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Outline

• Artificial spin-orbit coupling in Si/SiGe

• Theory/modeling

• Nano-magnet arrays

• Holes in Ge/SiGe

• Physical properties

• Quantum Hall ferromagnetic transition

• Spin qubits in Ge/SiGe
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Majorana fermions in spin-orbit coupled nanowire
topological superconductors
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B I
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s-wave superconductor 0)
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1D spin orbit coupling

• 1D E-kx dispersion without SOC:

h 2 lc,2„
E- 

2m

• 1D E-kx dispersion with SOC:
• Bso—kx x Ez (along y)

h2kx2 h2 (lc, ±kso)2
E— + ak,E, S —

2m 2m
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1D spin orbit coupling

■ 1D E-kx dispersion with SOC with Bo along z:

Gap near k=0
(blue curves)

■ Canonical transformation of the above case:

Spin selective gaps near ±kso
(blue and red curves)

Effective magnetic field

plE3

so so

I g[1130

-kso kso

Sandia
National
Laboratories



Engineer the SOC using nano-magnets

• Magnets that produce a spatially
rotating magnetic field can have
the same effect as intrinsic SOC
(plus an external bias magnetic
field)

• Designer material!

• We want to use Si/SiGe, because
of the high mobility (and
therefore long mean free path
and phase coherence length)

(a)

x 

tffitffittffittffittOttifittffit
r

x' ittok"Akiilosak‘iftfig4PAPobikkii
,y

B Braunecker et al., PRB 82, 45127 (2010)
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1D, spatially rotating magnetic field from
nano-magnet arrays
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Magnetostatics I

• Layout and calculate magnetic fields with COMSOL

• Planar design example

2

10010 nm

I
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Magnetostatics 11

O
O
icr

• Magnetic field in 2DEG plane

• Has required rotation

1 u m

B (T)
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Band Structure Calculations

• Kp-like method
• ip(x) = eikxu(x)

• V(x) = 1 —2 gptBfi(x) • 6-

• Write V and u as Fourier series

• v(x) = Eg cgeigx

• u(x) = Eq cgeiqx o

• Infinite set of linear equations, one for 10

each band I
h2 0)

E d
q 
= 

in 
(q + k)2 +Icgdq_g CO 30

Eg
• Solve with a decent number of bands
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Example Results

• Trenched design with 2 T

magnets

• Gap of 0.01 meV (0.13 K)

• Could be measurable
experimentally

• Working to optimize
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Effective spin-orbit gaps in Si/SiGe
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The effective spin-orbit gaps are experimentally accessible
using dilution refrigerators.
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Realizing nano-magnet arrays with alternating
magnetization directions

A A A A

.,e-A.ecc\°'N90 \.\\, 7 \A 7 \-\e,
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Magnetic material A (high coercivity HA)
Magnetic material B (low coercivity HB)
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Magnetic materials with high coercivity contrast
Sandia
National
Laboratories

Low-coercivity (200 Oe) as-deposited Co films High-coercivity (-10000 Oe) SmCo5 films obtained after post-
deposition annealing
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Magnetic materials with high coercivity contrast

Crystallization of SmCo5 leads to
high coercivity.

(111)
(110)

(f) 5 1/nm
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lnterdigitated nanomagnet arrays

det mode HV HPW WD

TLD SE 5.00 kV 1.27 pm 5.2 mm 0 °

may 52  500 nm

100 000 x
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Programming nanomagnets with external B field

AFM As fab'ed

10.0 i1: Height 20.0 prn 

MFM • As fab'ed

3: Phase

MFM * * • • • • _ 4 * 5T, -OT

MFM *wino" 1040-Ar .164"4, 1.6 5T, -0.2T

3: Phase 28.0 um

28.0 pm

4

••• ilovisrars• 
u03.400.0...e.gipoirap...1.«..00.4moss....• %ft yowl.
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Summary

• Nanomagnet arrays with alternating magnetization directions demonstrated. Artificial spin-orbit
gaps can in principle be engineered in materials with weak spin-orbit coupling, such as silicon.

• Nanoscale magnetic field synthesis achieved by using nanomagnets with coercivity contrast and
an external magnetic field for programming. This may find applications in other areas, such as
MRI, nanoparticle manipulation.

