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Outli

Introduction

• Proposed Approach

• Model-to-model Calibration — no data noise

• Chemistry model calibration

• Model calibration with noisy data

• LES with model error

• Closure
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Motivation

o All models are wrong in principle

o Models of physical systems rely on

o Presumed theoretical framework
o Mathematical formulation

o Practical models of complex physical systems rely on

✓ Simplifying assumptions
o Numerical discretization of governing equations
o Computational software & hardware

o model error is frequently non-negligible

o Estimating model error is useful for

o model comparison & validation
✓ model improvement & scientific discovery
o reliable computational predictions
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Challenges ith Model Calibration due to Model Error

• • Data, N = 5

••• Truth
— Model prediction

x 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1 8

• Conventional parameter estimation context: Ydata = f (x, A) + Ed
• Additional data results in reduced parameteric posterior uncertainty

• One gets more confident about predictions with the wrong model

• Predictive uncertainty in calibrated model has no utility for prediction

• Ignoring model error leads to irrelevant predictive errors
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Challenges with Mod l Calibration due o Model Error

• • Data, N = 20

••• Truth
— Model prediction

x 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1 8

ata• Conventional parameter estimation context: Yd= f (x, À) + Ed

o Additional data results in reduced parameteric posterior uncertainty

• One gets more confident about predictions with the wrong model

• Predictive uncertainty in calibrated model has no utility for prediction

• Ignoring model error leads to irrelevant predictive errors

SNL Najnn ModErr 5/39



Introduction Proposed no-noise Chem noise LES Cosure

Challenges ith Model Calibration due to Model Error

• • Data, N =100

Iruth

— Model predIctIon

x 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1 8
A,

• Conventional parameter estimation context: Ydata = f (x, À) + Ed
• Additional data results in reduced parameteric posterior uncertainty

• One gets more confident about predictions with the wrong model

• Predictive uncertainty in calibrated model has no utility for prediction

• Ignoring model error leads to irrelevant predictive errors

SNL Najnn ModErr 5/39



Introduction Proposed no-noise Chem noise LES Closure

I Statistical modeling f model error

Error framework:

Measurements:

Model predictions:

Thus:

Ydata = Ytruth ed

Ytruth = Ymodel ern

Ydata Ymodel ern + ed

Error modeling — example

Model:

Data Error:

Model Error:

Ymodel = f(x,

ed N(0, 0-2)

Em, ̂  GP(µ(x), C(x, x'))

Model calibration:

Estimate model parameters along with those of em, Ed

Kennedy & O'Hagan 2001; Bayarri et al. 2002
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Challenge hysic

o Arbitrary choice of statistical model (e.g. GP) spatial structure does
not take the physical model into acct

— Potential violation of implicit constraints in physical models

— e.g. incompressible flow: V v = 0

o Difficulty in disambiguation of model & data error

o Calibration of model error on measured observable does not impact
quality of other model predictions
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Key idea - Targ,ted model error embedding

o Embed model error in specific submodel phenomenology(Bertiner 2003)
o a modified transport or constitutive law
o a modified formulation for a material property

• Pros:
• Allows placement of model error term in locations where key

modeling assumptions and approximations are made

o as a correction or high-order term
• as a possible alternate phenomenology

o explore if it can explain discrepancy on observable
o naturally preserves model structure and associated constraints

• Cons:
• complex likelihood p(y1A) for general nonlinear f (x, A, cm)
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Consider a imple no-data-noise settin

• Calibration of a (simple) model against a complex model

• Let the complex model be presumed to represent the truth

• In this context, the data has no noise

• Discrepancy between model and data is all due to model error

Ydata = Ytruth = Ycomplex_model = Ymodel Ern

• Cm = Ydata ymodel is a deterministic quantity

• The only information as to the quality of the calibrated uncertain
model, e.g. via a posterior predictive check, is in a unique E„, for any x

SNL Najm ModErr 9/39
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model-to- odel calibration

