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H2@Scale

H2@Scale is a U.S. Department of Energy (DOE) initiative that
brings together stakeholders to advance affordable hydrogen
production, transport, storage, and utilization to increase revenue
opportunities in multiple energy sectors.

It is a framework in which national laboratories and industry can
work together through government co-funded projects to accelerate
the early-stage research, development and demonstration of
applicable hydrogen technologies.
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Science-based advancement of materials for hydrogen technologies

PI: Chris San Marchi (SNL) and Kevin Simmons (PNNL)

Close to 1,600 miles
of pipelines in the US

are dedicated to
hydrogen conveyance
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H-Mat addresses materials-compatibility science questions

Task M1

High-strength ferritic steel
microstructures

Task M2

High-strength aluminum alloys

Task M3

Transferability of damage and
crack nucleation

Task M4

Microstructure of austenitic
stainless steels

Task C1

Materials for cryogenic
hydrogen service
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Task P2

Multiscale
modeling

Polymers

Task P1

Mechanisms of
degradation I
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40-Mat
Engineering performance depends on mechanisms
manifest at nanometer length scales
Approach: Integrate innovative computational & experimental

activities across length scales

Advanced
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materials
science

Fundamental
hydrogen-materials
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lnnovative
experimental
capabilities

Thermodynamics of
H-interactions
at nm-scale

Materials
response

Micromechanisms of
materials behavior

at pm-scale
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Consider the intersection of environmental,---1111.1.
mechanics and materials variables to understand
Hydrogen Effects on Metals

Environment

Materials

Materials
• High-strength

• Hydrogen-enhanced plasticity

• Boundary cracking

• Surface passivation

Stress /
Mechanics

Hydrogen embrittlement
occurs in materials under
the influence of stress in
hydrogen environments
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Environment
• Low temperature

• High pressure
• Impurities

Gas mixtures

Bulk
interactions

H
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Hydrogen-assisted
fracture

Mechanics
• Autofrettage

• Short crack behavior

• Fatigue crack initiation

• Fracture resistance
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Hydrogen-resistant, high-strength ferritic steel
microstructures (task M1)
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Science question:
Are there high-strength steel microstructures that can be resistant to
hydrogen effects?
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Mechanical testing of steels in high pressure H2 0

• Development of unique microstructures
(e.g., austempering)

• Microstructural and fracture characterization *

• Kelvin Probe Force Microscopy to investigate
hydrogen distribution in different microstructures

• Modeling of Fe-C-H (DFT and MD) to explore
preferential locations for hydrogen in
microstructure from physics standpoint

Engineering goals:
• Achieve K JH > 50 MPa rn1/2 for steels with UTS > 950 MPa
• Ferritic steel microstructures with tensile strength up to 1100 MPa

and 50% increase of fracture resistance in high-pressure hydrogen
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High-strength ferritic steel microstructures (task M1)

Fe-C-H interatomic potential has been implemented into
LAMMPS and provides platform for microstructural studies

• Comparison of predicted deformation structures
with/without hydrogen identifies potential sites
of damage accumulation and fracture initiation

• Novel microstructures identified in collaboration
with partners (future iterations planned)

ln progress

• MD simulations will evaluate hydrogen interactions
with different ferritic steels microstructure

- provide insights to interactions of hydrogen with
microstructure

• Kelvin probe force microscopy (KPFM) techniques
- measure local hydrogen relative to microstructure

• Fatigue and fracture tests in high-pressure H2 s'ke
"e.? 

•

- demonstrate resistance to hydrogen-induced „

fracture [112] x [110] 
2 nr▪ n

structure:* fcc • bcc • hcp undefined



1
SM

Hydrogen
Materials
Compatibility
Consortium

High-strength aluminum alloys (task M2)

Science question.-
What are the mechanisms of environmental embrittlement of hiah-.J
strength aluminum alloys in high-pressure hydrogen?
(in particular, what is role of moisture?)
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M. O. Speidel, Hydrogen Embrittlement
and Stress Corrosion Cracking, 1984
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• Mechanical testing of aluminum in mixed gases
(H2 + H20) at high pressure

• Kelvin Probe Force Microscopy to investigate
moisture on Al surfaces

• Modeling of moisture on Al surfaces to identify and
quantify mechanisms of H uptake (DFT) and
microstructural interactions of dissolved H (MD)

Engineering goals:
• Hydrogen-compatible microstructures of aluminum alloys with yield

strength >350 MPa that are insensitive to standardized moisture
limits for fuel-grade hydrogen (5ppm H20)

• Specification of environmental conditions under which aluminum is
not degraded in gaseous (and liquid) hydrogen environments

OO
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High-strength aluminum alloys (task M2)

First principles calculations are illuminating of the role of
moisture in metal-hydrogen interactions

Initial DFT results suggest the
presence of water might affect the
kinetics of hydrogen absorption

In progress

• MD simulations to evaluate the
effect of hydrogen on dislocation
mobility

- hypothesized role on fracture

• Kelvin probe force microscopy
(KPFM) techniques

- measure local hydrogen relative
to microstructure

• Fracture tests in hydrogen-water
gas mixtures

- experimental evidence of
hydrogen-induced fracture
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DFT calculations of Al(111) surface
show hydrogen is more strongly
bound in mixed water-hydrogen
layer than in the absence of water.
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Mechanisms of hydrogen-deformation interactions iIMIE
austenitic stainless steels (task M4)

Science question:
How does hydrogen change deformation and fundamental boundary
interactions in austenitic stainless steels?

au •

0 •

0 •

Develop methods to test and evaluate single
crystals (leveraged) and oligocrystals of
austenitic stainless steels

In situ testing and local characterization of strain
and damage accumulation

Micromechanical modeling of oligocrystals with
internal hydrogen (CP) to illuminate mechanisms
of hydrogen-microstructure interactions

,eservolr

highpressure

hydrogen gas

structural scale, -rn

raultiscale region
at crack tip

hydrogen

concentraton

structural
scale

0 -e • grans

- gram boundaries

- delonnalion twins

• i • gram scale evolution. -ern

Engineering goals:
• Microstructural design concepts that improve ductility of austenitic

stainless steels in high concentration of hydrogen
• Accessible micromechanical modeling tools (CP) sensitive to

hydrogen transients, local microstructure, and phase transformations
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Damage and crack nucleation (task M3)

Develop and utilize techniques to identify and monitor
crack formation, coupled with mechanics modeling

4-point probe provides very
sensitive measure of crack

initiation and advance
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Solid mechanics modeling
coupled with measurement of
crack initiation provides new
strategy to quantify nucleation
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Metals for cryogenic applications in hydrogen service

Cold/Cryo-temperature mechanical testing capabilities

MTS
load frame

r

LN2 NI
cylindeF

MTS load frame with environmental
chamber for heating or liquid
nitrogen: -130 to +315°C

Strain measurement

Extensometer capabilities to -253°C

Digital image correlation (DIC)

4------ Temperature
Controlled Test

Chamber

Schematic of liquid
helium-cooled Janis
Research dewar
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Summary

• Hydrogen degrades
mechanical
properties of most metals

How does gaseous hydrogen
affect fatigue and fracture of
pipeline steels?

- Fatigue is accelerated by
>10x and
fracture resistance is
reduced by >50%
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Summary

• Is there a threshold below which
hydrogen effects can be ignored?

- NO, even small amounts of
hydrogen have large effects
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• Can the effects of hydrogen be masked by other physics?
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• What is the implication of hydrogen
on life of pipelines?

- lf fatigue cycles are modest, lifetime
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