
Purging reliance on UVM from
Tpetra & downstream solvers

e
.... DEPARTMENT OF

ENERGY

Mark Hoemmen

Sandia National Laboratories

24 Oct 2019

.V "'&Ci31
NV k'

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International, inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2019-13073PE



Y'all want to purge UVM reliance

■ What is UVM?

■ Advantages & disadvantages of UVM

■ When, why, & how do Tpetra-based solvers rely on UVM?

■ Removing UVM reliance in Tpetra: pitfalls & opportunities

■ Strategies for downstream solvers

■ Kokkos & Trilinos tools to help

■ Best practices

Sandia
National
Laboratories

2



UVM: Unified Virtual Memory
Sandia
National
Laboratories

■ NVIDIA calls it "Unified Memory" now

■ UVM feature is ALWAYS ON in CUDA hardware & runtime, but

users opt into using it at memory allocation time

■ CUDA has 3 kinds of allocations that GPU can access

■ cudaMalloc (Kokkos::CudaSpace): CPU cannot access

■ cudaHostAlloc (Kokkos::CudaHostPinnedSpace): CPU can access

■ cudaMallocManaged (Kokkos::CudaUVMSpace): CPU can access



UVM uses virtual memory pages
Sandia
National
Laboratories

■ User just accesses UVM allocation on CPU or GPU

■ CUDA runtime uses page faults to trigger copies

■ Copies happen PER MEMORY PAGE, not per allocation

■ Post-copy, page behaves like any other memory (e.g., cached)

■ Host-pinned memory uses a different mechanism

■ Memory lives in CPU memory & stays there

■ Pages "locked" to fixed physical (non-virtual) addresses

■ This lets GPU access memory directly (Direct Memory Access), without

needing to ask CPU to convert virtual to physical addresses

■ Non-CUDA uses: e.g., Network adapters use it to make MPI faster

4



Disadvantages of relying on UVM

■ Must avoid concurrent CPU & GPU access

■ UVM can't resolve "diffs" between same page on CPU & GPU

■ Nondeterministic, context-dependent bugs

■ Trilinos strategy: Set CUDA_LAUNCH_BLOCKING=1

Lose benefit of asynchronous GPU kernel launches

Can't overlap GPU kernels with CPU work or GPU-CPU copies

■ Less costly strategy: Fence (force GPU kernel completion) before

accessing data on CPU, if you expect GPU to be accessing it

■ CUDA_LAUNCH_BLOCKING does something different from this

We (& apparently NVIDIA) don't really know what it does

Sandia
National
Laboratories

5



Disadvantages of UVM (2 of 2)

■ Context-dependent hidden data movement costs

■ Limit on max # of allocations (21'{16} perhaps)

■ Will MPI correctly recognize UVM allocations?

■ Or crash?

■ Or think they are CPU memory & access them slowly on host, thus

forcing subsequent GPU kernels to page them back?

This is why Tpetra only uses CudaSpace or HostSpace for MPI buffers

■ Will upcoming computer architectures support it?

■ AMD (Frontier) has had unified memory for longer than NVIDIA

■ But, expect more architecture variety in the future

■ Also don't expect that other vendors' UM will be more reliable

Sandia
National
Laboratories

6



Advantages of using UVM

• Can allocate more memory than GPU physically has

• Only copy pages, not entire allocations

• Kokkos::DualView::sync* copies entire allocations

• DualView not the right tool for synchronizing sparse updates

• Above: Good for sparse graph algorithms

• Simplifies gradually porting code to run on GPUs

Sandia
National
Laboratories

7



Why not use host-pinned memory?

