resistance tube furnace (7.5 cm ID x 80 cm Long)
- Silica glass tube liner (6.0 cm ID x 122 cm Long)
- Argon flow at 100 ± 5 cc/min
- A single sheathed chromel-alumel TC

Material	Limestone*	Dolostone**
	Weight Percent	
Aggregate	79.7	78.8
Cement Type II	12.0	10.3
Water	6.3	7.5
Flyash	2.0	3.4
Admixture***	<0.1	<0.1

*70% calcite and 30% dolomite

**85% dolomite and 15% calcite

***Includes both air-entraining and water reducing agents

Placing solid Na and concrete/aggregate in nickel crucible at room temp. Placing the crucible in a horizontal tube furnace continuously purged with an inert gas (N₂ or Ar). Test temp is 600 C in pre-heat or continuous heating. A TC is placed in crucible as shown. For most samples, a sharp inflection in the time-temperature plot is the indication of the exothermic reaction. The test lasts about 20 minutes before quenching by moving the sample out of the furnace and cool below its solidification of 97.5 C. Each test lasts about 40 minutes from startup of the furnace and then 25 minutes for thermal and chemical equilibration. The difference between preliminary and control tests is the size of the concrete solids – preliminary is larger than control as shown.

Table 5. Controlled Sodium-Carbonate Concrete Test Conditions and Results

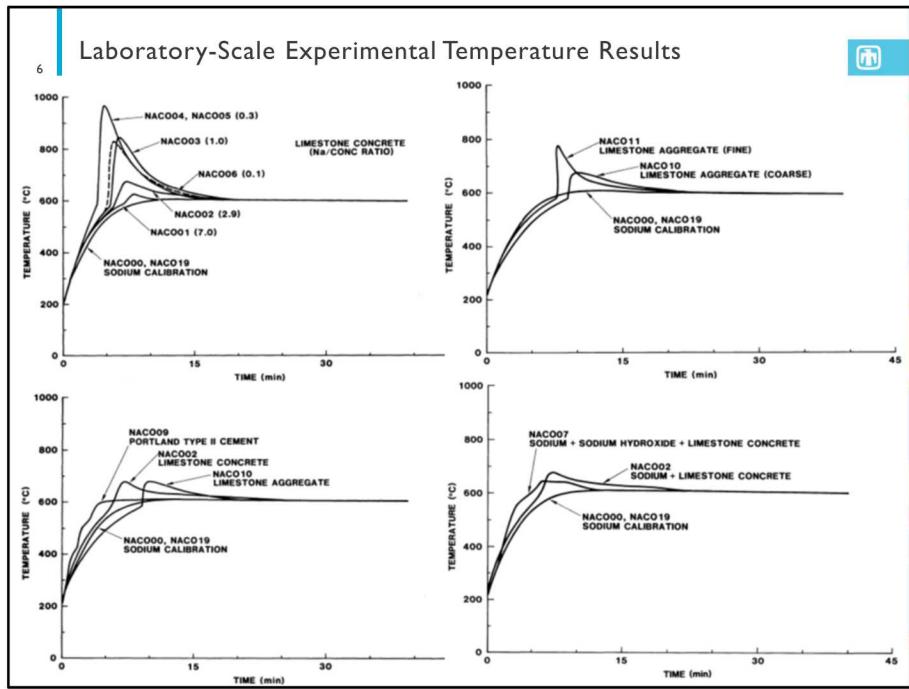
Test ID	Reactants* (g)	Sodium/Concrete Ratio	Threshold Temperature (°C)	Relative** Heat
NAC000	20.0 Na	-	-	-
NAC001	17.5 Na + 2.5 Ls Conc	7.0	595±10	4.8
NAC002	14.9 Na + 5.1 Ls Conc	2.9	565±10	5.9
NAC003	10.0 Na + 10.0 Ls Conc	1.0	580±10	7.5
NAC004	4.6 Na + 15.6 Ls Conc	0.3	560±10	6.2
NAC005	5.0 Na + 15.0 Ls Conc	0.3	595±10	nm
NAC006	2.5 Na + 17.5 Ls Conc	0.1	570±10	3.5
NAC007	10.0 Na + 5.0 Ls Conc + 5.0 NaOH	-	605±10	6.0
NAC008	5.1 Na + (5.0 NaOH + 10.0 Ls Conc) #	-	525±10	5.2
NAC009	15.0 Na + 5.1 Cem	-	540±20	4.9
NAC010	15.0 Na + 5.0 Ls Agg	-	575±10	4.6
NAC011	15.0 Na + 5.1 Ls Agg (f) "	-	575±10	4.9
NAC012	14.9 Na + 5.0 Ls Conc [†]	3.0	540±10	5.0
NAC013	15.0 Na + 5.0 Cem	-	555±10	1.8
NAC014	10.0 Na + 10.2 Ls Conc	1.0	500±20 [‡]	8.4
NAC015	10.0 Na + 10.0 D1 Agg	-	565±15	3.7
NAC016	10.0 Na + 10.0 D1 Agg (f) "	-	575±10	3.5
NAC017	10.2 Na + 10.0 D1 Conc [†]	1.0	530±10	5.8
NAC018	15.0 Na + 5.0 CC [§]	-	545±10	5.9
NAC019	20.0 Na	-	-	-
NAC020	10.3 Na	-	-	-
NAC021	30.5 Na	-	-	-

