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Introduction: Chemical Warfare Agents

Nerve agents: extremely toxic synthetic chemicals which can be dispersed as a
gas, liquid or aerosol

Tokyo subway station gas attack, 1995
Syria gas attacks in 2013 and 2018

Capture of nerve agents using metal-organic frameworks (MOFs)

Use of simulant molecules instead of real agents in experiments to study and
compare the activity of any adsorbent material due to toxicity of CWAs

However, no detailed comparison between CWAs and simulants for adsorption
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Objectives

Prediction of adsorption and diffusion properties of CWAs
and simulants in a library of thousands of MOFs using
molecular simulations

To address the question of whether simulants for CWAs are
truly similar to CWAs in terms of their adsorption properties
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Adsorbents: CoORE MOFs database?, a collection of >2900 experimental
reported MOFs with high quality charges assigned to the frameworks
Adsorbates:

CWAs: Sarin and Soman

Simulants: DMMP, DMNP, DCP and DFP

DMMP DMNP DCP
?‘0}4 ‘«,E 1 . L'%p
e
¢ - o
DFP Sarin Soman
IChung, Y. G. et al. Chem. Mater. 26, 61856192 (2014) Georgia
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Simulation Methods

Force-field derivation
VASP package, PBE-D3 functional, 10-° eV energy cutoff
DFT interaction energies of configurations are obtained using

Emﬂ = E gd sorbate—MOF — (Eﬂﬁzﬁmﬁﬁéﬂw e EM@F}
Energies obtained above are fitted to Lennard-Jones g@@mm@a@ of a force-field

(@) (@]

+ k2
where, £f; = | [;(Cyjg5) , 0] = imf-"--‘?- (Lorentz-Berthelot mixing rule),

&

i and j are subscripts for MOF and adsorbate atoms respectively

Adsorption properties calculations

RASPA package, Monte-Carlo simulations
Widom insertion method

10% MC cycles

Fang, H. et al. J. Phys. Chem. C 116, 10692-10701 (2012) Genrgla
Kulkarni, A. R. & Sholl. D.S. J. Phys. Chem. C 117, 7519-7525 (2013) -r'E'Ch



Heats of Adsorption: Sarin vs DCP

o . MOFs % rankings in CoRE database
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Figures compares adsorption properties of Sarin and DCP in >2900 MOFs using DFT-derived FF

DCP is able to predict Sarin’s adsorption properties in CoORE database within 10% error for most
MOFs
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Heats of Adsorption: Sarin vs Simulants
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High performing MOFs’ pore diameters are in the range of 6-9 A

DCP and DMMP are the closest to Sarin
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Heats of Adsorption: Soman vs Simulants
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No simulant is able to very closely predict Soman’s adsorption properties
DMNP is the closest to Soman among all simulants
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Correlation Between MOFs Rankings: CWAs vs Simulants
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MOFs percentage rankings for simulants

DCP and DMMP are able to best predict MOF rankings for Sarin based on adsorption properties

DMNP is the only simulant that is able to closely predict MOF rankings for Soman based on adsorption &ogertiegsia
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Summary: Adsorption of CWAs in MOFs
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DCP and DMMP are the best suited simulants to predict adsorption behavior of
Sarin in nanoporous materials

DMNP is the only simulant that is suited to predict Soman’s adsorption
behavior in nanoporous materials
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Diffusion of CWAs in MOFs

To determine the kinetics of CWAs adsorption in MOFs, diffusion coefficients of
these compounds in MOFs must be known

We calculate diffusion of Sarin in four prototypical MOFs using classical
simulations

MIL-47, ZIF-8, UiO-66, Cu-BTC

Methods used:

Mean square displacements calculated using molecular dynamics for MIL-47
dcTST method using Umbrella sampling for other MOFs
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Diffusion in MIL-47

One dimensional,
non-intersecting chan
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Diffusion in ZIF-8
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Diffusion in UiO-66
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Diffusion in Cu-BTC
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Summary: Diffusion of CWAs in MOFs

Characteristic time for diffusion (in seconds) of sarin and simulants across 1
micron in different MOFs

Adsorste | wiar | _custc | _zFs | uioss
sarn [

1.2x104 5.0x102 1.0%10° 3.1x104

2.9x103 29 5.7x106 1.6x108

DFP 1.4x10-2 1.8x102 4.3x103 4.2x108

Sarin can diffuse throughout a one micron crystal in less than a second in MIL-
47 and Cu-BTC but this process takes more than 3 hours in ZIF-8 and UiO-66

DMMP is consistently the most similar in diffusivity of sarin for every MOF
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THANK YOU
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Extra Slide 1
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Figure E1: A parity plot between interaction energies calculated using classical force fields and quantum chemistry
calculations using (a) a generic FF and (b) a DFT-derived FF for all CWAs and simulants adsorbed in 5 randomly

selected MOFs from the database
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Figure E2: Heat of adsorption of Sarin compared to simulants, (a) DCP, (b) DFP, (c) DMMP, and (d) DMNP using generic
FF

High performing MOFs pore diameters are in the range of 6-10 A

DCP and DMMP are the closest to Sarin _
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Figure E3: Heat of adsorption of Soman compared to simulants, (a) DCP, (b) DFP, (c) DMMP, and (d) DMNP using

generic FF

No simulant is able to very closely predict Soman’s adsorption properties
DMNP is the closest to Soman among all simulants
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Correlation Between MOFs Rankings: CWAs vs Simulants

for top 20% MOFs

For Sarin

2 4 6 8101214161820 246 8101214161820

246 8101214161820

DCP DFP DMMP
For Soman
@) (b) ()
2 2 2
4 4 4
6 6 6 -
c 8 8 8
210 10 10 -
5 12 12 - Ll 12 -
N 14 14 14
16 16 16 -
18 18 18
- - 20
2 4 6 810121416 18 20 246 8101214161820 246 8101214161820
DCP DFP DMMP

]
N
o)
s
’ ks
g ;
14 - = 8 £
s 2
20 4
246 8101214161820 Lo
DMNP
20
i
1615
s
126
2
B =8
z
: -4
2 4 6 810121416 18 20 "
DMNP
Georgia

Tech
21



Correlation Between MOFs Rankings: Sarin vs Simulants

Using DFT-derived FF
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MOFs percentage rankings for simulants

DCP and DMMP are able to best predict MOFs ranking of Sarin based on adsorption properties

DMNP is the only simulant that is able to closely predict MOFs ranking of Soman based on
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Correlation Between MOFs Rankings: Soman vs Simulants

(a) Using DFT-derived FF
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Both generic and DFT-derived FFs show similar behaviors
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