• More limited resource

• Physical CPU memory

• Used by network adapters; use may grow w/ # MPI processes

• Very slow allocation

• 10-100x CUDA
• CUDA allocation already very slow (r- MPI communication)

• Does not use GPU cache 4 cannot exploit locality

Sandia
National
Laboratories

8



How to get (non-)UVM Kokkos::View

using Kokkos::Device; using Kokkos::Cuda; using Kokkos::View;

// Explicitly specify memory space

using non_uvm_cuda = Device<Cuda, Kokkos::Cudaspace>;

using my_non_uvm_view = View</* args */, non_uvm_cuda>;

using uvm_cuda = Device<Cuda, Kokkos::CudaUVIV1space>;

using my_uvm_view = View</* args */, uvm_cuda>;

Sandia
National
Laboratories

9



Kokkos space defaults?
Sandia
National
Laboratories

■ All Kokkos::Device & lexecution,memoryl spaces have aliases

■ device_type

■ memory_space

■ execution_space

■ This lets users use execution space in Kokkos::View

■ View<double*, Kokkos::Cuda> my_view;

■ View uses memory_space typedef in Kokkos::Cuda

■ What's Cuda::memory_space?

■ Kokkos CMake option: either CudaSpace or CudaUVMSpace

■ Trilinos sets it to CudaUVMSpace, which is NOT Kokkos' default

■ What's CudaSpace::execution_space::memory_space?

10



How does Trilinos rely on UVM?

■ Explicitly at configure time, via Kokkos CMake option

■ Implicitly semantically, by

■ accessing UVM allocations on host

■ Implicitly syntactically, by

■ assuming Cuda::memory_space == CudaUVMSpace

■ assuming View<...>::HostMirron:memory_space ==

View<...>::memory_space

■ assuming DualView::t_dev::memory_space ==

DualView::t host::memory_space

■ Why? History lesson...

Sandia
National
Laboratories

11



Over 15 years of Tpetra

2004-5:
Paul
Sexton
starts
Tpetra

2005

2005-10:
ill-tested
research-
ware

Mid 2010:
I start
work on Kokkos
Tpetra 2.0

2007 2009

1 /
2011 2013

Stage 1 rewrite
of Tpetra to use
Kokkos 2.0

Assemble
new Tpetra
team; gather
requirements

2015 2017

iletiUM u) loo Ot. 11111r.

2006 2008 2010 2012 2014

2008: Chris Baker
redesigns Tpetra;
2009: Kokkos 1.0

Fix bugs; rewrite
kernels; deploy
Tpetra-based
multigrid in app
(no threads)

Deprecate &
purge for
Trilinos 13

rin
2019

0

•17

0- •

0- •

0- •

O
Cri

T-

2016 2018 2020

Stage 2: purge
old interface,
more kernels,
some thread-
parallel fill

Sandia
National
Laboratories

Improve GPU+MPI
performance & remove
sequential bottlenecks
(ongoing)

1 2



Tpetra objects: Global, w/ local data

• "Global": Distributed over 1 or more MPI processes

■ Have local data on each MPI process

■ Either Tpetra or users may modify local data

■ e.g., A.apply(X,Y) writes result of sparse mat-vec into Y

■ UVM question relates to

■ Storage of Tpetra objects' local data (do they use UVM allocations?)

■ Implementation of Tpetra functions (do they rely on UVM?)

■ User interface & users' access to Tpetra objects' local data

Sandia
National
Laboratories

13



Tpetra in 2009: No UVM

■ Baker 2009: No UVM (it didn't exist)

■ Access local data on CPU only

■ GPU as accelerator for a few kernels

■ Tpetra classes copy CPU-to-GPU at specific explicit points

■ CrsMatrix: resumeFill, CPU-only changes, fillComplete copies to GPU

■ MultiVector: "generalized view" (not in Kokkos::View sense)

e.g., getldviewNonConst returns Teuchos::ArrayRCP of CPU memory

Read+Write copies back to GPU on destruction; read-only does not

■ No Kokkos::View yet; use ArrayRCP to manage GPU memory

■ Memory ownership models: ref counting, or nonowning

Generalized views could have benefited from unique_ptr

■ Failing builds & tests habitually ignored

Sandia
National
Laboratories

14



Tpetra 2013-2015 refactor

■ Hoemmen & Trott late 2013-2015: Port to use Kokkos 2.0

■ Refactor in place ("change engine while truck is rolling")

