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-‘Motivation and Outline

Why hydrogen in pipelines?

What is hydrogen embrittlement and when is it important?

How does gaseous hydrogen affect fatigue and fracture of
pipeline steels?

Is there a threshold below which hydrogen effects can be
ignored?

Can the effects of hydrogen be masked by other physics?

What is the implication of hydrogen on life of pipelines?
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‘Hydrogen can be used as an energy carrier

to store and convey energy as well as to serve a wide
range of industrial and transportation applications

Value Added ,
Applications Current H2 usage in

the US is about 10
million MT annually,

mostly for refining

Hydrogen A o
Power Vehide  \2, and fertilizer
Generation pro duction

Synthetic
Fuel
Hydrogen ues
Storage/
Distribution Upgrading
oil /

NoiLviuoasW

Close to 1,000 km of
pipeline in the US
are dedicated to
hydrogen coveyance

Generation End Use Refining

Concentrated Solar Power

lllustrative example, not comprehensive; from H2@Scale Concept, developed by FCTO/DOE
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What is hydrogen embrittliement and when is it important?
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-‘Hydrogen embrittlement occurs in materials under the
influence of stress in hydrogen environments

Hydrogen
embrrittlement

Surface

also called interactions
hydrogen-assisted "‘2
fatigue and fracture *

w

ydro ociates on metal surfaces,
dissolves into the metal lattice, and changes
the mechanical response of the metal
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Pop Quiz
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“"Which of these materials should be on an
approved list for use in gaseous hydrogen?

R AR I Tension
?80-_ * Tensile testing in gaseous
9;/ I hydrogen reveals a loss of
Zor ductility
E’  Which of these materials
g0 should be on an approved
E list for hydrogen service?

20 — (a) all

— (b) none

o — (c) RA > X%



lI'l Sandia National Laboratories l-% FCHydrogen and Fuel Cells Program

_— . . - L
Is this material safe for use in gaseous

hydrogen?

10° | Fatigue
o
% 45 MPa H2 ]
= - Fatigue crack growth rate
<= 10°} = a .
z ; is accelerated by >10X in
s H2 compared to air
= _
S 107f 4 < This material is safe for
L C ] -
E use in gaseous hydrogen?
> I
S 10 e heatN — (a) True
S U E © heatN E
o s heatP ] — (b) False
= + heatC ]
-%’ < air (heat N)
L -9 R . . .
10 5 6 7 8 910 20 30 40 50

AK (MPa m'?)

10
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Are any of these materials appropriate for
hydrogen service?
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Austenitic stainless steels

Yield Strength (MPa)

Fracture

* Fracture resistance in

gaseous hydrogen (K,) is
reduced by >50% for all
steels on this plot

« Which if any can be used

in hydrogen?
— (a) all
— (b) none
— (c) the ones in red
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"Which of these materials should be on an
approved list for use in gaseous hydrogen?

1000717 71T " T 17 T T

4mm Aluminum tested in air

h Considered immune

* Tensile response depends
on many factors

(0]
o

- --------------stainless steel is air----- ]
" « Some materials have low

ductility in air: aluminum

(o2}
o

+ Kinetics may bias data of
other materials: A-286

Reduction of Area (%)
N
o

 Difficult to interpret
tensile ductility in the
context of materials
selection without
additional information

N
o

(o] .
00 O
;
< N T
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Is this material safe for use in gaseous

hydrogen?
10° —

®

o L-aboratory gas

E cylinders for H, are

— 109 . 2 )

g made of this material

© T

e S -

S 107} " e -

5 C 7

5 -

(@)}

S yne e heatN

G 10°F o heatN E

g s heatP

2 + heatC

= ¥ < air (heat N)

= 10° s T . . .
5 6 7 8 910 20 30 40

AK (MPa m'?)
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50

Materials requirements
depend on the application
and the design

* Gas cylinders are made
from relatively low
strength steels

« Wall stresses are
relatively low

 Number of pressure
cycles are modest

* Manufacturing defects are
well characterized
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Are any of these materials appropriate for
hydrogen service?

14

Stress Intensity Factor, K (MPam'?)
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Austenitic stainless steels
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0|||
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Yield Strength (MPa)

1200

* Fracture resistance in

gaseous hydrogen (K,)
remains quite high for the
majority of steels on this
plot

« Compare, for example,

typical range of properties
for pressure vessel steels
used in gaseous hydrogen
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Pop pO//

Results

Materials selection is neither straightforward nor simple.

Materials selection depends on the
application (i.e., environment) and
design features (i.e., stresses)

15
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-Motivation and Outline ' -

How does gaseous hydrogen affect fatigue and fracture of
pipeline steels?

