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-‘Hydrogen embrittlement occurs in materials under the
influence of stress in hydrogen environments

Hydrogen
embrrittlement

Surface

also called interactions
hydrogen-assisted "‘2
fatigue and fracture *

w

Hydrogen dissociates on metal surfaces, dissolves into the metal
lattice, and changes the mechanical response of the metal
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-Hydrogen Embrittlement= 4
Hydrogen Accelerated Fatigue Crack Growth (HA-FCG)

* Pressure fluctuations can result in fatigue loading of the pipe

da/dN (crack growth rate)

AK (stress intensity factor range)

- Fatigue crack growth rates can
increase by over an order of
magnitude in pipeline steels

HA-FCG does not preclude material from usage but
necessitates proper design
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" Fracture mechanics-based assessment of
fatigue and fracture of pipelines

Critical Rupture
flaw determined by
fracture
resistance
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intial |- Number of pressure cycles, N N fatigue crack
flaw
growth

ASME B31.12 describes rules for hydrogen pipelines with
reference to ASME BPVC Section VI, Division 3, Article KD-10
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!‘Various pipeline steels teﬁ?to show very similar
fatigue crack growth rates in gaseous hydrogen
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« A wide variety of
pipeline steels display
nominally the same
fatigue response in
high-pressure gaseous
hydrogen

* The effect of pressure

on fatigue crack growth
rates is modest for high-
pressure hydrogen
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" Welds inﬁpelineste;d to show simi
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growth rates as the base metals in hydrogen
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From: Ronevich et al, Int J. of Hydrogen Energy, 2017

6

* To first order, welds
behave similarly in
gaseous hydrogen as
the base metals

- Similar trends have been
observed for a variety of
weld processes

Weld Fusion Zone

— WF2)

/ <«— Weld Passes

Heat Affected Zone
(HAZ)

Base Metal
(BM)
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Pipeline steels have relatively high fracture
resistance in gaseous hydrogen

120 7 rrrrorrrtgTrrrr T TT

 Data sets that evaluate

’g 108, effect of pressure on
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Hydrogen test pressure (MPa) than in air

- From: San Marchi et al, ASME PVP-2011 conf.
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n blends in naturalgas

" Growing interest in using hydroge
to reduce carbon emissions

- Power-to-gas (P2G) using excess renewable *:_° @ -
electricity to produce hydrogen and inject into Renewable

pipeline clecticty G prectotyzer

EU Hydrogen Limits for Injection into the HP Gas Grid
Covered by a range of local laws and EU Directives

No harmonization of
allowable hydrogen
concentration in natural

N - I I France Limit falls to 2% if there is a / gas
Sweden CNG station downstream L__ ¢
Switzerlahd  —
Holland Ref: George Minter, SoCal Gas
_  m— “‘New Natural Gas Pathways for
Auslria California: Decarbonizing the
Pipeline” Presentation 2014.
| | | | I | Volume / Molar Ref: SoCal Gas, “Hydrogen:
€% 6% 7% 8% 9%  10% 1% 12% ercent Market Fundamentals, Trends
: T l l ' {Mass Percert and Opportunities”, California
0% 1 0% ' 30 I 18% " % Hydrogen Business Council,

December 11, 2018.
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“Many demonstration projects are being performed around the world

France — Dunkirk 6% up to 20% H, into buses and 200 residential homes

ltaly — Snam 5% H, into gas transmission network

UK — H21 Leeds CityGate Project — converting existing NG network to 100% H,

UK — HyDeploy at Keele University (up to 20% H, blend)

US — SoCalGas / UC Irvine — blending H, from excess renewable electricity to campus pipeline
Germany — Trial of 170 customers supplied with up to 10% H, blend by E.ON Technologies
Netherlands — up to 20% H, blend injected in Amerland

&>

NaturalHy report, 2010

Many references point to results from j>

Integrated Project

6.1.1 Call 1 Sustamnable Energy Systems

https://www.engie.com/en/businesses/gas/hydrogen/power-to-gas/the-grhyd-
demonstration-project/

https://www.azernews.az/region/148145.html

https://www.northerngasnetworks.co.uk/wp-content/uploads/2017/04/H21-Report-Interactive-PDF-July-2016.compressed.pdf
o https://www.elp.com/articles/2016/12/socalgas-uc-irvine-test-hydrogen-energy-technology-to-store-renewable-energy.html
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“So how much hydrogenMWed mural gés? -

A
B

A

) 2%7?
) 5%7?

C) 10%"7?
D) It depends on your operating conditions and

your definition of the word “allowed”.
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Often times these values (2,5,10% H,) are based on
performance of burners, not measurements of
material compatibility with hydrogen
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tial effect on —_—

fracture resistance of pipeline steels

Relative fracture resistance
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PH2 = 8.5 bar
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1% H2
10% H2

From: Briottet et al, ASME PVP-2018 conf.

X70 .