Model: y = (x. 0(c„, ))
— Random variable 0 in augmented model components carries

model error

Data: D — {(x,, Ydata,i), 2= 1, ••• N}

o Goal:

o Establish À, p(0) such that the likelihood of the data is high,
based on the posterior predictive p(y1D)

o This puts us in a density estimation framework for 0:

o The utility of additional data is to improve the specification of À,
and p(0)
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Present Context

Embed c„, in

o In other words: <— A + Em

o Model: y = f (x, À) with : S2 —> IR"

o Density estimation problem for p(A)

o A : a random field A(x, w), or a random variable A(w)

— focus on the latter

o Let the random variable A be parameterized by a

o For example, define A as a polynomial chaos expansion

= akW k(e)
k=0

o Parameter estimation problem for a = (a0,••• ,

o Bayesian setting

o Prior 7(a)
o Likelihood L(a) = p(D1a)

SNL Najmi ModErr 11/39
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L(Œ) = p(DIŒ) = f ,,data,11 • • • Ydata,N

where:
'Trf N-variate density of the random variable (ft , , f N)
with fi = f (x4, A(; a))

Problem: 7f(-) is degenerate in general when N > M

• Consider a case with M = 1, A — N(itt,o-2), and f =

e Let N = 2, hence (f1, f2) = (A, A) for any sample

• With f1 = f2 = A, (A, f2) are dependent and 7rf(.
only along the line f2 = fl

,Lt, a) is non-zero

• irf(Ydata,1 • Ydata,2 IP, a) is non-zero only along the line ti,data,2 Ydata,1

potentially can ameliorate singularity with a smoothing nugget
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Marginalized Likelihood
N

L(a) = p(Dla) = (Ydata,i la)
i=1

where
7rfi(•, a) is the univariate density of the RV fi = f (xi, A(a))

Problem: the likelihood has multiple singularities corresponding to (1
values leading to vanishing marginal variances at each ./.,

• Gaussian example: Let A - N(µi(a), ai(a)2), then

1 TNT  1 
L(a)  exp 

(lii (a) — ydata,i)2
-= (270N /2 M. (a) 2ai (a)2

• Multiple singularities, ai (a) = 0, i = 1, , N

• Posterior maximization always finds one of these singularities, fitting
one point perfectly, while misfitting the rest

can potentially be controlled via priors on a

SNL Najrn ModErr 13 /39
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Approximate Bayesian Computation (ABC)

Employ a kernel density as a pseudo-likelihood to enforce select
constraints:

Uncertain prediction p(y D) is centered on the data

e With [Li (cc) = E[f (xi, A(; cE))]:

minimize 11 Pi(a) — Ydata,i 11

The width of the distribution p(ylD) is consistent with the spread of the
data around the nominal model prediction

(a With ui2 (a) = Ve [f (xi, )h(, ct))]:

minimize 11 cri(a) — - Ydata,i 1 11

• 7 is a factor that specifies the desired match between o-i and the
discrepancy 1 itti (a) — ydata,i 1, on average

SNL Nairn ModErr 14/39
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ABC Likelihood

With p(S) being a metric of the statistic S, use the kernel function as an
ABC likelihood:

LABc(a) = E -
1
K 
(p(S))

E )

where € controls the severity of the consistency control

Propose the Gaussian kernel density:

N
(//,,(a) Yd,,)2 (cri(a) 'Ylitt,(a) Yd,z 

LE (a) =   exp
Ev27 2E2

SNL Najm ModErr 15 / 39



Introduction Proposed no-noise Chem noise LES Ctosure

Test pro• em — C bic data fit by a line — ABC

N = 11
• • Complex model, g(x)

— MAP predictive mean, Z,'„Z„(.)

MAP predictive stdev, ZZ(x)

o.
5
4

2

—1.0 —0.5 0i0 0 5 1.0

N = 51
• • Complex model, g(x)

— MAP predictive mean, 4fm(x)

MAP predictive stdev, ,,/Z,r(x)

• • • ......