■ Use Kokkos data structures esp. View as much as possible

■ Parallelize more; remove sequential bottlenecks, esp. in setup

■ Minimize downstream changes & preserve host interface

■ LAMMPS strategy: Kokkos::DualView

■ LAMMPS: physics plugins can opt into GPU execution

■ Clear boundary between "run on GPU" & "run on CPU"

■ DualView maintains separate copies of data on CPU & GPU

■ Manually mark modified on either side & call sync

■ Tpetra adopted LAMMPS strategy

■ Classes (well, just MultiVector) imitate Kokkos::DualView

Sandia
National
Laboratories

15



Kokkos::DualView behavior

r
Work on host (CPU)

Get a host view of
the data & treat it as

read only

Manually mark
host as modified

Get Kokkos::View
of host data;

read & write data

Tell DualView to
sync to device

Work on device (GPU)

Get a device view of
the data & treat it as

read only

Host & device
data are in sync

t

IIA

Manually mark
device as modified

Get Kokkos::View
of device data;

read & write data

Tell DualView to
sync to host

,

Sandia
National
Laboratories

16



2014-5: UVM introduced into Tpetra
Sandia
National
Laboratories

• In theory, Tpetra interface makes CPU-GPU copy explicit

• In practice, GPU tests ignored up to this time

• 4 Interface boundary untested & not respected by users

• UVM made downstream code "just work" unchanged

• UVM gave us a quick path to Kokkos-ize Crs{Graph,Matrix}

• Too many states — too hard to get non-UVM working

• StaticProfile resumeFill storage lives on GPU

• CPU-only access interface (get*Row*, replace*, sumlnto*, ...) accesses

GPU memory through UVM

• Remember that Christian & I had to stand up kokkos-kernels

• Historically a Tpetra product & responsibility

• Tpetra relied on Baker's Kokkos 1.0 kernels

17



Changed Tpetra interface meaning
Sandia
National
Laboratories

• Crs{Graph,Matrix}: StaticProfile resumeFill storage on GPU

• Generalized view methods rely on sync/modify, not copy back

• Users have direct access to GPU data

• When running either on CPU or on GPU

• 4 Impossible for Tpetra to know if user has changed data

• UVM means that CPU & GPU storage are the same

• Kokkos::DualView<T*, CudaUVMSpace> "lies"

dv.d_view.data() == dv.h_view.data() (same pointer)

Both CPU & GPU Views have same memory space

DualView doesn't fence the GPU on sync (it used to!)

• No enforcement for correct use of sync/modify

18



Tpetra-based solvers assumed UVM
Sandia
National
Laboratories

■ Ifpack2, MueLu, Amesos2 all took shape 2010-11

■ Try to comprehend how much functionality that is

■ Xpetra started as Python-generated copies of Tpetra classes

■ Baked into MueLu a dependency on Tpetra's host-only data access
interface — 2010 (despite early discussions about "Kokkos matrix")

■ MueLu originally didn't intend to keep Xpetra — it let them get started
when Tpetra wasn't yet fully functional

■ No Trilinos CUDA deliverables until >= 2016-7

■ It took a while for solvers to start using Kokkos

19



De-UVMing Tpetra: Pitfalls (1 of 2)

