SAND2019- 13073PE

Purging reliance on UVM from
Tpetra & downstream solvers

Mark Hoemmen
Sandia National Laboratories

24 Oct 2019

U.S. DEPARTMENT OF ' YA T =
¥ s
ENERGY INIGA
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International, Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Y’all want to purge UVM reliance @i=.

= What is UVYM?

= Advantages & disadvantages of UVM

= When, why, & how do Tpetra-based solvers rely on UVM?
= Removing UVM reliance in Tpetra: pitfalls & opportunities
= Strategies for downstream solvers

= Kokkos & Trilinos tools to help

= Best practices

UVM: Unified Virtual Memory UL

= NVIDIA calls it “Unified Memory” now

= UVM feature is ALWAYS ON in CUDA hardware & runtime, but
users opt into using it at memory allocation time

= CUDA has 3 kinds of allocations that GPU can access

= cudaMalloc (Kokkos::CudaSpace): CPU cannot access
= cudaHostAlloc (Kokkos::CudaHostPinnedSpace): CPU can access
= cudaMallocManaged (Kokkos::CudaUVMSpace): CPU can access

UVM uses virtual memory pages

= User just accesses UVM allocation on CPU or GPU

= CUDA runtime uses page faults to trigger copies

= Copies happen PER MEMORY PAGE, not per allocation

= Post-copy, page behaves like any other memory (e.g., cached)

= Host-pinned memory uses a different mechanism
= Memory lives in CPU memory & stays there
= Pages “locked” to fixed physical (non-virtual) addresses

= This lets GPU access memory directly (Direct Memory Access), without
needing to ask CPU to convert virtual to physical addresses

= Non-CUDA uses: e.g., Network adapters use it to make MPI faster

Disadvantages of relying on UVM

= Must avoid concurrent CPU & GPU access

UVM can’t resolve “diffs” between same page on CPU & GPU
Nondeterministic, context-dependent bugs

Trilinos strategy: Set CUDA_LAUNCH_BLOCKING=1
" Lose benefit of asynchronous GPU kernel launches

= Can’t overlap GPU kernels with CPU work or GPU-CPU copies

Less costly strategy: Fence (force GPU kernel completion) before
accessing data on CPU, if you expect GPU to be accessing it

CUDA_LAUNCH_BLOCKING does something different from this
= We (& apparently NVIDIA) don’t really know what it does

Disadvantages of UVM (2 of 2)) .

= Context-dependent hidden data movement costs
= Limit on max # of allocations (2*{16} perhaps)
= Will MPI correctly recognize UVM allocations?

= QOr crash?
= Or think they are CPU memory & access them slowly on host, thus
forcing subsequent GPU kernels to page them back?
= This is why Tpetra only uses CudaSpace or HostSpace for MPI buffers
= Will upcoming computer architectures support it?
= AMD (Frontier) has had unified memory for longer than NVIDIA
= But, expect more architecture variety in the future
= Also don’t expect that other vendors’ UM will be more reliable

Advantages of using UVM

= Can allocate more memory than GPU physically has
= Only copy pages, not entire allocations

= Kokkos::DualView::sync* copies entire allocations
= DualView not the right tool for synchronizing sparse updates

= Above: Good for sparse graph algorithms

= Simplifies gradually porting code to run on GPUs

Why not use host-pinned memory? @&

= More limited resource

= Physical CPU memory

= Used by network adapters; use may grow w/ # MPI processes
= Very slow allocation

= 10-100x CUDA

= CUDA allocation already very slow (~ MPlI communication)

= Does not use GPU cache =2 cannot exploit locality

How to get (non-)UVM Kokkos::View® .

using Kokkos::Device; using Kokkos::Cuda; using Kokkos::View;
// Explicitly specify memory space

using non_uvm_cuda = Device<Cuda, Kokkos::CudaSpace>;
using my_non_uvm_view = View</* args */, non_uvm_cuda>;

using uvm_cuda = Device<Cuda, Kokkos::CudaUVMSpace>;

using my_uvm_view = View</* args */, uvm_cuda>;

Kokkos space defaults?) i,

= All Kokkos::Device & {execution,memory} spaces have aliases
= device_type
" memory_space
= execution_space
= This lets users use execution space in Kokkos::View
= View<double*, Kokkos::Cuda> my_view;

= View uses memory_space typedef in Kokkos::Cuda

= What’s Cuda::memory_space?
= Kokkos CMake option: either CudaSpace or CudaUVMSpace
= Trilinos sets it to CudaUVMSpace, which is NOT Kokkos’ default

= What's CudaSpace::execution_space::memory_space?