(1,232 psi) |
P, =85bar_

100% H2

« Measurements of
fracture resistance in
gaseous mixtures of

H2 and N2 show
substantial effects of H2

* 1% H2 is only modestly
different than 100% H2

<1 bar of H2 reduces
fracture resistance
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da/dN / mm/cycle
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Low pressure H, has substantial effect on fatigue

crack growth of pipeline steels
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 Measurements in gaseous
mixtures of H, and N,
show acceleration of
fatigue crack growth rate
with 5% H,
— But little additional
acceleration with higher
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From: Meng et al, IJ Hydrogen Energy 42

(2017) 7404.
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H, content

Small amounts of hydrogen
can have substantial effect
on fatigue and fracture
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“In lower AK range, lower

13
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sizeable increases in FCGR
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pressures still exhibit

SNL data (taken from
various published and
unpublished sources)

Pressures ranging from 15,000 psi to 400 psi H, still
exhibit accelerated fatigue crack growth rates
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Crack growth rate, da/dN (mm/cycle)
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Impurities can influence measurements, but can also
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provide pathways to mitigate the effects of H2

-
o
N

10 E

1 X52 Base Metal
121 MPa H,
2+ =10 Hz
1R=0.1
1295 K

HOPEE

,,,,,

N

air
R=0.1 and 0.5

From: Somerday et al, Acta

Mater 61 (2013) 6153.
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- Oxygen mitigates H,-
accelerated fatigue
crack growth rates at
low AK

- Attributed to oxygen
diffusion to new
crack surfaces

- Natural gas may have
sufficient O, to
mitigate hydrogen
(0.1% =1000 ppm O,)

Impurity content in H2 can have substantial effects
on both measurements and in-service performance
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""The role of mixed hydrog;n_gas environments

and impurities should be considered carefully

- Small partial pressure of gaseous H, can have substantial
effects on fracture and fatigue of steels

- Oxygen can mitigate effects of H, in ferritic steels
— Sensitive to mechanical and environmental variables
— Other passivating species can have similar effects

« Structural integrity of pipelines carrying mixed gases will
depend sensitively on the details

— NG has many impurities, which can mitigate H, effects

— Pure methane is inert and even small additions of H, can be
significant

Materials compatibility for hydrogen containment structures
depends on the application and the design

15
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— 4
Summary

 What is hydrogen embrittlement and when is it important?
— Hydrogen degrades mechanical properties of most metals

- How does gaseous hydrogen affect fatigue and fracture of
pipeline steels?

— Fatigue is accelerated by >30x and fracture resistance is
reduced by >50%

* Is there a threshold below which hydrogen effects can be
ighored?

— NO, even small amounts of hydrogen have large effects
« Can the effects of hydrogen be masked by other physics?

— Oxygen can mitigate the effects of hydrogen in some cases,
which perhaps can be exploited

16
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"The effects of H2 on fatigl‘Je_crack gro%vth in steels

can be captured with “master” design curve
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4 — Wide range of strength

— Wide range of
microstructure

* A relatively simple master
curve has been developed
(dashed line) that bounds
fatigue crack growth
performance in gaseous
hydrogen
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......

Material: X70 OD =762 mm

YS = 500 MPa P, =7 MPa

P,. =4 MPa

- Semi-elliptical crack

| thickness (7)

N\

a/t = crack depth
a/2c = depth to length ratio

natural crack shape: a/2c=1/2
ASME crack shape: a/2¢c = 1/3
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"Stress intensity associated with semi-
elliptical crack in “high-pressure” pipeline

Hoop stress at P, = 162 MPa

max

stress ratio: hoop/7T.S = 28%

50 }\ Minimum K,
(per ASME B31.12)
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Driving force on semi- elllptlcal

crack: /B
Ko <40 MPam!? | [}

max

Typical pipeline material fracture
resistance: '
K ;> 75 MPa m!’?

0 02 04 06 08
Crack Depth, a/t
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Fracture resistance of pipeline
steels in H2 is greater than driving
force on semi-elliptical cracks
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""Predicted lifetime of pipeline with growing
fatigue cracks in hydrogen

Time (years) — 2 cycles/day
8 16 24 32 40 48 56 64
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Assuming ‘ }X

* Pressure cycles between
4 & 7 MPa
« Constant crack shape (a/2c¢)
« Large initial defects
« Fatigue crack growth rates in
pure H2 (at higher pressure)

Using: a=a, _|_(da )a:aiA N

dN
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10,000 20,000 30,000 40,000 50,000

Number of cycles

* 10,000s of cycles are needed to
extend the crack significantly

« At 2 cycles per day, decades are
needed to advance the crack
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Residual stresses impact fatigue cracﬁ? growth
rates in hydrogen as in ambient environments
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* Residual stresses should be considered for design
- Base metal properties generally represent weld metal

From: Ronevich et al, Eng Fract Mech 194
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