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2 | Accelerators in the lon beam Laboratory (IBL)

°6 MV Tandem
° Radiation effects testing

°> Jon Beam Analysis (IBA) of neutron tube
materials s

>3 MV Pelletron
° Jon Beam Analysis |

o Microbeam IBA of neutron tube mateti
> 1 MV “Baby Tandem” |

° Installation nearly complete |
° 350 kV Implanter ’

o DT neutrons for detector calibration

o DT neutrons for radiation effects testing

> 100 kV Nano-Implanter

° Focused 1on beam lithography (sub -20 nm =1
area) |

o Single atom device fabrication
> 30 kV He ion microscope
° 0.5 nm spot size
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Probing basic mechanism of radiation effects from displacement damage
through ionizing dose rates effects




lons Simulate Neutron Effects

Substituting the primary knock-on atom of a
neutron collision with MeV 1ons



Defect Study Motivation — Displacement Damage

Radiation Effects

i0, EJM sio, IL sio,
5 e B
Of particular interest
is early-time (<Is) gain
degradation
GOTW
Fundamental Radiation Induced Defects Degradation of Device/Circuit Performance

Experimental Techniques at the lon Beam Laboratory (IBL)

We use a series of in-situ techniques to explore the defect creation and annealing

Deep-level Transient
Spectroscopy (DLTS) Photoluminescence Active Gain
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: ‘ SRIM-2003 Calculations for 10 MeV Si 3+

* lons lose energy as they travel

Critical Region: |- through the device

Base-Emitter
Junction for low
emitter currents

* lon/energy combinations need to
be tailored to specific device
geometry
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7 1 lon-to-Neutron Damage Equivalence

Messenger-Spratt damage constant

- The damage constant as determined from late-time gain degradation (Messenger-
Spratt) is the same for all neutron irradiation facilities and we can scale the ion
fluence to relate ion-to-neutron irradiation conditions.

DLTS trap identification

> The spectra of defects as measured by DLTS in the base of pnp transistors that are
responsible for the gain degradation are the same after neutron (including SPR-III
and ACRR) and ion irradiations.

DLTS trap quantification

> A given number of defects, as measured by DLTS in the base of a pnp transistor, l
produces the same late-time gain reduction for neutron (SPR-IIl) and ion irradiations. |

Annealing factor

c The SPR-IIl early-time annealing factor can be matched using ion irradiations
(simulating a wide range of SPR-Ill fluence values).



s I Messenger—Spratt Relation

Messenger and Spratt have shown that irradiation induced degradation of gain in BJTs is
due to the reduced carrier lifetime through the base.

MS relation given by,

1 1 1 1
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Gr and G; are gain after and before irradiation

Tr and T; ate minority carrier lifetimes through the base after and before irradiation
N¢ is the number of traps introduced to the device

k is damage factor which quantifies damage per ion as a function of energy

@ 1s 1on fluence

G.C. Messenger, M.S. Ash, The Effects of Radiation on Electronic Systems, 2nd ed., Van Nostrand Reinhold, New York, 1992.



s | Late-Time Gain Comparison

* Displacement damage follows the

Messenger-Spratt equation:

1 1 .— Damage Constant
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The damage constant as determined from late-time gain degradation
(Messenger-Spratt) is the same for all neutron facilities. We can
scale ion fluence to relate ion-to-neutron irradiation conditions.
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o I DLTS Overview (Part 1)
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Mannan, M. A.(2015). Defect Characterization of 4H-SIC by Deep Level Transient Spectroscopy (DLTS) and Influence of Defects on Device Performance. (Doctoral dissertation).



n 1 DLTS overview (Part 2)

t t . Signal = C(t1) — C(t2)

— l L PNP BJTs
\ 5E9 ions / cm?
S S ’\ AC 4.25 MeV Si
" - -
ll' 0.20
\Mﬁ T 0.10
\ ',’" 0.05
\ ,'Ir/l - 50 1(‘)0 15;0 2!I)0 2%0 360
N T(K)
C I K I Multiple (4) boxcar averagers set to different

: “rate windows” record spectra.

t —

Rate of trapped carrier emission
depends on temperature.