10

How does Trilinos rely on UVM?

Explicitly at configure time, via Kokkos CMake option

Implicitly semantically, by
= accessing UVM allocations on host

Implicitly syntactically, by
= assuming Cuda::memory_space == CudaUVMSpace
= assuming View<...>::HostMirror::memory_space ==
View<...>::memory_space
= assuming DualView::t_dev::memory_space ==
DualView::t_host::memory_space

Why? History lesson...

Over 15 years of Tpetra) .

2004-5- Stage 1 rewrite
Paul 2005-10: Mid 2010; of Tpetrato use assemble Deprecate &
Sexton ill-tested | start Kokkos 2.0 new Tpetra purge for
starts research- work on Kokkos team; gather Trilinos 13
Tpetra ware Tpetra requirements
2005 2007 2009 2011 2013 2015 2017 2019
wovdsisvdvvivevei
2006 2008 2010 2012 2014 2016 2018 2020
2008: Chris Baker Fix bugs; rewrite Stage 2: purge Improve GPU+MPI
redesigns Tpetra; kernels; deploy old interface, performance & remove
2009: Kokkos 1.0 Tpetra-based more kernels, sequential bottlenecks
multigrid in app some thread- (ongoing)

(no threads) parallel fill

Tpetra objects: Global, w/ local data'®

= “Global”: Distributed over 1 or more MPI processes
= Have local data on each MPI process
= Either Tpetra or users may modify local data

= e.g., A.apply(X,Y) writes result of sparse mat-vec into Y

= UVM question relates to

= Storage of Tpetra objects’ local data (do they use UVM allocations?)
= |Implementation of Tpetra functions (do they rely on UVM?)
= User interface & users’ access to Tpetra objects’ local data

Tpetra in 2009: No UVM),

= Baker 2009: No UVM (it didn’t exist)

= Access local data on CPU only
= GPU as accelerator for a few kernels

= Tpetra classes copy CPU-to-GPU at specific explicit points
= CrsMatrix: resumefFill, CPU-only changes, fillComplete copies to GPU

= MultiVector: “generalized view” (not in Kokkos::View sense)
" e.g., getldViewNonConst returns Teuchos::ArrayRCP of CPU memory
= Read+Write copies back to GPU on destruction; read-only does not

= No Kokkos::View yet; use ArrayRCP to manage GPU memory

= Memory ownership models: ref counting, or nonowning
" Generalized views could have benefited from unique_ptr

= Failing builds & tests habitually ignored

14

Tpetra 2013-2015 refactor)

= Hoemmen & Trott late 2013-2015: Port to use Kokkos 2.0

= Refactor in place (“change engine while truck is rolling”)
= Use Kokkos data structures esp. View as much as possible
= Parallelize more; remove sequential bottlenecks, esp. in setup

= Minimize downstream changes & preserve host interface

= LAMMPS strategy: Kokkos::DualView

= LAMMPS: physics plugins can opt into GPU execution

= Clear boundary between “run on GPU” & “run on CPU”

= DualView maintains separate copies of data on CPU & GPU
= Manually mark modified on either side & call sync

= Tpetra adopted LAMMPS strategy

= Classes (well, just MultiVector) imitate Kokkos::DualView

15

Kokkos::DualView behavior

Work on host (CPU) Work on device (GPU)

Get a host view of Get a device view of
the data & treat it as the data & treat it as
read only read only

¢ t !

Manually mark Host & device
host as modified data are in sync

l

Get Kokkos::View
of host data;
read & write data

:

Tell DualView to

v

Manually mark
device as modified

l

Get Kokkos::View
of device data;
read & write data

.

sync to device

Tell DualView to
sync to host

Sandia
National
Laboratories

2014-5: UVM introduced into Tpetra®@i&.