—1.0 —0.5 O*0 0.5

o MAP predictive (MP) mean centered on data

o MP standard deviation captures range of discrepancy

o Increasing number of data points has a small effect on both MP
mean and stdev

1.0
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Test problem — Cubic data fit by a quadratic — ABC

N = 11

7

6

• • Complex model, g(x)

— MAP predictive mean, ZZ„(x)

MAP predictive stdev, Z„trn(x)

5

4T,' 4

7 3

2

- 1 0 -0.5 0.0 0 5 1.0

8

7

'5' 6

N = 51
• • Complex model, g(x)

— MAP predictive mean, ZN:„(x)

MAP predictive stdev,

T.' 4
o
M 3

2

-1.0 -0.5 0).,0 0.5 1.0

c• Quadratic has better fit to the data

o Smaller MP stdev consistent with smaller discrepancy

SNL Na rn ModErr 17/39
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Test problem — Cubic data fit by a cubic — ABC

N = 11 N = 51
8 • • Complex model, g(x) 8 • • Complex model, g(x)

7 — MAP predictive mean, gz„(x) 7 — MAP predictive mean, Za,(x)

6
II= MAP predictive stdev, Z„trT'(x)

6
MAP predictive stdev, )

5 "5' 5
o

-o 4 4

z

2 2

—1.0 —0.5 0.0 0.5 1.0 —1.0 —0.5 
0X0 

0.5 1.0

• Cubic has perfect fit to the data

• Negligible MP stdev consistent with negligible discrepancy

SNL Najnn ModErr 18/39



Chemistry proble

o Homogeneous ignition, methane-air
mixture

• Single-step global reaction model
calibrated against a detailed chemical
kinetic model — ODE system

o Data: ignition time; range of initial T &
equivalence ratio

o Single-step model:

CH 4 + 202 CO2 + 2H20

= [CH 4] [0 2]

k = A exp(— E 11°T)

= [ln
[ E kT k(0

k=0

1000 1050 .00

•
• •

• l 
4

•

• 1150 1200 12,0 .00 06 0(<.,
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onstant Pressur Ignition Problem Structure

o N species, M reactions, rate parameter vector A

'a State vector u = (X1, , X N, T) — mole fractions, temperature

• ODE system

dui (t; A)

dt
u(0) u0

wi(u; A), i = 1, ... ; N

o Observable: ignition time T,.gn (1-10 À) = t IT(t 0 A)=T,gn

o Challenge, for any proposed A, computing Tign(u0, A) is expensive

— Large stiff ODE system for complex fuels

• Polynomial chaos formulation allows construction of a surrogate

Tign(tto, A(; 0)) = f(uo, ; 0) = fk(uo; 0)Wk
k=0

co Surrogate replaces the forward model in the Likelihood function

SNL Najrn ModErr 20/39
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Pos nor on a Posterior Predictive on (ln A, E)
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Quality of Uncertain Calibrated Mod I. Predictions

Calibrated uncertain fit model
is consistent with the
detailed-model data.

Over the range of (T°, (D):

o MAP predictive mean
ignition-time is centered
on the data

o MAP predictive stdv
is consistent with the
scatter of the data

._-,. —5

10-0-0'-'---- •- 1.8
1050 - - 1.6

//wow 

114917p.. 1

00.--

200 •

•

•

-faiiire 12501300 0.6 
0.8

• 2,,, k.