■ Code implicitly couples typedefs between Tpetra classes

■ e.g., assumes CrsMatrix::device_type == MultiVector::device_type

■ Hinders fixing one Tpetra class at a time

■ kokkos-kernels may assume UVM or have syntactic coupling

■ Crs(Graph,Matrix) currently has no DualView-like interface

■ StaticProfile storage is always UVM, & host-only interface accesses it

■ Most complicated code in Tpetra — Sparse matrix-matrix multiply &

other MueLu setup code — tied to UVM

Sandia
National
Laboratories

20



De-UVMing Tpetra: Pitfalls (2 of 2)
Sandia
National
Laboratories

• Current Tpetra classes' interface far too permissive

• Always (even CrsGraph!) return local data as View of nonconst

4 Tpetra can't distinguish access mode (e.g., read-only, read-write)

• Users can always get Views & they are owning

4 Users may subvert sync/modify or resumeFill/fillComplete interface

4 Tpetra may clobber users' data or vice versa

• Multiple ways to modify: e.g., host methods (sumlnto*) or local matrix

Handy for e.g., finite-element method, to run assembly on GPU but use
host-only globally indexed interface for Dirichlet boundary conditions

4 users must remember to sync/modify, etc.

' UVM optimizes sparse access on one side, dense on other

• e.g., above boundary conditions example: host access is sparse

• No UVM 4 must sync entire matrix to host & back again

21



Minimal fix to Crs(Graph,Matrix)

■ Rely on resumeFill / fillComplete interface

■ Assume users don't modify on both sides in a single resumeFill

■ Pre-first-fillComplete is a solvable special case

■ Constructor choice implies pre-1st-fillComplete access mode

Does it take a Kokkos::View or KokkosSparse::CrsMatrix?

Or, does it allocate storage without setting any data?

■ Make getLocalMatrix behavior context dependent

■ Make getLocalMatrix throw before first fillComplete

■ getLocalMatrix post resumeFill implies read-write GPU access

Host-only interface checks modified-on-device flag & throws

Sync to CPU at fillComplete

■ getLocalMatrix post fillComplete implies read-only GPU access

Changes on CPU (already) forbidden post fillComplete

Sandia
National
Laboratories

22



De-UVMing Tpetra: Opportunities
Sandia
National
Laboratories

■ We're breaking backwards compatibility at Trilinos 13 anyway

■ Let's purge everything that causes trouble

■ Interfaces simplifying access to local data

■ withLocalAccess (see other slide deck): explicitly declare

Where to access data (memory space)

What execution space accesses them

How they are accessed: read-only, read-write, write-only

When (the scope within which) users may access data

■ transform & for each (Tpetra overloads)

Work like std::{transform,for_each} but take Tpetra objects

Take optional Kokkos execution space instance ("run here")

transform reduce is next

■ Opportunity for interesting programming models

23



withLocalAccess slides
Sandia
National
Laboratories

24



What about downstream solvers?

■ Expect massive downstream build & test breakage

■ Be more explicit about data access
■ Where to access data (memory space)

Use sync/modify or resumeFill/fillComplete

■ What execution space accesses them

Do NOT assume default Kokkos execution space

Kokkos::RangePolicy<execution_space, index_type>(0,N)

■ How they are accessed: read-only, read-write, write-only

Use existing DualView idioms for declaring access intent

■ When — don't keep Views beyond their scope of use

Sandia
National
Laboratories

25



Tools Kokkos does / will offer

■ Mirror views, deep_copy, & Kokkos::DualView

• "Fake CUDA": Debug memory & execution spaces

■ Debug w/out CUDA hardware or builds (that take forever)

■ Test memory access correctness (e.g., no CudaSpace access on host)

■ Test correctness when kernel launch is asynchronous

Maybe if we had this, we wouldn't have so much UVM trouble

■ See David Hollman's CppCon 2019 talk: https://youtu.be/sFfRxjAvxhc

■ In progress: See Kokkos PR #2307

■ Clang compiler plug-ins (also in progress)

■ Requires Clang CUDA builds

■ Trilinos needs to build w/ Clang CUDA: See #1543, #3702

Sandia
National
Laboratories

26



Nathan Ellingwood's DualView slides
Sandia
National
Laboratories

27



Declare access intent; limit scope

Tpetra::Vector<...> v_gbl (/* constructor arguments */);

// ... intervening code ...