* Symbols: Na=metallic sodium; NaOH=sodium hydroxide; Ls=limestone; D1=dolostone; Conc=concrete; Cem=Portland type II cement;

** Agg=aggregate; CC=calcium carbonate; nm=not measured.

† Arbitrary units of heat per gram mass of concrete or concrete component

‡ Coated with sodium hydroxide at 350°C and then cooled to 30°C before addition of sodium.


§ Fragment size is between 0.25 and 0.42 mm.

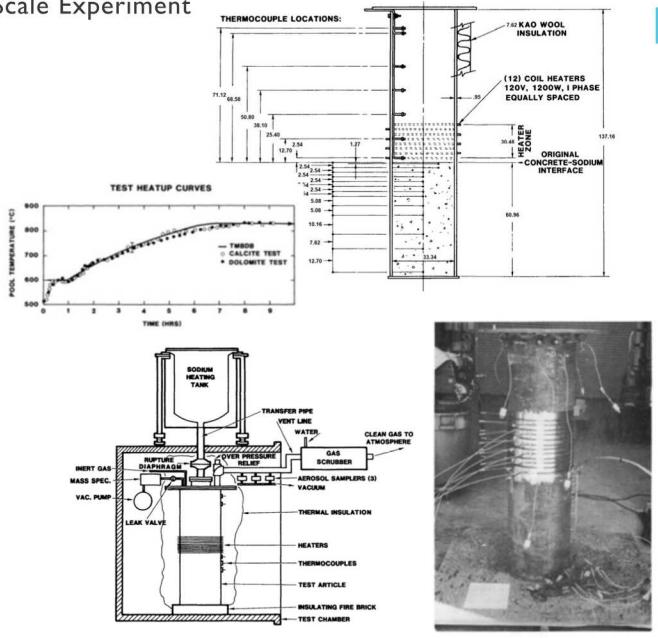
† Heated at 670°C for 2 hours; x-ray analysis indicates no decarbonation.

‡ Slow and gradual exothermic reaction.

§§ Fine grained (<3.0 µm) reagent grade CaCO₃.