Questions to be answered
• Defects in the nanomagnets.
• Effects of geometry and interactions between nanomagnets.

• Larger coercivity in Co nanomagnets than in Co films.
• Smaller coercivity in SmCo5 nanomagnets than in SmCo5 films.

Sandia
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Outline

■ Artificial spin-orbit coupling in Si/SiGe

■ Theory/modeling

■ Nano-magnet arrays

■ Holes in Ge/SiGe

■ Physical properties

■ Quantum Hall ferromagnetic transition

■ Spin qubits in Ge/SiGe
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2D holes
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Band alignment of SiGe heterostructures
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Undoped Ge/SiGe heterostructure field-effect transistors

GeS‘ 15
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Su, Phys. Rev. Mater. 1, 044601 (2017)
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Device operation — 2D hole density

• The 2D hole density saturates.
0...

• Shallow channels r'.1
> High saturation densities, depth dependent. E 8
> Small slopes (capacitances) 0

kii—po

• Deep channels >I 6
> Low saturation densities, depth independent. :1-P
> Large slopes (capacitances) (1)

C
a) 4
Ci
a) 2
0
I

0
-30 -25 -20 -15 -10 -5 0 5 10
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Device operation 2D hole density

(a)
100

V = -1.04 V

low tunneling probabllily
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Device operation 2D hole density

—tunneling rohability

— —
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The tunnel rate is low. The tunnel rate is high.

The traps at the oxide/GeSi interface
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The traps at the oxide/GeSi interface
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level can move.
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Physical properties — spin-orbit coupling

• Low densities
> Weak localization only

• Intermediate densities
> Weak anti-localization on top of weak

localization only
• High densities

> Weak anti-localization only

Cubic Rashba: -(sin30,-cos39)
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Physical properties — spin-orbit coupling

• Spin-orbit length decreases with
density and can be as short as 0.1 um
(< mean free path), while the phase
coherence length can be a few
microns long (>mean free path)

• This means the hole spin can rotate
at a high yet controlled rate, maintain
its phase coherence, and suffer no
scattering.
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Physical properties — weak antilocalization beyond diffusive regime Sandia
National
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• Conventional theories for weak (anti)localization are only valid in the diffusive regime at low magnetic fields.

• Our data lie outside this regime.

• Numerical methods and code for HPC available with paper.
•

-.- G&G
-.- HLN

I I I I i I ili

4 5 6 7

p (x1011 Ci11-2 ) Chou, Nanoscale 10, 20559 (2018)



In a perpendicular magnetic field...

B

NaTioinaal
Laboratories

Cyclotron motion, Ec = heBperp/m*

Spin splitting, gap Ez = gpB



Energy spectrum in a magnetic field
E E

B = 0

Cyclotron gaps
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Physical properties — effective mass

• — 0.08 mo.
• — density independent.

• This mass is small compared to the
mass of electrons in Si (0.19), the mass
of holes in GaAs (0.2-0.4), and is
comparable to the mass of electrons in
GaAs (0.07).

• Smaller mass

a
150

100

50

=> more extended wave functions 0
ce

=> easier gate controls for
nanostructures -50

=> larger orbital gaps -100

=> can use higher T cryostats

-150
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Physical properties effective mass

Theory

Fto. 8. Figures of constant energy in the (100) plane of k-spalt,
for the two fluted energy surfaces which arc dcfrneratc at th,-
valence band edge; constants as for germanfri,1

Dresselhaus PR 98, 368
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The quantum Hall effect

In a perpendicular magnetic field, the spectrum of a 2D gas is a series of Landau levels:

1 Ez

1 Ec  E
C 
-E
Z 
>E
Z

. / Ez

Ec  E
C 
-E
Z 
>E
Z

. / Ez

1 Ec  E
C 
-E
Z 
>E
Z

..- E. # z

Ec is cyclotron gap: heB/(2nm*)

Ez is Zeeman gap: g*p.B

m* and g* are material parameters.

Landau level degeneracy (# electrons / area):
eB/h

Sandia
National
Laboratories

Lu, Scientific Reports 7, 2468 (2017)



Quantum Hall ferromagnetic transition
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In most cases, Ec >> Ez

Strong even states, weak odd states

If Ec 2Ez

Strength of even states N strength of odd

states

If Ec < 2Ez

Strong odd states, weak even states

Ez/Ec increases with decreasing density.