{ // read-only access on host

v_gbl.sync_host(); // sync only as needed

auto v lcl = v_gbl.getLocalviewHost();

some function doing_read_only_host_access(v lcl);

} // v lcl disappears here

{ // read-and-write access on device

v_gbl.sync_device(); // sync only as needed

v_gbl.modify_device();

auto v lcl = v_gbl.getLocalviewDevice();

some function doing_read_write device access(v_gbl);

} // v lcl disappears here

Sandia
National
Laboratories

28



Write-only access works too

{ // write-only access on host

v_gbl.clear_sync_state();

auto v 1cl = v_gbl.getLocalviewHost();

some function doing_write_only_host_access(v lcl);

}

{ // write-only access on device

v_gbl.clear_sync_state();

auto v 1cl = v_gbl.getLocalviewDevice();

some function doing_write_only_device_access(vic1);

}

Sandia
National
Laboratories

29



Tools Trilinos have or can write

• Integrate CMake options w/ Kokkos tools

• e.g., debug builds can use debug Kokkos spaces by default

• Run-time test if memory is CUDA or not

• Tpetra_Details_check{Pointer,View}.hpp

• Tpetra functions call cudaPointerGetAttributes

• Tpetra checks some input pointers in debug mode, to avoid bugs like
creating a Vector with a "lying" CUDA View that wraps CPU memory

• Forbid CudaUVMSpace at compile time (static _assert)

• Tpetra::Distributor already does this for MPI communication buffers

• Would make Trilinos build more robust to Kokkos CMake options

Sandia
National
Laboratories

30



General best practices

■ DON'T

■ expose an object's DualView directly

■ assume default memory spaces

■ expose owning Views of local data

■ DO

■ limit access to local data to a well-defined small scope

■ write interfaces that make clear where data are accessed

■ use C++ idioms to express data access permissions & intent

Sandia
National
Laboratories

31



Brief tutorial: Pointers & ownership

■ Views, containers, & pointers

■ Allocators & Deleters

■ Pointer to const != const pointer

■ Memory lifetime / ownership models

Sandia
National
Laboratories

32



Views, containers, & pointers

• View: "a range type that has constant time copy, move, and
assignment operators" ([range.viewl, C++20 draft)

• "Range" is a generalization of (begin, end) iterator pair

• Container: deep-copies

• "Deep-copies": Copying a container copies its elements
• 4 NOT a view (dep. on # of elements, so not constant time)

• e.g., std::vector, Teuchos::Array

• Pointer: "dumb" (T*) or "smart" (e.g., std::shared_ptr)

• "Shallow-copies": Copying pointer does NOT copy data
• e.g., T*, std::shared_ptr, std::unique_ptr, Teuchos::{(Array)RCP, Ptr,

ArrayView}, Kokkos::View

• We say "pointers view their data" -- not technically views, but this

conveys the idea of constant-time (copy,) move(, & assignment)

Sandia
National
Laboratories

33



Allocators & Deleters
Sandia
National
Laboratories

■ Containers can take arbitrary Allocators

■ Allocator generalizes new / delete (malloc / free)

■ Pre-C++17 allocators are stateless; C++17 permits instances (PMR)

■ Compare to Kokkos memory spaces

■ Smart pointers can take arbitrary Deleter function or object

■ std::{shared,unique}_ptr, Teuchos::(Array)RCP

■ Can do an arbitrary action in addition to / instead of deallocating

■ e.g., Tpetra::Multivecton:getldviewNonConst returns

Teuchos::ArrayRCP<Scalar>, whose Deleter would copy back from CPU

to GPU before freeing the CPU allocation

■ Caller responsible for allocation (unless they use

{make,allocate}_shared or make_unique (C++14))

34



Pointer to const != const pointer

• Pointer to const

• const T*, View<const T*>, RCP<const T>

• const pointer

• T* const, const View<T*>, const RCP<T>

• Pointers (to const or nonconst) may be passed by reference

• Nonconst ref: T*& (or const T*&)

RCP<T>& (or RCP<const T>&)