Try to maintain Na + test article to 20 grams
Test article is 3.35 to 4.75 mm concrete fragment

Upper left (fig 2) shows the effect of the Na/CONC ratio which are expected. The higher the ratio, the lower temperatures may be resulted. The peak temperature of these exotherms increase with decreasing sodium/concrete ratios until a maximum is reached at a ratio of about 0.3. However, the amount of heat produced per unit mass of solid reactant reaches a maximum at a sodium/concrete ratio of 1.0 (see table 5). the time delay before onset of the exothermic reaction decreases with decreasing sodium/concrete ratios, while their heating rates increase


Upper right (fig 4) shows the effect of the coarse versus fine aggregate, as expected the fine aggregate will react with sodium that releases heat faster than the coarse aggregate.

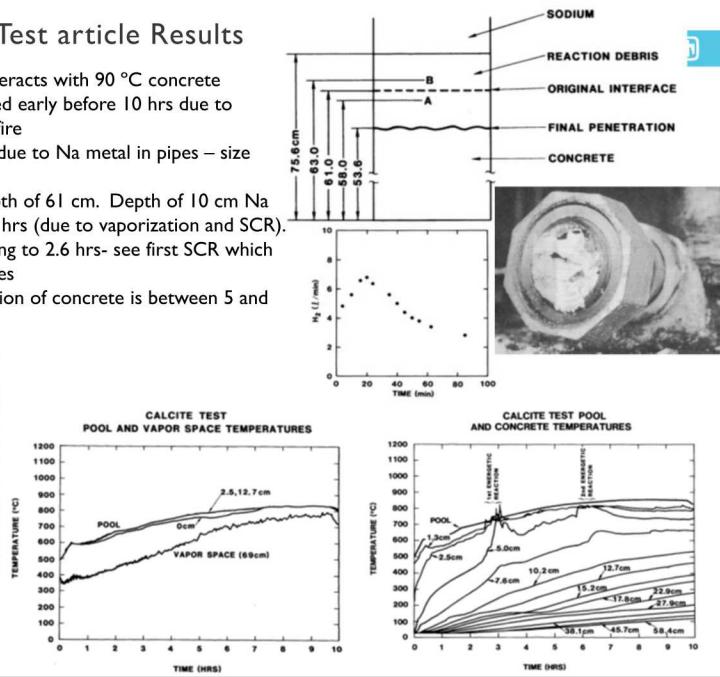
Lower left (fig 3) shows the effect of the concrete types – Portland (without aggregate), concrete and aggregate.

Lower right (fig. 6) shows NAC007 with addition of NaOH pellets, which did not affect the heat amount produced, but did broaden the exotherm, and lower the peak temp.

7 Intermediate Scale Experiment Setup

- Calcite and dolomite concretes used
 - Concrete make-up aggregate with type II cement: ~40 MPa strength
- 60.96 cm depth concrete in a cyl. steel shell
- 137.16 cm plate welded to end of shell
- Na interaction surface is 929.03 cm²
 - Preheated Na to 750 and 776 °C, respectively
 - ~10 s to test article
- 15 TCs (k-type) embedded in concrete
- 45.36 kg (100 lbs) of Na used

