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3 I Ocean renewable energy; Opportunities and challenges

#BLUE ECONOMY

Communities

Opportunities

Urgency to move to renewable energy dominant portfolios [IPCC
2018]

Large power densities close to population centers [NASA 2012]

Blue economy — local energy sources for maritime markets, e.g,,
desalinization, aquaculture, observation & navigation[USDOE
2019
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RM6, 10 MW, 1.35€/kWh

USDOE’s Reference
Model WECs
[Neary et al. 2013]

RM3, 10 MW, 0.87€/kWh

Challenges

Difficult engineering - Harsh marine environment

High capital, installation, operation and maintenance (IO&M)
costs [Neary et al. 2013]

Infrastructure for testing and IO&M
Complex and costly permitting process

Market opportunities unclear, and no established supply chains



4 ‘ USDOE R&D Program

2015 LCOE
~1€/kWh

‘ Resource

characterization &
assessment

* National resource and
regional distribution

. * Resource statistics
Technology characterizing average

and extreme conditions
development

* Harly stage concepts

* Component & subsystem
innovations

* Test infrastructure
* Open source models
* Demonstration projects

¢ Performance & LCOE
assessment

Market
acceleration

* Potential markets and
supply chains

* Environmental
compliance

e Stakeholder/user
conflict avoidance and
mitigation

* Standards and
certification

2030 Target LCOE
~0.1€/kWh



5 | Resource characterization needs in project life cycle

Resource information, data

Energy- Project Design, Type- Installation
Infrastructure development certification,
planning (Site selection, Product-line
Feasibility) development

Operation &
maintenance

Decommission-
ing

Ocean energy project life-cycle !

> i



Wave resource
characterization, US case study




7 | Background

= National resource assessments quantified potential

contribution of wave energy to electricity

production nationally and regionally [EPRI 2011,

Chawla et al. 2013]

" More refined and comprehensive characterization
needed to support energy planning, project

development and WEC design

= 'Three assessment levels (area, Ax, At)

> Reconnaissance (>300 km), 5 km, 3 h
o Feasibility (20-500 km), 500 m, 3 h

° Design (<25 km), 50 m, 1 h

v

Canada

The MHK Atlas wave power density map.
Source:[NREL 2019].https://maps.nrel.gov/mhk-atlas/

Resource Theoretical Resource
Waves 1,594-2,640 TWh/year
Tidal streams  [445 TWh/year
Ocean currents (200 TWh/year

Source: USDOE 2015 Quadrennial Technology Review, http://energy.gov/qtr
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8 ‘ Goals/Obijectives

Generate high-resolution resource data source covering all US economic exclusion zones (EEZ)

from 32-40 year wave model hindcast
Improve data source v]
Characterize resource attributes [v]

Disseminate data and information [v]

Region Area, km?  Status
West Coast 825,549 Complete
East Coast 915,763 Complete
Alaska 3,770,021 Complete
Hawaii Islands 1,579,538 2019
Gulf of Mexico 707,832 2019
Pacific Islands 3,328,925 2020
Puerto Rico, US Virgin Islands 211,429 2020

e

= ALASKA REGION
Nerthern Hawaitan

Wake Islands
Islands stand
& &

PACIFIC ISLANDS REGION

% | Johnston Atoll
Guam . Howlandlsland
2 Palmyra Atoll i

. Kingman Reef X y
- s L]
R:} S Baker Island S
\ * a -

~ Swainskland

L s

¢ American
Samoa

US Economic Exclusion Zones (EEZ)

U.S. EEZ consists of following sub-regions: (a) Pacific West Coast; (b) East Coast (Northeast and Southeast regions); (c) Alaska; (d) Gulf of Mexico; (e) Puerto Rico and U.S.
Virgin Islands; (f) Hawaii and Pacific Islands. EEZ is defined as a sea zone that extends 370 km (200 nmi) offshore from its coastal baseline. The image is obtained from
NOAA National Ocean Service._https://www.worldatlas.com/articles/countries-with-the-largest-exclusive-economic-zones.html




9 I Methods: Spectral wave modeling (SWAN)

Source: SWAN Technical Manual H
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0 | Resource metrics: |[EC parameters [IEC TS 62600-101:2015-06]

Omnidirectional ] =pg Zi,j Cq,iSij AfiAB;  [kW/m]

wave power, J

«Total wave energy flux at point of interest
Directionally unresolved

Directionally _
resolved wave Jo = P9 Zi,j Cg,iSijAfiAej COS(9 — 9j)5 [KW/m]
power, J,
Wave energy flux through vertical plane of unit width

Direction of max Hlmax [deg]
Jo

*Bearing where most of the incident wave power coming from

Jo
Directionality d = il 1 3 [']

coefficient, d

N | { mm35-40+
/ m30-35
| / m25-30

*Measure of directional spreading

! 7/ [@20-25
T T 315 - 20
= g m10-15

0, ~300 deg.