= |n theory, Tpetra interface makes CPU-GPU copy explicit

= |n practice, GPU tests ignored up to this time

= =» |nterface boundary untested & not respected by users

= UVM made downstream code “just work” unchanged
= UVM gave us a quick path to Kokkos-ize Crs{Graph,Matrix}

= Too many states —too hard to get non-UVM working
= StaticProfile resumetill storage lives on GPU

= CPU-only access interface (get*Row*, replace®, sumlnto™, ...) accesses
GPU memory through UVM

= Remember that Christian & | had to stand up kokkos-kernels
= Historically a Tpetra product & responsibility
= Tpetra relied on Baker’s Kokkos 1.0 kernels

17

Changed Tpetra interface meaning @

= Crs{Graph,Matrix}: StaticProfile resumeFill storage on GPU
= Generalized view methods rely on sync/modify, not copy back

= Users have direct access to GPU data
= When running either on CPU or on GPU
= =» Impossible for Tpetra to know if user has changed data

= UVM means that CPU & GPU storage are the same

= Kokkos::DualView<T*, CudaUVMSpace> “lies”
= dv.d_view.data() == dv.h_view.data() (same pointer)
= Both CPU & GPU Views have same memory space

= DualView doesn’t fence the GPU on sync (it used to!)

= No enforcement for correct use of sync/modify

18

Tpetra-based solvers assumed UVM

= |[fpack2, MuelLu, Amesos2 all took shape 2010-11

= Try to comprehend how much functionality that is

= Xpetra started as Python-generated copies of Tpetra classes

= Baked into Muelu a dependency on Tpetra’s host-only data access
interface ~ 2010 (despite early discussions about “Kokkos matrix”)

= Muelu originally didn’t intend to keep Xpetra — it let them get started
when Tpetra wasn’t yet fully functional
= No Trilinos CUDA deliverables until >= 2016-7

= |t took a while for solvers to start using Kokkos

De-UVMing Tpetra: Pitfalls (1 of 2) @&

= Code implicitly couples typedefs between Tpetra classes

= e.g., assumes CrsMatrix::device_type == MultiVector::device_type

= Hinders fixing one Tpetra class at a time
= kokkos-kernels may assume UVM or have syntactic coupling
= Crs(Graph,Matrix) currently has no DualView-like interface

= StaticProfile storage is always UVM, & host-only interface accesses it

= Most complicated code in Tpetra — Sparse matrix-matrix multiply &
other Muelu setup code — tied to UVM

De-UVMing Tpetra: Pitfalls (2 of 2) @&

= Current Tpetra classes’ interface far too permissive
= Always (even CrsGraph!) return local data as View of nonconst
= =» Tpetra can’t distinguish access mode (e.g., read-only, read-write)
= Users can always get Views & they are owning

= =» Users may subvert sync/modify or resumeFill/fillComplete interface
= = Tpetra may clobber users’ data or vice versa

= Multiple ways to modify: e.g., host methods (suminto*) or local matrix

= Handy for e.g., finite-element method, to run assembly on GPU but use
host-only globally indexed interface for Dirichlet boundary conditions

= =¥ users must remember to sync/modify, etc.

= UVM optimizes sparse access on one side, dense on other
= e.g., above boundary conditions example: host access is sparse
= No UVM =» must sync entire matrix to host & back again

21

Minimal fix to Crs(Graph,Matrix) @&

= Rely on resumeFill / fillComplete interface
= Assume users don’t modify on both sides in a single resumefFill

= Pre-first-fillComplete is a solvable special case
= Constructor choice implies pre-15t-fillComplete access mode
= Does it take a Kokkos::View or KokkosSparse::CrsMatrix?
= Or, does it allocate storage without setting any data?

= Make getLocalMatrix behavior context dependent
= Make getLocalMatrix throw before first fillComplete
= getlLocalMatrix post resumeFill implies read-write GPU access
= Host-only interface checks modified-on-device flag & throws
= Sync to CPU at fillComplete
= getlLocalMatrix post fillComplete implies read-only GPU access
* Changes on CPU (already) forbidden post fillComplete
22

De-UVMing Tpetra: Opportunities @&,

= We're breaking backwards compatibility at Trilinos 13 anyway
= Let’s purge everything that causes trouble

= |nterfaces simplifying access to local data

= withLocalAccess (see other slide deck): explicitly declare
= Where to access data (memory space)
= What execution space accesses them
* How they are accessed: read-only, read-write, write-only
= When (the scope within which) users may access data

= transform & for_each (Tpetra overloads)
= Work like std::{transform,for_each} but take Tpetra objects
= Take optional Kokkos execution space instance (“run here”)
= transform_reduce is next

= QOpportunity for interesting programming models

23

withLocalAccess slides) .