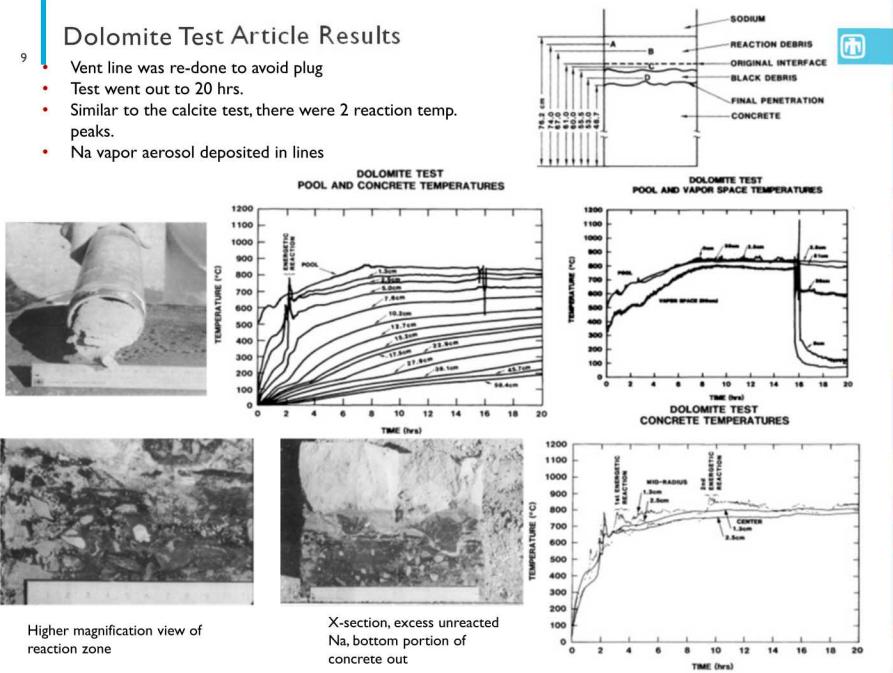
An Ar gas purge of the test article 5 hours before each test at 2 liters/min. These tests provide the penetration depth of the reactions.


Calcite Test article Results

8

- 750 °C Na interacts with 90 °C concrete
- Test terminated early before 10 hrs due to excessive Na fire
- Vent plugging due to Na metal in pipes – size microns
- Initial pool depth of 61 cm. Depth of 10 cm Na was lost in 12 hrs (due to vaporization and SCR).
- Uniform heating to 2.6 hrs- see first SCR which lasts 50 minutes
- Total penetration of concrete is between 5 and 7.6 cm

Cross-sectional (1st half) with unreacted Na and lower portion of concrete removed.



Na fire resulting from a Na leak because of the plugging. Interaction with concrete and vaporization account for the sodium loss. Cooling starts at about 10 hrs.

Dolomite Test Article Results

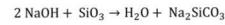
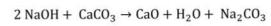
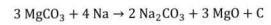
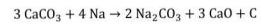
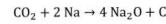
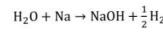
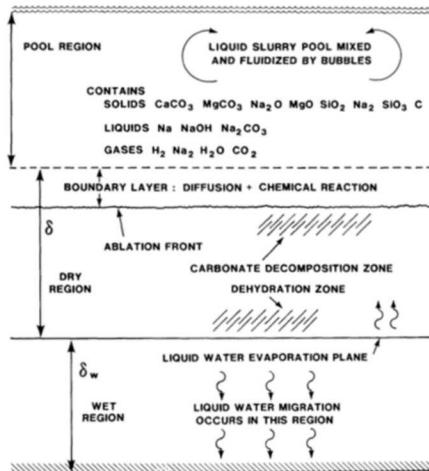
9

- Vent line was re-done to avoid plug
- Test went out to 20 hrs.
- Similar to the calcite test, there were 2 reaction temp. peaks.
- Na vapor aerosol deposited in lines

10 | Test Results and Conclusions on Intermediate-Scale

- Na/concrete reaction zones
 - Calcite well demarcated boundary between completely reacted and unreacted concretes
 - Dolomite a thick, diffuse layer of partially decomposed concrete and reaction debris separating concrete regions – due to dolomite decomposition temperature
- Major species: NaOH, Na₂CO₃, CaO and MgO
 - Most important reaction in both concrete is Na and H₂O with limestone to form Na₂CO₃, H₂ and oxides, including free C.
- Note only 1 test each of two concretes – results may not be conclusive.