• Const ref: T* const& (or const T* const&)

const RCP<T>& (or const RCP<const T>&)

• EVERY TRILINOS DEVELOPER MUST UNDERSTAND THIS

• 4 Concisely self-documenting code

• See Ross Bartlett's "Teuchos Memory Management Classes"

Sandia
National
Laboratories

35



e.g., Kokkos::DualView func arg

■ Kokkos::DualView<T*, ...>& (by nonconst ref):

■ Caller will see resize or reassignment (output argument)

■ DualView<const T*>&: immutable output argument

■ Kokkos::DualView<T*, ...> (by value):

■ Caller will NOT see resize or reassignment

■ Caller will see syncs & sync flag changes

■ const Kokkos::DualView<T*, ...>&: (by const ref)

■ Callee may NOT resize, reassign, or sync

■ Callee may change sync flags

■ Kokkos::DualView<const T*, ...> (by value or const ref)

■ Callee may NOT modify data

■ See Trilinos 13 Tpetra::DistObject

Sandia
National
Laboratories

36



Lifetime / ownership models

■ "When does pointer deallocate?"

■ Trilinos uses 2 models; there are others incl. in C++11

■ General goal: Declare lifetime by construction, syntactically

■ Reference counting

■ All (shallow) copies share ownership ("peer to peer")

■ Last copy's destructor deallocates (when ref count -> 0)

■ std::shared_ptr; owning Teuchos::(Array)RCP or Kokkos::View

■ Nonowning

■ All (shallow) copies view a "master" allocation

■ Master may disappear any time, invalidating view

■ T*, std::weak_ptr, std::span, std::string_view

■ Teuchos::{ArrayView,Ptr}; nonowning (Array)RCP or Kokkos::View

Sandia
National
Laboratories

37



Other ownership models

■ Unique: At most one owner

■ May transfer ownership — giver gets null

■ Last owner's destructor deallocates

■ std::unique_ptr, any move-only class

■ "Move" refers to C++11 move construction & move assignment, e.g.,
unique_ptr(unique_ptr<U>&&)

■ "Deferred"

■ For nodes in a possibly cyclic graph, sharing a common heap

■ Herb Sutter's deferred_ptr (see his CppCon 2016 talk)

■ Point: Don't automatically reach for reference counting

■ Use self-documenting idioms

■ Kokkos::MemoryTraits<Kokkos::Unmanaged>

Sandia
National
Laboratories

38



Avoid exposing owning Views

■ BAD: Tpetra returns local data as OWNING Kokkos::View

■ Tpetra objects are global, w/ local data on each MPI process

■ Tpetra stores local data as Kokkos::(Dual)View

■ Tpetra classes have methods to get local data as Kokkos::View

■ Bad because owning Views have unlimited scope

■ Reference-counted, so only go away when user & Tpetra let go

■ (Tpetra,user) can't know when (user,Tpetra) reads/writes View

■ Prevents correct use of sync/modify

■ Bad even without CUDA

■ User's class might store Tpetra object, then get & store its View too

■ If mesh changes & Tpetra object gets resized, owning View still valid
memory, but it won't point to the right object.

■ Nonowning View will be invalid: can detect with tools

Sandia
National
Laboratories

39



Make Views to local data nonowning anes

• Tpetra: Make classes return syntactically nonowning View

• Kokkos::MemoryTraits<Kokkos::Unmanaged> (nonowning)

• Or, Kokkos::AnonymousSpace

"Union of all memory spaces"; its Views are always nonowning

• Use C++11 templated type aliases to make syntax concise

• template<class T, class DeviceType> using local_nonowning_vector =

View<T*, LayoutLeft, DeviceType, MemoryTraits<Unmanaged>>;

• local_nonowning_vector<T> Xicl = /* function call */;

• Users: Limit access to local data to narrow scope

• Don't keep View; get it on demand from Tpetra object

• See examples in next 2 slides

40



1 i7

sepowoqei
letio4BN
win

isluegi