Lu, Scientific Reports 7, 2468 (2017)



Quantum Hall ferromagnetic transition
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A spin transition (unpolarized <-> polarized)

at v=2 occurs at p-2.4x101° cm-2.

This transition marks the point where Ec—Ez
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Quantum Hall ferromagnetic transition Sandia
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The physical picture of the system at the transition:
micro-domains of different spin configurations. Away from the transition, one spin configuration is
preferred. Domains move and merge to minimize surface energy.

Evidence of micro-domains is found in the time dependence.

by S. Zurek, E. Magnetica, CC-BY-3.0
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Quantum Hall ferromagnetic transition

Local gating to create counter-propagating edge states with opposite spins

"Impurity-generated non-Abelions"

Simion Phys. Rev. B 97, 245107 (2018)
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Physical properties — g factor
P<1.6 x 1011 cm-2

• — 5 — 30
0.5 Ec < Ez < Ec

• — density dependent.
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Project overview
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Goal: Demonstrate and study hole spin qubits in strained Ge/SiGe heterostructures I

■ Common material platforms for spin qubits: GaAs, Si/SiGe, Si-MOS

■ Challenges of these materials

■ GaAs: lattice nuclear spins severely limit coherence times

■ Si: valley splitting

■ Si-MOS: disordered interface

■ Holes in Ge/SiGe provide a compelling alternate approach to spin based qubits.
They maintain many of the advantages of silicon without valley splitting.



Approach

• Single hole confined to lateral
quantum dot in Ge heterostructure

• Spin qubit states: mi=-F3/2

• Qubit readout and initialization
through energy selective tunneling to
reservoir

• Qubit control through microwaves
applied to gate

• Occupancy detected through nearby
charge sensor

• Strong spin orbit coupling (SOC) is
important. Form is "Jk3 in 2DHG.

L
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Ge/SiGe quantum well heterostructures

RP-CVD growth
Clean epitaxial interface

(a) (b)
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A

Recent literature result:
Multi-hole spin qubits in planar Ge

• Single and two-qubit gates have been

measured in transport in multi-hole

Ge/SiGe quantum dots

• T2* coherence times are long
(hundreds of ns)

• Encouraging as we look toward single-

hole spin qubits
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Single layer devices host quantum dots

a Single layer device b Coulomb oscillations C Coulomb diamonds
/(10 10 A)
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Double quantum dot
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3-layer device fabrication

1: isolation gates

SE 10.00 kV 5084m 5.1mm 0°

2: accumulation gates

E-beam lithography
ALD A1203 oxide
Ti/Pt gates

Sandia
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3: barrier gates

3. Barrier gates
ALD oxide

2. Accumulation gates
ALD oxide

1. Isolation gates
ALD oxide

SiGe

s-Ge

SiGe
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3-layer device modeling: surface charge density

Without horizontal
isolation gate:
reservoirs merge

Add horizontal
isolation gate:
reservoirs separated

15
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Improved Coulomb blockade by adding center isolation gate
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0.1
-0.52
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-0.44
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Without horizontal
isolation gate
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Charge sensing: Comparison of isolation gate widths

a

150% improvement in charge sensing
signal when w is reduced by 2x

-3.92

0

-4.04
2.8
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VURP,ULP (V

♦
\ w= 140 nm♦

Sensed
quantum

dot

Charge
sensor

\ 5.0
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Parallel diagonal lines are
sensed charge transitions
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In-plane g-factor

P
co

6

0
-0.6

LDot (V) 0
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• Charge sensed lines appear insensitive to in-plane
B-field

gin _piane is very small

• Next experiment: apply B out-of-plane

• g-factor anisotropy is expected
[Lu et al. 2017, Sammak et al. 2019]
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Summary

■ Induced 2D holes in Ge/SiGe heterostructure field effect
transistors demonstrated.

■ Device behavior can deviate from thermal equilibrium.

■ Physical properties (mass, g factor, spin-orbit coupling
strength) characterized.

■ Gate controlled quantum Hall ferromagnetic transition
observed at low densities. Platform for topological
superconductivity?

■ Development of spin qubits in Ge/SiGe