What about downstream solvers? (g

= Expect massive downstream build & test breakage
= Be more explicit about data access

= Where to access data (memory space)
= Use sync/modify or resumeFill/fillComplete

= What execution space accesses them

* Do NOT assume default Kokkos execution space

= Kokkos::RangePolicy<execution_space, index_type>(0,N)
= How they are accessed: read-only, read-write, write-only

= Use existing DualView idioms for declaring access intent

= When —don’t keep Views beyond their scope of use

Tools Kokkos does / will offer) .,

= Mirror views, deep_copy, & Kokkos::DualView

= “Fake CUDA”: Debug memory & execution spaces
= Debug w/out CUDA hardware or builds (that take forever)
= Test memory access correctness (e.g., no CudaSpace access on host)
= Test correctness when kernel launch is asynchronous
= Maybe if we had this, we wouldn’t have so much UVM trouble
= See David Hollman’s CppCon 2019 talk: https://voutu.be/sFfRxjAvxhc
= |n progress: See Kokkos PR #2307

= Clang compiler plug-ins (also in progress)
= Requires Clang CUDA builds
= Trilinos needs to build w/ Clang CUDA: See #1543, #3702

26

Nathan Ellingwood’s DualView slided® .

27

Declare access intent; limit scope @&

Tpetra::Vector<...> v_gbl (/* constructor arguments */);
// ... intervening code ...
{ // read-only access on host
v_gbl.sync_host(); // sync only as needed
autov_lIcl =v_gbl.getLocalViewHost();
some_function_doing_read_only_host_access(v_lIcl);
}// v_lIcl disappears here
{ // read-and-write access on device
v_gbl.sync_device(); // sync only as needed
v_gbl.modify _device();
autov_Icl =v_gbl.getLocalViewDevice();
some_function_doing_read_write_device access(v_gbl);
}// v_lcl disappears here

28

Write-only access works too UL

{ // write-only access on host
v_gbl.clear_sync_state();
autov_lIcl =v_gbl.getLocalViewHost();
some_function_doing_write_only host_access(v_Icl);

}

{ // write-only access on device
v_gbl.clear_sync_state();
auto v_lcl = v_gbl.getLocalViewDevice();

some_function_doing_write_only device_access(v_lIcl);

}

Tools Trilinos have or can write) 2=

" Integrate CMake options w/ Kokkos tools

= e.g., debug builds can use debug Kokkos spaces by default
= Run-time test if memory is CUDA or not

= Tpetra_Details_check{Pointer,View}.hpp

= Tpetra functions call cudaPointerGetAttributes

= Tpetra checks some input pointers in debug mode, to avoid bugs like
creating a Vector with a “lying” CUDA View that wraps CPU memory

= Forbid CudaUVMSpace at compile time (static_assert)

= Tpetra::Distributor already does this for MPl communication buffers

= Would make Trilinos build more robust to Kokkos CMake options

General best practices) B,

= DON’T
= expose an object’s DualView directly
= assume default memory spaces
= expose owning Views of local data

= DO
= |imit access to local data to a well-defined small scope
= write interfaces that make clear where data are accessed

= use C++ idioms to express data access permissions & intent

Brief tutorial: Pointers & ownership

= Views, containers, & pointers
= Allocators & Deleters
= Pointer to const != const pointer

= Memory lifetime / ownership models

Views, containers, & pointers) .

= View: “arange type that has constant time copy, move, and
assignment operators” ([range.view], C++20 draft)

= “Range” is a generalization of (begin, end) iterator pair

= Container: deep-copies
= “Deep-copies”: Copying a container copies its elements
= =» NOT a view (dep. on # of elements, so not constant time)
= e.g., std::vector, Teuchos::Array

= Pointer: “dumb” (T*) or “smart” (e.g., std::shared_ptr)
= “Shallow-copies”: Copying pointer does NOT copy data
= e.g., T* std::shared_ptr, std::unique_ptr, Teuchos::{(Array)RCP, Ptr,
ArrayView}, Kokkos::View
= We say “pointers view their data” -- not technically views, but this
conveys the idea of constant-time (copy,) move(, & assignment)
33

Allocators & Deleters)

= Containers can take arbitrary Allocators
= Allocator generalizes new / delete (malloc / free)
= Pre-C++17 allocators are stateless; C++17 permits instances (PMR)
= Compare to Kokkos memory spaces

= Smart pointers can take arbitrary Deleter function or object
= std::{shared,unique} ptr, Teuchos::(Array)RCP
= Can do an arbitrary action in addition to / instead of deallocating

