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Ocean renewable energy:
Opportunities & challenges



3 Ocean renewable energy; Opportunities and challenges
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Opportunities

Urgency to move to renewable energy dominant portfolios [IPCC
2018]

Large power densities close to population centers [NASA 2012]

Blue economy — local energy sources for maritime markets, e.g.,
desalinization, aquaculture, observation & navigation[USDOE
2019]

WEC [Oreille
Modeling Workshop
May 13-14r 2014

USA

RM5, 10 MW, 0.87€ /kWh

RM3, 10 MW, 0.87E/kWh

RM6, 10 MW, 1.35E/kWh

USDOE's Reference
Model WECs
[Neary et al. 2013]

Challenges

Difficult engineering - Harsh marine environment

High capital, installation, operation and maintenance (10&M)
costs [Neary et al. 2013]

Infrastructure for testing and IO&M

Complex and costly permitting process

Market opportunities unclear, and no established supply chains



4 I USDOE R&D Program

2015 LCOE

—1€/kWh

Technology
development

• Early stage concepts
• Component & subsystem
innovations

• Test infrastructure
• Open source models
• Demonstration projects
• Performance & LCOE
assessment

Resource
characterization &
assessment

• National resource and
regional distribution

• Resource statistics
characterizing average
and extreme conditions

•Market
acceleration

• Potential markets a
supply chains

• Environmental
compliance

• Stakeholder/user
conflict avoidance and
mitigation

• Standards and
certification

2030 Target LCOE

—0.1€/kWh



5 Resource characterization needs in project life cycle

Resource information, data

Energy-
lnfrastructur

planning

Project
development

(Site selection,
Feasibility)

m,

Design, Type-
certification,
Product-line
development

.

Installation

Ocean energy project life-cycle

Operation Et
maintenance



Wave resource
characterization, US case study



7 I Background

• National resource assessments quantified potential
contribution of wave energy to electricity
production nationally and regionally [E,PRI 2011,
Chawla et al. 2013]

• More refined and comprehensive characterization
needed to support energy planning, project
development and WEC design

7 Three assessment levels (area, Ax, At)

° Reconnaissance (>300 km), 5 km, 3 h

Feasibility (20-500 km), 500 m, 3 h

° Design (<25 km), 50 m, 1 h

The MHK Atlas wave power density map.
Source:[NREL 2019].https://maps.nrel.gov/mhk-atlas/

Resource Theoretical Resource
Waves 1,594-2,640 TWh/year

Tidal streams 445 TWh/year

Ocean currents 200 TWh/year

Source: USDOE 2015 Quadrennial Technology Review, http://energy.gov/qtr



8 I Goals/Objectives

Generate high-resolution resource data source covering all US economic exclusion zones (EEZ)
from 32-40 year wave model hindcast

Improve data source r✓
Characterize resource attributes

Disseminate data and information  

Region Area, km2 Status
West Coast 825,549 Complete
East Coast 915,763 Complete
Alaska 3,770,021 Complete
Hawaii Islands 1,579,538 2019
Gulf of Mexico 707,832 2019
Pacific Islands 3,328,925 2020
Puerto Rico, US Virgin Islands 211,429 2020
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US Economic Exclusion Zones (EEZ)

U.S. EEZ consists of following sub-regions: (a) Pacific West Coast; (b) East Coast (Northeast and Southeast regions); (c) Alaska; (d) Gulf of Mexico; (e) Puerto Rico and U.S.
Virgin Islands; (f) Hawaii and Pacific Islands. EEZ is defined as a sea zone that extends 370 km (200 nmi) offshore from its coastal baseline. The image is obtained from
NOAA National Ocean Service. https://www.worldatlas.com/articles/countries-with-the-largest-exclusive-economic-zones.html



9 I Methods: Spectral wave modeling (SWAN)

Emphasis on validated spectral wave model hindcast

data

Evolution of wave action density (N) in space and
time for all frequencies (05=2Tuf) and directions (0)
(LHS)

Source and sink terms that generate, transfer and
dissipate wave energy

Feasibility/Design level Ax = 200-300 m, At =1 h

N = SV,60/o-

NORTH

S(f)

Source: SWAN Technical Manual

windsea

windsea

swell

directionally resolved
— — 1

directionally unresolved
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10 I Resource metrics: IEC parameters [IEC TS 62600-101:2015-06]

Omnidirectional
wave power, J

J = P9 Ei  cg,iSij AfiA9j [kW/m]

•Total wave energy flux at point of interest
•Directionally unresolved

Directionally
resolved wave

power, Jo

Jo = pg Ei cg,iSipALAI9j cos(9 — 91)6 [kW/m]

•Wave energy flux through vertical plane of unit width

Direction of max
Jo

19J max [deg]

•Bearing where most of the incident wave power coming from

Directionality
coefficient, d

d _ Jejmax 
[-]

•Measure of directional spreading

Jomax -36 kW/m
jmax -300 deg.