Summary of Calcite and Dolomite Test Results








	Calcite	Dolomite
Test Date	08/19/82	10/13/82
Test Temperature (°C)	830	830
Sodium Used (kg)	45.5	45.5
Test Length (hr)	10	20
Sodium Preheat Temperature (°C)	750	750
Minimum Quench Temperature (°C)	510	510
Maximum Concrete Temperature (°C) which occurred at (hr)	830 2.6	790 2.2
Penetration (cm)*	7.4 ± 5.0	5.5 ± 2.9 12.3 ± 2.9**
Maximum Penetration Rate by thermocouple indications (mm/min)	1.7	1.4

* at 95% confidence level

** Measured at black debris/unreacted concrete interface.

II SLAM Model

SODIUM LIMESTONE-CONCRETE ABLATION MODEL

$\gamma_p=0$ POOL REGION

— Node 1 swells/shrinks with composition changes. Nodes 2, N are of equal and fixed size for entire calculation

Moving boundary

Concrete interface

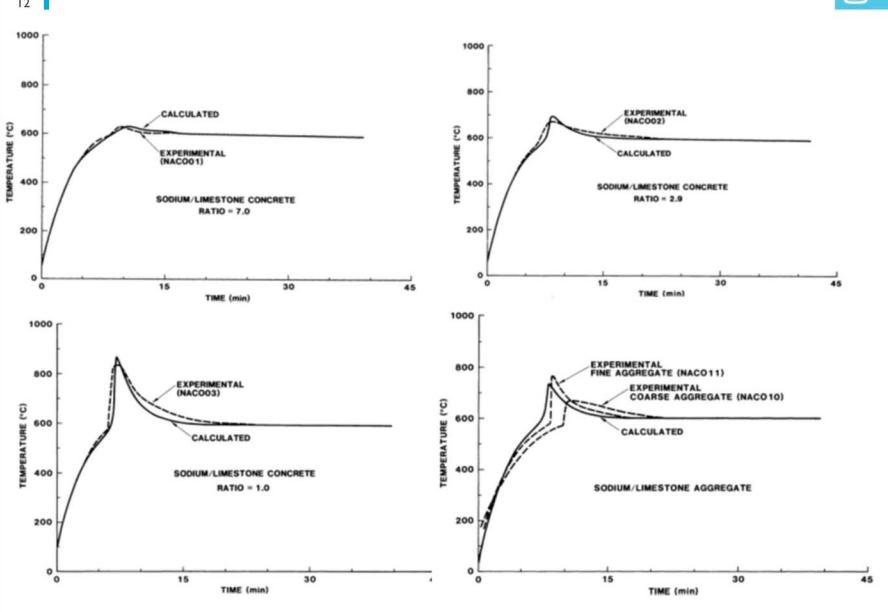
$\gamma_d=0$ BOUNDARY LAYER REGION

— Fixed number of equal size nodes that swell or shrink in unison according to the physics of the problem.

Coordinates move with the ablation front

DRY REGION

$\gamma_w=0$ WET REGION


— Variable number of nodes of equal size. The last node is of variable size and disappears with coordinate front. Coordinates move with the evaporation + migration system motion. The node sizes are skewed.

Moving boundary

Boundary fixed in space

Figure 2. The SLAM Coordinate Systems
Subscripts p, d, and w refer to pool, dry, and wet respectively

SLAM Validation with Bench-Scale Tests

Summary and Conclusions

- Small and Intermediate-Scale Tests were done at SNL in 1980s
- Small scale tests were used to develop and validate SLAM model
- Immediate Scale Tests were used to observe the reactions of calcite and dolomite concretes with liquid sodium [45.36kg (100lbm)] for a reaction surface of 929.03 cm²
- Brief description of the SLAM model provided
- Validation of the SLAM model using small scale tests provided

Future Implementation of SLAM in MELCOR

- SLAM has been implemented in CONTAIN-LMR
- Studies had been done for how to decouple from CORCON in CONTAIN-LMR
 - Based on accident progression in pool-type SFRs, corium-concrete interaction is not be possible for metallic fuel
- Methods to implement this SLAM without CORCON are being developed to be used in MELCOR
- Due to prioritization of MELCOR SFR development for MELCOR, SLAM implementation is not expected in the next couple of years