16
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!‘Pipeline steels tend to shmvery similar fatigue
crack growth rates in gaseous hydrogen

17

107 v ————--1 * A wide variety of
: 1 pipeline steels display
10} 4 nominally the same
2 ) : fatigue response in
% 10° f..«""' . high-pressure gaseous
E 1 hydrogen
Z 10l s x| The effect of pressure
o : + X65 (air) E .
@ | weiwe) {1 ON fatigue crack growth
107 at10Hz % @ rates is modest for high-
s wviucis SR pressure hydrogen
1071 | 3 bt G O g
5 6 78910 20 30 40 50 ;‘P
AK (MPa m'?) %%O T
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" Welds in pipelines tend to show

v similar f ytigue crac
growth rates as the base metals in hydrogen

2
< " | - To first order, welds
S ._ | behave similarly in
€ 10°L X52FSW 8% ] gaseous hydrogen as
i;'. ‘ " X52BM the base metals
k= . !« Similar trends have been
S0t x5 =iy | observed for a variety of
E f ] weld processes
¥ :
% 10° L , Pipeline Steels
_E, . T— 2! fM =P$ ,:'; Weld Fusion Zone
- at 10Hz R=05 — (WFZ)
© 10° L ' ek Heat Affecteﬁne ;m o
5 6 78 910 20 30 40 50 s

AK (MPa m'?)

Base Metal
(BM)

From: Ronevich et al, Eng Fract Mech 194 (2018) 42-51.

18
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Residual stresses impact fatigue crack growth rates

in hydrogen as in ambient environments

102 -

—_
e
N

| 'Aé-lmachin' d | d |

Correctg
S 7 BM a

=N
<
w
T

1 1t el 4111

"~ BM in air 10 Hz

Crack growth rate, da/dN (mm/cycle)
Crack growth rate, da/dN (mml/cycle)

10° 3 10°L

] ]

& [ X100 Pipeline Steel 1 L 2

10 3 BMin 21 MPa H, 3 10°® L WFZ 21 MPa H,

: AIR f=1Hz ; : R=05 7

[ at 10 Hz R=0.5 ] Freq =1 Hz]

= 295 K - E

0 : o 3 . ; 10-7 1 1 T U, | 1 I L
5 6 78910 20 30 40 50 4 6 8 10 30 50
AK,pp (MPa m1/2) AKcorr (MPa m'2)

 Residual stresses should be considered, both for
influence on measurements and in design
- Base metal properties generally represent weld metal

19 From: Ronevich et al, Eng Fract Mech 194 (2018) 42-51.
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Pipeline steels have relatively high fracture
resistance in gaseous hydrogen

120 7 rrrrorrrtgTrrrr T TT

 Data sets that evaluate

’g 108, effect of pressure on
L | fracture are relatively
~— 80 . .
S| limited
3 60 - Available data suggest
G | \ | fracture depends on
< u X60 -
O “ iXBO-B . PRESSE
3 [ |-e-x80E Minimum fracture - F ¢ ist
S 20f té?:;;s(as rolled) resistance per SAESTE St le T
| |.\-GradeB (omaizeqy | ASME B31.12  (even at low pressure)
A is significantly lower
0 20 40 60 80 100 h . .
Hydrogen test pressure (MPa) than in air

20 From: San Marchi et al, ASME PVP-2011 conf.
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" Motivation and Outline

Is there a threshold below which hydrogen effects can be
ignored?

21
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1tial effe

fracture resistance of pipeline steels

Relative fracture resistance

1.2 ————

0.2

0.8
0.6

0.4

P,,, = 0.85 bar

Al
Z

1% H2
10% H2

From: Briottet et al, ASME PVP-2018 conf.

X70 .

100% H2

« Measurements of
fracture resistance in
gaseous mixtures of

H2 and N2 show
substantial effects of H2

* 1% H2 is only modestly
different than 100% H2

<1 bar of H2 reduces
fracture resistance
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Low pressure H2 has substantial effect on
fatigue crack growth of pipeline steels

 Measurements in gaseous
mixtures of H2 and N2
show acceleration of
fatigue crack growth rate
with 5% H2

— But little additional
acceleration with higher
H2 content

0.1 ¢
12 MPa total pressure
L . 6]

ps
0.01 | *"“

F .. .Q* s*

3 ey

-

€ 13}

E eS|

z

2 !