= e.g., Tpetra::MultiVector::getldViewNonConst returns
Teuchos::ArrayRCP<Scalar>, whose Deleter would copy back from CPU
to GPU before freeing the CPU allocation

= Caller responsible for allocation (unless they use
{make,allocate} shared or make unique (C++14))

34
-

Pointer to const != const pointer @&

= Pointer to const
= const T*, View<const T*>, RCP<const T>

= const pointer
= T* const, const View<T*>, const RCP<T>

= Pointers (to const or nonconst) may be passed by reference
= Nonconst ref: T*& (or const T*&)
* RCP<T>& (or RCP<const T>&)
= Const ref: T* const& (or const T* const&)
= const RCP<T>& (or const RCP<const T>&)

EVERY TRILINOS DEVELOPER MUST UNDERSTAND THIS

= =» Concisely self-documenting code
= See Ross Bartlett’s “Teuchos Memory Management Classes”

35

e.g., Kokkos::DualView func arg),

= Kokkos::DualView<T¥, ...>& (by nonconst ref):
= Caller will see resize or reassignment (output argument)
= DualView<const T*>&: immutable output argument
= Kokkos::DualView<T¥, ...> (by value):
= Caller will NOT see resize or reassignment
= Caller will see syncs & sync flag changes
= const Kokkos::DualView<T¥*, ...>&: (by const ref)
= Callee may NOT resize, reassign, or sync
= Callee may change sync flags
= Kokkos::DualView<const T*, ...> (by value or const ref)
= Callee may NOT modify data

= See Trilinos 13 Tpetra::DistObject

36

Lifetime / ownership models) e

= “When does pointer deallocate?”
= Trilinos uses 2 models; there are others incl. in C++11
= General goal: Declare lifetime by construction, syntactically

= Reference counting
= All (shallow) copies share ownership (“peer to peer”)
= Last copy’s destructor deallocates (when ref count -> 0)
= std::shared_ptr; owning Teuchos::(Array)RCP or Kokkos::View

= Nonowning
= All (shallow) copies view a “master” allocation
= Master may disappear any time, invalidating view
= T*, std::weak_ptr, std::span, std::string_view
= Teuchos::{ArrayView,Ptr}; nonowning (Array)RCP or Kokkos::View

37

Other ownership models) £,

= Unique: At most one owner
= May transfer ownership — giver gets null
= Last owner’s destructor deallocates
= std::unique_ptr, any move-only class

= “Move” refers to C++11 move construction & move assignment, e.g.,
unique_ptr(unigue_ptr<U>&&)

» “‘Deferred”

= For nodes in a possibly cyclic graph, sharing a common heap
= Herb Sutter’s deferred_ptr (see his CppCon 2016 talk)

= Point: Don’t automatically reach for reference counting
= Use self-documenting idioms
= Kokkos::MemoryTraits<Kokkos::Unmanaged>

38

Avoid exposing owning Views UL

= BAD: Tpetra returns local data as OWNING Kokkos::View

= Tpetra objects are global, w/ local data on each MPI process
= Tpetra stores local data as Kokkos::(Dual)View
= Tpetra classes have methods to get local data as Kokkos::View

= Bad because owning Views have unlimited scope
= Reference-counted, so only go away when user & Tpetra let go
= (Tpetra,user) can’t know when (user,Tpetra) reads/writes View
= Prevents correct use of sync/modify

= Bad even without CUDA

= User’s class might store Tpetra object, then get & store its View too

= |f mesh changes & Tpetra object gets resized, owning View still valid
memory, but it won’t point to the right object.

= Nonowning View will be invalid: can detect with tools
39

Make Views to local data nonowning .

= Tpetra: Make classes return syntactically nonowning View

Kokkos::MemoryTraits<Kokkos::Unmanaged> (hnonowning)

Or, Kokkos::AnonymousSpace
= “Union of all memory spaces”; its Views are always nonowning

Use C++11 templated type aliases to make syntax concise

template<class T, class DeviceType> using local_nonowning_vector =
View<T*, LayoutlLeft, DeviceType, MemoryTraitscUnmanaged>>;

local_nonowning_vector<T> X_lcl = /* function call */;

= Users: Limit access to local data to narrow scope

Don’t keep View; get it on demand from Tpetra object

See examples in next 2 slides

147

e (0 ISUey]

