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Background
• There exists a network of 120-odd seismic stations to detect nuclear blasts.

• Called International Monitoring System

• Earthquakes, mine blasts, and nuclear blasts give rise to seismic waves

• These travel through the earth and are detected at the IMS stations.

• Most of the detections are earthquakes, followed by mining blasts. -100 a
day per station.

• Being able to detect these seismic wave arrivals quickly with minimum
manual intervention is critical.

• Detecting weak seismic waves / faint arrivals is tough.



Goal of this work
• Seismic waves currently detected using manually chosen

rules of thumb.

• Want to replace rules of thumb with classifier learned
from data.

• Data has shortcomings that require use of ML method
called multiple instance learning.



This is a time series
classification problem
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• Need to filter raw signal to the frequency band in which
event occurs in order to detect it.
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Detection is currently done
without ML using rules of thumb
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• Rule of thumbs Ti TM currently chosen manually!

• Xi ,Xi2,

• Ti(xj) = 1 if xo > Oil or xj2 > ei2 ... or xiD > eiD. M X D thresholds



There are a lot of features

• The filtered signal has 3 channels

• For each channel, apply different transforms (LTA/STA,
recursive LTA_STA), and features are the maximum value
of those features in the time series.

• > 6 features

• More if we consider the 95-th percentile of a transform,
50th percentile, etc.

• This leads to a high false positive rate.



How to learn rule of thumbs
in ideal scenario?
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• Fit T,O using many samples of (x,,h,). Easy.



But we have a data problem
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• No one bothered recording the frequency band in which past
events occurred.

• Can't impute hi. Events occur in different frequency bands.

• Need Multiple Instance Learning



What is the Multiple
Instance Learning Scenario?
• Training Data is Weakly Labelled

• Consists of bags of instances

• Unobserved: instance labels

• Observed: whether each bag has some positive instance

{
Contains a Waldo

instance
Has no Waldo

instance
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What are the goals in MIL?

• Learn instance classifier

• Learn bag classifier

• Do both: interpretability

Is

Does

Does

{

a Waldo instance?

It r
have a Waldo instance?

I have a Waldo instance?

If yes, where is Waldo?
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• Training data:

• Goal:

SPAN Application:
Seismic Event Detection 

1 {

Does

i
1

Contains frequency Contains no frequency
with event with event

1,.014*.i..9.1.0-44

li

I
IIIII

- . I contain frequency w/ event?

If yes, which frequency is the event?

• Knowing frequency band would inform the event type
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How to model the ideal scenario?
• Use probabilistic

• Variables for each bag:

model

• Instance feature vectors x1..xm

• instance labels hl..hm (0/1

Ti

T2

TM

• Learn probabilistic rule of thumb: T,(x,) = P(h, 1 Ix')



How to do multiple instance learning?

• Use probabilistic latent variable model

• Variables for each bag:

• Bag label y (0/1)

• Instance feature vectors x1..xm

• Latent instance labels hl..hm (0/1)

Ti

T2

Tm

• Multiple instance assumption: y= 1 if some h, =1

• Learn probabilistic rule of thumb: T,(x,) = P(h, 1 Ix')



Options for rules of thumb

• Logistic regression "MI-Logreg"

• P(I 11x;;Bi) = sigmoid(131Tx1)

• Threshold function (similar to heuristic) "MI-Thresh"

• P(Iii 1 Ix; Oi) = 1 if xii > Oil or xi2 > Oi2 ... or xiD > OiD.



Data Preparation
• Available data: raw signal from seismometers and

timestamps of known seismic events

• To generate bags: ~ raw signal divided into 20 minute
windows. Windows that contain a known seismic event
are positive bags.

• To generate instances: each 20 minute raw signal (bag)
decomposed into contributions from M non-overlapping
frequency bands to obtain M instances per bag.
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Experiment #1: Overview

• Goal: Compare AUC's of MI-Logreg and vanilla classifiers

• Vanilla classifiers directly classify a bag by representing it
as the concatenation of the feature vectors of the
instances the bag contains

• Features: for each channel, (100, 95)-th percentiles of lta/
sta, 100-th percentile of sta

• Frequency bands: 10 bands spanning 0-5 hz.



