Computing with Spikes

Everything from the deep learning to numerical applications
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What is spiking!?
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Why spiking!?

» Event-driven

» Only expend energy when neutron crosses threshold

» Reliable and efficient over long distances

500 um (A, B, D)

» Neurons often project across brain or whole body...

» Robust to noise

» Away from threshold, biophysical noise should not
accidently cause spikes

Frontal view




Correcting some common misconceptions about spiking

> Spiking is necessary for brain-like computation
» Reality: The advantage of spiking is efficiency and reliability over distance, not computability.

It changes the tradeoffs between time, power, and space

» Spiking does not offer anything for algorithms
» Reality: Spiking facilitates developing algorithms that more directly leverage time in computing

> Spiking reduces the accuracy of algorithms

» Reality: Not necessarily! Spiking does lower the precision of communication, but often this precision is
unnecessary or can be compensated for in other ways.

> Spiking requires paying a time penalty
» Reality: Not always! Some coding schemes are actually time advantageous — e.g., you can implement very
tast threshold gate circuit algorithms on spiking hardware



What can you do with spiking neurons?

Spiking deep neural networks
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Training deep neural networks for binary
communication with the Whetstone method

William Severa:*, CraigM. Vineyard *, RyanDellana , Stephen 1. Verzi > and James 8. Aimone "

Training
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Severa et al., Nature Machine Intelligence, Feb 2019
Vineyard et al., NICE Proceedings, 2019




What can you do with spiking neurons?

Spiking deep neural networks
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Neuroscience-constrained algorithms

« Computation incorporates broad range
of neural plasticity and dynamics
Generally still unexplored from
algorithms perspective

Advancing
Neural
Capability
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Aimone JB, Communications of ACM, April 2019



What can you do with spiking neurons?

Treat neurons as i
i Jouic @ ==  Opiking deep neural networks N
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Algorithms are
circuits...

Neuroscience-constrained algorithms
» Computation incorporates broad range
. of neural plasticity and dynamics
» Generally still unexplored from
algorithms perspective

| | Spiking neural algorithms
. . . « Hand-crafted circuits of spiking neurons
* Model of parallel computation
* Energy efficiency through event-driven
D:D . communication and high fan-in logic
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Aimone et al, ICONS 2019



Can spiking really be used to solve non-cognitive tasks efficiently?




Spiking circuits can efficiently solve stochastic differential equations
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Spiking circuits can efficiently solve stochastic differential equations

e s dC(x,t 0*C(x,t
Diffusion: 20 _ D—(z)
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11 I There is an increasing diversity of spiking algorithms and applications
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| A brief plug...
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