1.2
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Consider a oisy-data setting

o Calibration of a model yrn = f (x, A) against noisy data

• Synthetic noisy data is generated from a "truth" model + Gaussian
noise

• Discrepancy between fit model prediction and data is due to both
model error & data noise

Y — Ydata Ytruth E — f (x, A) + c

fa Modeling strategy:

— Model A as a random vector, represented with PC
— Represent the noise similarly using PC
— Estimate all PC coefficients using Bayesian inference

SNL Najm ModErr 23 /39
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Mo rro ormulation — noisy data

y = f (x, A) +

Let c — N(0, cr2). With Ni.i.d. data points we have

~Jz=f(xi, A) + i = 1, , N

For Hermite-Gaussian PC:

A =

gx, À) =

k=0

k=0

,d), a = (ao, ••• ap)

E 0)11fIc(11***
k=0

±

Augmented PC germ = , c/1 d-EN)

Ern 6d

SNL Najrn ModE4 24/39
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Model Error Estimation — noisy data

Inverse problem:

o Given:

o data:

D = {(xi,Yi)}iN=1

• data model:

yi = fk(xi, 0)41k(1,... Cr

Yrnodel(Ern Ed

• Estimate parameters (a, u)

i = 1, , N

Bayesian context:

• posterior: p(Œ, crID)

• options: Full Bayesian likelihood; Marginalized; ABC

o All are viable here in principle, as the data noise introduces regularity

o We illustrate the case with a Marginalized Gaussian approximation

SNL Najnn ModErr 25/39
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Calibrated Uncertain Model Posterior Predictive

o Calibrated data model : = f (xi; A(e; a)) + crci-Ez

o Full posterior on q. : a, — p(a, alD)

o Marginal posteriors: a p(celD), a p(alD)

o Posterior Predictive (PP):

1,(yID) = f p(yla, cr)p(a, alD)dada = E«,ci[P(yla, (7)]

o PP Mean :

IEPP[y] = lEa[Eg]

o PP Variance:

Vpp[y] = lEcj Ve[ f ] ] + [E,[a2 ] + V „J f] ]

data noisemodel error

SNL N.ijm ModFir 26/39
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Calibrated Uncertain Model Predictions

o Calibrated model : y = f(x; A(; a))

o Marginal posterior on a : p(alD)

o Pushed forward posterior (PFP):

p(f ID) = f p(f la)p(alD)da =Ea[p(fia)]

o PFP Mean :

o PFP Variance:

EPFP[f] = Ea[Ee[f]]

VPFP[f] = E.1 ‘.1 1fl 1 + va[ fl ]
model error data noise

SNL
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Model error embedding — workflow

Forward modeling

Inverse modeling
Calibration

Model

f (xi; À)

\ ,reprocess

Surrogate

(xi; À)
GSA/BF

Embed-
ded model

f(x.,; A + kg))

Prediction p(h (.17)1y)

Any Qol

he.r; A + 6„

• Predictive uncertainty decomposition: Total Variance =

Posterior uncertainty + Data noise + Model error + Surrogate error

SNL Najm ModErr 28/39
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1.5 

1.0

0.5

v. 0.0

• • Data. N = 50

— Predictive mean

Predictive stdev

-•• TrUe function

—L5 .0

PO a

Pint PDF of 0,12)

1.f

0.0 0.5 1.0

— N = 5

— N = 20

— N 50

— N 100

1.
• • Data, N = 50

— Predictive mean

predictive stdev

-•.- True function

v. 0.

0

1 0

0

PDF

—0.5 0.0

6 03 0.8 0.9 1.0

— N = 5

— N = 20

— N = 50

— N = 100

1.0
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Qua• ra ic-fit — Class cal Bayesian likelih ,od

8
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5
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3

2

• • oeservatbns 114

— Mean pushed-tom. pos.. WA
cpuelled-boved posur6r,[i]

N = 20

8

7

6

5

4

3

2

-1.0 -0.5 0.0 0.5 1.0

• With additional data, predictive 8

uncertainty around the wrong 7

model is indefinitely reducible 6

5

• Predictive uncertainty not
4

indicative of discrepancy from 3

truth 2

—

• • Olnervallons M.o.