Experiment #1: Results

AUC

.77(.01)

.71(.01)

.77(.01)

• Logreg and RF (random forest) are vanilla bag classifiers

• No instance labels, so all metrics are bag-level.

• MI-Logreg higher AUC than Logreg (better model, less
parameters)

• RF higher AUC than Logreg.
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Experiment #1: Multi-instance
learning is interpretable by design
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Instances ordered by frequency on x-axis.
Blue line indicates probability a frequency contains event P(Iii=1 lx;)

urange line is 0/1 prediction of hi
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Experiment #2: Overview

• Goal: How does learning thresholds in threshold instance
classifier improve performance compared to not learning
them?

• Features: for "merged" channel, 100-th percentile of lta/
sta, 100-th percentile of recursive lta/sta

• Frequency bands: 2 bands spanning 0-4 hz.

• Custom loss to minimize: FNR2 + FPR2 + (FNR - FPR)2

• Want roughly equal FPR and FPR



Experiment #2: Results

FNR FPR

MI-thresh

Naive

27.5%

43%

20%

4%

• "Naive" method: set eq equal to the 95-th percentile of xu
in negative bags (raw time series without event).

• "Naive" method does not balance FPR and FNR.



Experiment #2: Results
FNR FPR

LTA/STA, 0-2
hz

LTA/STA, 2-4
hz

Recursive LTA/
STA, 0-2 hz

Recursive LTA/
STA, 2-4 hz

MI-Thresh

35% 9%

53% 7%

33.5% 13%

53% 8%

27% 20%

• Trained "MI-Thresh" classifier can be interpreted as "fusing"
M x D separate single-feature classifiers.

• How would those M x D single-feature classifiers perform?



Challenge: Handling other
kinds of data types

• Nonproliferation data includes structured data.

• Solution: model P(hl..hm 1 xl.ANA) jointly with a conditional
random field instead of P(I; 11xi) independently using
logistic regression
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Challenge: instance predictions
not always interpretable
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Not Interpretable

• Solution: encourage instance prediction to be high for a
small number of instances via a regularizer
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Challenge: accounting for
uncertainty

• Weak labels leave room for ambiguity, so that many
models (and instance predictions) are plausible.

• Solution: need Bayesian multiple instance models.
Currently developing Gaussian Process model which in
addition to providing uncertainty estimates, models
dependencies between instance labels.
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Challenge: bag size
variability

• You do not get to control the size of bags. There is
variability in sentence length, width of time windows in
which you know an event occurred.
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Conclusion
• Multiple instance learning can be used to predict the

frequency in which seismic events occur despite the
training data not containing such information.

• Event detection performance on par with less
interpretable random forest

• Multiple instance learning can be useful in many other
SPAN applications, with many open challenges.
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Detection is currently done
without ML using rules of thumb
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• Rule of thumbs TM currently chosen manually!

• -1,( Xi2 iD 1 if Xi, > 61,1 or x12 > 012 ... or xiD > eiD

• M x D different thresholds to choose manually.



Ideal SPAN Scenario is not
possible

• Observed: instance labels

• Not possible - only observe event timestamps. Need
multiple instance learning.
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How to do model the ideal scenario?

• Use probabilistic model

• Variables for each bag:

• Instance feature vectors x1..xm

• instance labels hl..hm (0/1)

• Have probabilistic rule of thumb:

• T,(x,) = P(h, 11x,)



How to do multiple instance learning?

• Use probabilistic latent variable model

• Variables for each bag:

• Bag label y (0/1)

• Instance feature vectors x1..xm

• Latent instance labels hl..hm (0/1)

• Multiple instance assumption: y= 1 if some hi =1

• Have probabilistic rule of thumb:

• -11(x1) = P(111 11xi)