.............
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Resource metrics: IEC parameters [IEC TS 62600-101:2015-06]

Spectral m, = X fi"Sidf;
moments

 Used to derive important wave statistics

Significant H_, = 4. /my [m]
wave height
e Proxy for H,, combined with T, to define sea states in scatter plots

Energy T, = Ty = 22 ]
period .

« Centroid of wave power spectrum, with H_  to define sea states in scatter plots

2
m-,

Spectral €y = Jmom—z 1 [-]

width

« Characterizes energy spreading in wave spectrum.




12 I Results: Model mesh refinement [Yang & Neary 2019]

) NOAA WWIII - Coarse grid
60°N SWAN East Coast Region Hindcast
b ' b NJ
3.5 = Washington D h DE
- 3.0
= 2.5
- 2.0
GO)N - 1.5
59°N 1.0
28N = 0.5
57°N 00
154°W 152°W 150°W
Significant wave height near Kodiak, Alaska, SWAN model grid for U.5. East Coast (a) and
simulated by NOAA WWIII (a) and UnSWAN (b) zoomed-in near the Chesapeake Bay region (b)

[Yang & Neary 2019] [Allahdadi et al. 2019, Yang & Neary 2019]



13 | Results: Better accuracy, IEC metrics [Yang et al. 2017;
Allhadadi et al. 2019;Yang and Neary 2019]

| A ! :

MODEL PERFORMANCE METRICS AT BUOY 44008 FOR 2009

Parameter RMSE PE SI Bias Bias R %

; (%) (%) E y,

48°N

: ; J (kW/m) 15.56 573 090 3.75 21.8

QAON [ s .................... H, (m) 043 194 024 021 119
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14 | Results: Better accuracy, H;, [Neary et al. 20| 9]

Hsis0) WW3 (m)

NOAA WWIII - Coarse grid

16

14 1

12

10

WWIII [Chawla et al. 2013]

Hs(s0) Buoy (m)

Hsis0) SWAN (m)

SWAN Regional- Fine grid

SWAN [Neary et al. 2019]

Hsiso) Buoy (m)




15 | Results: 6 IEC parameters at 200-300 m resolution [Yang &
Neary 2019]

a)
J [kW/m| &l

O=-NWEOO~NDO

Simulated annual averages of six IEC metrics for year 2009 in Alaska region: (a) omnidirectional
wave power; (b) significant wave height; (c) energy period; (d) spectral width; (e) direction of
maximum directionally resolved wave power, and (f) directionality coefficient [Yang & Neary 2019]
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Results: Resource data archiving & dissemination (In progress)

MHK ATLAS upgrade (In-progress)

o All 6 IEC parameters, monthly averages and average
annual values

o Hs(50, 5, 1-year)
o 200-300 m resolution within US EEZ
o Includes shallow nearshore waters

MHK Data Repository (ITBD)
o 2D spectra, O(100) points each region

o Partitioned bulk parameters, O(1,000) points each
region

o JEC parameter time series, O(1M) points

Functional GIS dissemination platforms (TBD)

> Bureau of Ocean Energy Management (BOEM),
US Dept. of Interior (L% gDOI) s

> NOAA, Ocean Project Planning Tool,
o US Dept. of Commerce (USDOC)

° Private vendor, e.%, Open Ocean (Marine data
intelligence) http:/ /www.openocean.fr/en/
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17 I Concluding remarks

US experience demonstrates trend towards improved resource |
characterization and assessment through:

° High-resolution wave model hindcasts validated with buoy measurements
> Improved data dissemination through functional GIS platforms (MHK
Atlas) and on-line data repositories.
Ongoing R&D:
> Augmenting characterization with additional metrics |

° Investigating inter-annual and non-stationary trends
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Extreme wave

Hgis0y | Hssy | Hsr) | [m]

height

Relative risk B ]
ratio

e Characterizes risk relative to opportunity [Neary et al. 2017



21 | Results: Additional metrics, extreme wave height, relative-risk

ratio [Neary et al. 2019]

72°N |t

60°N

48°N |
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2 | Resource metrics: Temporal variability [Haas et al. 2019]

Tempqral
coefficient J(max) — J (min)
seasonal ts = Tovs [-]

variabilit
» Characterizes seasonal variability/constancy of resource

Temporal
coefficient . _O[AAE() — (5,Y +5,)]
inter-annual ‘ AAE
variabilit
» Characterizes inter-annual variability/constancy of resource

X 100 %




23 | Results: Geographic distribution of resource metrics [Haas et al.
2019]
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