NORTH -
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11 Resource metrics: IEC parameters [IEC TS 62600-101:2015-06]

Spectral
moments

mn = Ei finSiAfi

• Used to derive important wave statistics

Significant
wave height

Hifi() = 41m0 [m]

• Proxy for Hs, combined with Te to define sea states in scatter plots

Energy
period

Te E T-10 = 
m_1

[s]
/no

• Centroid of wave power spectrum, with Hmo to define sea states in scatter plots

Spectral
width

M. 0 n-1-2
E0 [-]

• Characterizes energy spreading in wave spectrum.



12 I Results: Model mesh refinement [Yang & Neary 2019]
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Significant wave height near Kodiak, Alaska,
simulated by NOAA WWIII (a) and UnSWAN (b)
[Yang Et Neary 2019]

SWAN East Coast Region Hindcast

SWAN model grid for U.S. East Coast (a) and
zoomed-in near the Chesapeake Bay region (b)
[Allahdadi et al. 2019, Yang Et Neary 2019]



1 3 Results: Better accuracy, IEC metrics [Yang et al. 2017;
Allhadadi et al. 20 I 9;Yang and Neary 2019]
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Parameter RMSE PE SI Bias Bias R
(%) (%)

J (kW/m) 15.56 57.3 0.90 3.75 21.8 0.88

HS (m) 0.43 19.4 0.24 0.21 11.9 0.94

Te (s) 0.85 5.0 0.12 0.32 4.6 0.81

eo 0.07 -6.0 0.22 -0.03 -8.5 0.51
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MODEL PERFORMANCE METRICS AT BUOY 46027 FOR 2009

Paramctcr RMSE PE SI Bias Bias R

(%) (%)

J(kW/m) 14.91 26.4 0.53 2.22 7.8 0.90

H5 (m) 0.43 3.2 0.20 -0.03 -1.4 0.89

Te (s) 1.28 10.9 0.14 0.89 9.9 0.90

eo (-) 0.07 4.0 0.21 0.01 2.4 0.59

(degrees) 15.64 -2.1 0.05 -6.8 -2.4 0.84
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14 I Results: Better accuracy, H S(.50) [Neary et al. 201 9]
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15 Results: 6 IEC parameters at 200-300 m resolution [Yang &
Neary 2019]
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16 I Results: Resource data archiving & dissemination (In progress)

MHK ATLAS upgrade (In-progress)
O All 6 IEC parameters, monthly averages and average
annual values

• Hs(50, 5, 1-year)
o 200-300 m resolution within US EEZ
o Includes shallow nearshore waters

MHK Data Repository (TBD)
O 2D spectra, 0(100) points each region
o Partitioned bulk parameters, 0(1,000) points each
region

o IEC parameter time series, O(1M) points

Functional GIS dissemination platforms (TBD)
O Bureau of Ocean Energy Management (BOEM),
US Dept. of Interior MSDOI)

o NOAA, Ocean Project Planning Tool,
o US Dept. of Commerce (USDOC)
o Private vendor, e.g., Open Ocean (-Marine data

intelligence) http:7/www.openocean.fr/en/ 
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17 I Concluding remarks

US experience demonstrates trend towards improved resource
characterization and assessment through:
o High-resolution wave model hindcasts validated with buoy measurements

O Improved data dissemination through functional GIS platforms (MHK
Atlas) and on-line data repositories.

Ongoing R&D:

O Augmenting characterization with additional metrics

O Investigating inter-annual and non-stationary trends
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20 Resource metrics: Extreme conditions [Neary et al. 2017, 2019]

Extreme wave
height

Hs(5o) Hs(5) II s(1)

• Characterizes wave load [DNV RP-C205 2014]

Relative risk
ratio

Hs(50)
R =

Hs(mean)

[m]

[-]

• Characterizes risk relative to opportunity [Neary et al. 2017



21 I Results:Additional metrics, extreme wave height, relative-risk
ratio [Neary et al. 2019]
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22 Resource metrics:Temporal variability [Haas et al. 2019]

Temporal
coefficient
seasonal
variabilit

Kmax) — J (min)
ts =   [-]

Javg

• Characterizes seasonal variability/constancy of resource

Temporal
coefficient
inter-annual
variabilit

= 
a[AAE (Y) — (S1Y + s2)]

tl
 

AAE 
x 100 %

I

I

1
• Characterizes inter-annual variability/constancy of resource i

1



2 3 I Results: Geographic distribution of resource metrics [Haas et al.
2019]  
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