2 | Spectra of Defects: lons and Neutrons
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The spectra of defects in the base of pnp transistors are
the same after neutron and ion irradiations.

* DLTS peak amplitude
proportional to number of traps

* Temperature scale provides a
means to determine emission
energy of the defect

* DLTS spectra of the base
region of a PNP device.

* Probes the N-type area of the
devices most closely associated
with the BE junction.



13 I Defect to Gain Comparison: lons and Neutrons

' | ' | ! | ! | ! T ' | !
09 i A SPR-I 1 ¢ Integrated area of deep DLTS
0.8 |- ® 4.5MeV Si 4 peaks
- m 36 MeV Si -
0.7 - A - : : :
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E 06 |- - the DLTS area and the inverse
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A given number of defects, as measured by DLTS in the base of a pnp transistor,
produces the same late-time gain reduction for neutron (SPR-IIl) and ion irradiations.




14 | Fast Neutron and lon Facilities are used for early-time device response
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We need the ion beam facility for high flux early time neutron simulations —
we need to understand the ion-to-neutron damage equivalence




Early-Time Annealing Factor Comparison
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The SPR-IlI early-time annealing factor can be matched using ion
irradiations (simulating a wide range of SPR-III fluence values).




SiC Schottky Diode Experiment

Measurements of early-time radiation effects



7 I SiC Schottky Diode Experiments - Motivation

Wide band gap materials provide high electric field strength, switching speed, and efficiency in
radiation environments

o Satellites and spacecraft

o Detectors for hadron colliders, fission and fusion reactotrs

Radiation Effects of Interest:
o Leakage current vs fluence from displacement damage
° Understanding mechanisms of room temperature annealing

° Early time effects (<1 s)

We will use ion irradiation to simulate the neutron environment

> Allows access to early-time effects as ion irradiations lack the gamma environment of nuclear reactors

Outer Belt
12,000 — 25,000 miles

GPS Satellites
12,500 miles

Geosynchronous Orbit (GSO)
. NASA's Solar
Dynamics Observatory

. . “ N
é
Inner Belt \ \ <o 22,000 miles
1,000 — 8,000 miles \ ¢z / .

Low-Earth Orbit (LEO)
International Space Station
230 miles

Van Allen Probe-A

Van Alién Probe-B

https://www.nasa.gov/mission_pages/sunearth/news/gallery/20|30228-radiationbelts.html



s I Overview of Device

SEM Cross-section of the die
Cree/Wolfspeed SiC Schottky diode (C3D02060F)

4H-81C bandgap = 3.23 eV [.5um Si3N4
4A, 600V COTS decaped to expose die :
4.1 ymAl

0.8 umTi
SiC

TO-220 Jet etched to expose part

(To allow ion access)

Ve (V)

Vbreakdown > 600V
lleakage (600V) << pA
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Leakage Current Measurement

- Diodes were reversed biased to 300 V in series with a 100 kQ resistor

- Diodes were shot with 10 — 1000 us pulses of Si ions.

B

300V

| 50E-12
| 30E-12
| 10E-12
90E-12
70E-12

Leakage current (A)

o

IV curves after 1E10 ions/cm?

20

—Virgin

40 60
Bias voltage (V)

— 12 MeV Si irradiated

80

100



»0 | Quantifying lon Irradiation Damage (Displacement Damage)

Schottky diode reverse bias leakage current is proportional to depletion region defects.

We use a k-factor relationship to quantify damage to the device under test.

> Analogous to Messenger—Spratt k-factor describing carrier lifetime

1
AIleakageN ; - NNtN(p
AIleakage — k(p

12 MeV Si** on SiC diode
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@) <
4.00E-08 Slope = k = |.2E-17
0.002 + o’
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k-factor

lon Energy to Simulate Neutron Irradiation

Si lon energy varied at constant fluence

o Largest damage effect at 12 MeV = this is our End-of-Range condition which maximizes the damage

o Determined at a fixed time of 0.1 s after shots

Experimental and Predicted™* k-factors
|.40E-17

—@— Experimental —®— Normalized SRIM k-factor
|.20E-17 (leakage/fluence)
I.00E-17
8.00E-18
6.00E-18
4.00E-18