<

© 164 | X8O N, 5vol% H,
; ® 10vol%H, * 20vol% H,
F R=0.1 ® 50vol%H,

1 Hz
lE'S PR S ST S S ST T S N 'Y PR B PR S B S RE A A AP
30 40 50 60 70
AK /MPa-m"?

From: Meng et al, IJ Hydrogen Energy 42

(2017) 7404.

23

80

Small amounts of hydrogen
can have substantial effect
on fatigue and fracture
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Can the effects of hydrogen be masked by other physics?

24
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Impurities can influence measurements, but can also

provide pathways to mitigate the effects of H2

—~ 10'2 =
Q9 1 X562 B Metal i
S iompab » - Oxygen mitigates
£ 0% 30tz = H2-accelerated
z ]295K r e fatigue crack growth
g rates at low AK
s
2107  Attributed to oxygen
E o ~1ppmO, ' :
T R e 10pm e, diffusion to new
x i air o 100 ppm O, crack surfaces
S R=0.1 and 0.5 A 1000 ppm O,
S i f=10 Hz
10 I -
> Stress inte1r(1)sit 20 12 >0 From: Somerday et al, Acta Mater 61
y factor range, AK (MPa m ™) (2013) 6153.

Impurity content in H2 can have substantial effects
on both measurements and in-service performance

25
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""The role of mixed hydrog;n_gas environments

and impurities should be considered carefully

- Small partial pressure of gaseous H2 can have substantial
effects on fracture and fatigue of steels

- Oxygen can mitigate effects of H2 in ferritic steels
— Sensitive to mechanical and environmental variables
— Other passivating species can have similar effects

« Structural integrity of pipelines carrying mixed gases will
depend sensitively on the details

— NG has many impurities, which can mitigate H2 effects

— Pure methane is inert and even small additions of H2 can be
significant

Materials compatibility for hydrogen containment structures
depends on the application and the design

26
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What is the implication of hydrogen on life of pipelines?

27
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""Predicted lifetime of pipeline with growing
fatigue cracks in hydrogen

Time (years) — 2 cycles/day
8 16 24 32 40 48 56 64

o
o)

o
o
———

a/2c = 1/3

Crack depth, a/t
o
~

ar2e= 12 g

a/2c =1/2 ]

o
N

2= 18 |

28

10,000 20,000 30,000 40,000 50,000

Number of cycles

Assuming

OD =762 mm, t=15.9 mm

Pressure cycles between
4 and 7 MPa

Constant crack shape (a/2¢)
Large initial defects

Fatigue crack growth rates in
H2 (at higher pressure)

-

pure

* 10,000s of cycles are
needed to extend the crack
* At 2 cycles per day,

decades are needed to
advance the crack
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.Summary -

 Why hydrogen in pipelines?

— Hydrogen is a carbon-free
energy carrier and
enables renewables

Concentrated Solar Power

- What is hydrogen embrittlement and when is it important?

- Hydrogen degrades mechanical
properties of most metals

- How does gaseous hydrogen affect
fatigue and fracture of pipeline steels?

— Fatigue is accelerated by >10x and
fracture resistance is reduced by >50%

Crack growth rate, da/dN (mm/cycle)

20
AK (MPa m'?)

29
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‘uummary -

* Is there a threshold below which
hydrogen effects can be ignored?

— NO, even small amounts of
hydrogen have large effects o

Relative fracture resistance

1% H2
10% H2
100% H2

. Can the effects of hydrogen be masked by other physms'?

— Oxygen can mitigate the effects
L A of hydrogen in some cases,
A R which perhaps can be exploited

da/dN (mm/cycle

10 20 50
Stress intensity factor range, AK (MPa m'?) Time (years) — 2 cycles/day
8 16 24 32 40 48 56 64

 What is the implication of hydrogen
on life of pipelines?

— If fatigue cycles are modest, lifetime
calculations suggest long life in hydrogen

Crack depth, a/t

10,000 20,000 30,000 40,
Number of cycles

30
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r A P L

Thank you for your attention

Contacts:
— Chris San Marchi cwsanma@sandia.qov
— Joe Ronevich jaronev@sandia.gov

Additional resources:

— https://energy.sandia.gov/transportation-
enerqgy/hydrogen/materials-components-compatibility/

— Technical Reference: https://www.sandia.gov/matisTechRef/
— Hydrogen-materials database: https://granta-mi.sandia.gov

31
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32

"The effects of H2 on fatigl‘Je_crack gro%vth in steels

can be captured with “master” design curve

—
o
o

. B 4
" R=05 /,‘ 21 wPa, . Tested steels represent:

— Wide range of strength

— Wide range of
microstructure

* A relatively simple master
curve has been developed
(dashed line) that bounds
fatigue crack growth
performance in gaseous
hydrogen

—
o
\Hd)

—
o
\11'Ih

Crack growth rate, da/dN (mm/cycle)
Q

—
o
&

5 é 7 5510 éo 36 4‘0 50 da 1+ C.R f 1/2
AK (MPa m'?) _=Cll 2 ]A K™
dN T
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- - . . = . 4
Simple formulation of “master” design curves
captures the trends in experimental data
107 108 15.5MPaH, |
R=0.1 y :

' 21 MPa H, |}

—
Q
“O)
—
Q
@

—
o
III'h
—
=]
\\#

Crack growth rate, da/dN (mm/cycle)
Crack growth rate, da/dN (mm/cycle)

1075k , 60 - 10° =
v X80-B
om  X80-E /
N A X80-F / v _X80-B
' |
10° : ' 10° . | | |
5 30 40 50 5 6 7 8 910 20 30 40 50

33
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""The “master” design curve enables prediction of

bounding behavior for load ratio and pressure

d 1+C,R 1/2
—azcll 2 ]AK?TL L
dN 1-R fo

107 — 10° -
T P =106 MPa E R=0.1
[ T [ | ——106 MPa
B R o 05 .45 MPa
L |——R=07 | |——21MPa
10 10°F | —— 5 MPa
o )
= o
O >
= =
E 10 E 107F
= 3
E R :
@ IS
© °
10°¢ 10°F
107 : =1 107 : S A VA
2 3 4 5 6 7 8 910 20 2 3 4 5 6 7 8 910 20
AK (MPa m'2) AK (MPa m'?)

The bound at high AK is dependent on R (i.e., K..,),
but not sensitive to pressure

34
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" Fracture mechanics-based assessment of
fatigue and fracture of pipelines

ASME B31.12 describes rules for hydrogen pipelines with
reference to ASME BPVC Section VI, Division 3, Article KD-10

Critical Rupture
flaw determined by
fracture
resistance
© %
S
N
7))
; u
3 : Evolution of
i, i flaw size
— ', determined by
intial |- Number of pressure cycles, N N fatigue crack
flaw
growth

35
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" Fracture mechanics-based assessment of
fatigue and fracture of pipelines

ASME B31.12 describes rules for hydrogen pipelines with
reference to ASME BPVC Section VI, Division 3, Article KD-10

Critical Rupture
flaw determined by
fracture
resistance
© %
S
N
7))
; u
3 : Evolution of
i, i flaw size
— ', determined by
intial |- Number of pressure cycles, N N fatigue crack
flaw
growth

36
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""Consider a typical “hiﬁpressuré"’ pipeline

/ Material: X70 OD = 762 mm
" Buisting tlaw depth IS =586 MPa t=15.9 mm
YS = 500 MPa P = 7MPa
P,. =4MPa

=
------

Semi-elliptical crack

| thickness (7)
7\

a/t = cack depth
a/2c = depth to length ratio

natural crack shape: a/2¢ =1/2
ASME crack shape: a/2c = 1/3

37
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"Stress intensity associated with semi-
elliptical crack in “high-pressure” pipeline

50 }\ Minimum K, 1 | Driving force on semi-elliptical
(per ASME B31.12) 1 |crack: = N\
< ; K, <40 MPa m'” B
e : 1 == ,//
o 30} )
T Typical pipeline material fracture
Tx20f resistance:
S K ;> 75 MPa m!”
10} i
5 ] Fracture resistance of pipeline
0 steels in H2 is greater than driving

38

{ X{X / Hoop stress at P, _= 162 MPa
B stress ratio: hoop/TS = 28%

0 02 04 06 08 1 prisetvet
Crack Depth, a/t force on semi-elliptical cracks
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“"Predicted lifetime of pipeline with growing
fatigue cracks in hydrogen

= | \\x\\
Assumin = |
8 16 24 32 40 48 56 64 g RN 4

Time (years) — 2 cycles/day

[ SRR ARAL AR AANAAEAS - Pressure cycles between
j 4 and 7 MPa
- 0.8 a/2c = 1/3 1« Constant crack shape (a/2¢)
E_ o ¢~ 124« Large initial defects
=2 1+ Fatigue crack growth rates in pure
g o it H2 (at higher pressure)
S !
St @2¢=153 1 1+ 10,000s of cycles are
021 " needed to extend the crack
Oi llllllllllllllllllllllll * At 2 cycles per day,

0 10,000 20,000 30,000 40,000 50,000

Number of cycles decades are needed to

advance the crack
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