2.00E-18

0.00E+00
7 9 I 13 I5 17

Si ion energy (MeV)

* Accounting only for vacancies produced within
100 nm of junction
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current (microamperes)

Early-time ion response

Device Response Characteristics
1) Pre-shot leakage

2) Photocurrent during irradiation (proportional to flux)

3) Super —exponential, plasma enhanced recombination

4) Recombination, de-trapping

5) Late-time Annealing and leakage current

Early-time Photocurrent

1757 —— 5.05E9
—_— s 371E9
— 2.40E9
125 1 —
100 A
751 2 3
50
4
25 |
| 5
O .
0 100 200 300 400

Time (microseconds)

current (logmicroamperes])

30

20

10

SiC photocurrent decay (log) i

T

3 —— 5.05E9
—— 3.71E9
—— 2.40E9
1.26E9

200 250 300 350 400

Time (microseconds)



2 | Probing Early-Time Response With Electron Pulses

Use a short pulse electron gun to create e-h pairs (photocurrent without displacement damage)

Electron gun probes early-time effects of annealing and recombination by observing decay features

> We observe the same exponential fit for both the pre and post ion beam irradiation decay

1
o T = —
m

° Charge collection efficiency (CCE) degrades after multiple ion pulses

° During the ion irradiation we observe a super-exponential fit

> Enhanced recombination and reduced amplitude due to plasma recombination

eBeam and iBeam ipulse, pre-, and post- eBeam decay (log) - Electron pulse on and around ion pulse
80+ 5r —— iBeam decay m=-0.329 1§ —— Pre ion pulse
70l ——— Post ion ePulse m=-0.340 ——— Post ion pulse
or —— Pre ion ePulse m=-0.355 14 1 —— ePulse on iBeam
_ 60 < -5 ~ 12
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Current (uA)

80 [

60 -

40

20

Cryogenic shot

Intended to suppress thermal effects of carrier de-trapping
Expected to slow down processes to better understand early-time effects

Experiment provided more questions than answers

Cryo and RT SiC diode fast. Outliers dotted. Crvo shot SiC diode |0ng timescale
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s | DLTS measurements

Initial DTS studies are underway

|.26E9 irradiated SiC diode

0.6 A
R — 043
AC/C J Minority carrier traps — 02 |:
0.4 - el L E-
— — 0.86s
0.2 1
0.0 1 7 T —
—0.2 1
—0.4 -
~0.6 1 /
Majority carrier traps
—0.8
160 léO EIZI]D 25ID 36‘0
T(K)

- Observe both minority
and majority carrier traps

- We observe a decrease in
trap concentrates with
increasing fluence

Why!? Likely charge
compensation, more
work on-going!



26 | Conclusions

The IBL at SNL is equipment rich
° But people poor

We can simulate neutron damage with 1ons
o Large equivalent flux

o (Greater cross section than neutrons

On-going SiC SD study
° Three distinct post-irradiation features

> Experiments, analysis, modeling on-going

Advertisement

SNL IBL 1s opening positions for 2 more postdocs

o Mixed field irradiations

> D-T neutron experimentation and modeling
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27 | Extra slides




Number of Defects (arb. units)
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Heavy Ion to Neutron Equivalence: SPR |

Heavy ions: linear behavior at high fluence values
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For high fluence we observe a change in the
doping profile of the collector, and in the zero-

bias depletion width.



15 3
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Frequency roll-off

Base-Collector Junction Capacitance

Parasitic MOS capacitance roll-off
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AC (Arb. Units)

AC (Arb. Units)
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DLTS - Basic science technique to explore defect properties

Clustered damage produces larger single-acceptor V,

Uniquely identify and count the type and number
of fundamental defects caused by irradiation

» Extended from diodes to actual

* Enabled study of clustered defects

Fleming, et al, JAP, 102, 043711

* This has led to discoveries of new
Si defects - Strained and bistable
V, defects in damage clusters

. * Bistable V,-like defect can be used
$ 10 10 200 20 0 10 10 20 20 A0  gs atool to de-convolve VP and V,
in the BJT base - R. M. Fleming,
et al, JAP, 108, 063716 (2010)
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current (log[microamperes])

Super-exponential photocurrent decay (log)
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