— Mean pushed-1pm. poSterlorE.111

- lo pushed-fomartl parleriOlVw[fi

N = 50

-1.0 -0.5 0.0 0.5 1.0

— Truth function

• . Obsemlions 4,3 nNext

— Mewl puened-borard
- pusheVonsard posterior Vw[f

N = 200

-1.0 -0.5 0.0 0.5 1.0
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Qua• ra ic-fit — odErr — MargGauss
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With additional data, predictive
uncertainty due to data noise is
reducible

Predictive uncertainty due to
model error is not reducible
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Mo• e rror — with Different Models

101

10°

o.)
c-) 10
co

cri 2
10

103

10-4
101

line

• 
quad

••

•••

cube

• -

• - •

Model error

Data noise

102 103 104
Number of Samples

105 106
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Ignition time in che ical kinetics

• Two-step global reaction model calibrated against shock tube
experimental data

• Operating conditions: pressure P, initial temperature To &
equivalence ratio q5

C12H26 225°2

CO + C)2

k,
12C0 + 13H20

k2f
CO2.

k2b

= AC(- F+T) IC12H26]° 25 
[02j1.25

co Data: log(ignition time)

• Embedding
(ln A, E) = Ek akklJk(0

21

200

1 0

1700

11600

A' 1500 -

140

'94- 

Igmtlon Tune -

10 10 ' 10' 10 10
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Ignition time in chemical kinetics

Without model error With model error
Data
Posterior Uncertainty

4
Data
Model Error

-5 f Data Noise —5 Postenor Uncertainty

Data Noise

—6 —6

lifit
—7

1 11111
—8

0=0.5 11111

.1.1#11111111}11111,
=1.o

-00.0.5 ,f0 =1.0
4 8 12 16 20 24 28 32 36

9 4 840 12 16 20 24 28 32 36 40
Data id Data Id

— No Model error — Model error --- Nominal, cr = 0.1

• Model error disambiguated OA"111,111,11011"11!

from data error

• Data error correctly captured
2: 0.1

• Meaningful extrapolative
predictions Lid L.0.0 5.1511.,L,J1lid

5000 1CCCO 15000
MCMC Sample

0 P5
DF 

10
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Ertimsull static-vs-dynamic — Jet-in- rossflow

Large Eddy Simulation (LES) subgrid model fidelity

• Dynamic: subgrid parameters variable in space/time, gi

• Static : subgrid parameters constant in space/time, APO

Target: Calibrate a static model against a dynamic model

a Fit parameters = (CR, Prt-1, Sct-1) of static model f (À) to data
from dynamic model simulations, accounting for model error

Static model surrogate uses 43 = 64 simulations of f (À)

o Legendre polynomial expansion surrogate of 3-rd order

- Account for surrogate error: iid. zero-bias Gaussian noise

• Global sensitivity analysis: impact of CR » that of Prt-1 & Sct-1

- Selected only CR for model error embedding

WPFP = Ecj f +Wcj Ec[f] ] + E„[0-2s1
model error a posterior surrogate error

SNL Nair, ModErr 35/39
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Call r.nniith TKE data; Predict both T E and Pressure

0.008
•• Data from hIgh-fid model

0.007 due to postenor

o due to surrogate for low-fid
0.006

0.005

0.004

0.003

0.002

0.001

0.000

—0.00L5
—3

y Location
0

—0.020
•• nigh.nd model prediction

clue to posterior

due to surrogate for low-ftd

—0.025

—0.030 4

—0.035

—0.0425 -a 0

r ocotion

No model error

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.000

0.0015
—3

y Location

• • Date from high-fid model

u due to low-fid model error

c clue to surrogate for low.fid

0 020
• • High.fid model prediction

due low-fid mode) error

doe to posterior

—0.025 due t.o surrogate for low-fid

—0.030

—0.035

0.0425 _4

y Location

With model error
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LES subgrid 2D-vs-3D — Jet-in-crossflow

Target: Calibrate a 2D LES model against a 3D model

o Fit parameters A = (CR, Prt i, Sct i, Iz Ir L,) of 2D model to data
from 3D model simulations, accounting for model error

o Parameters:

o CR : Smagorinsky constant
• Pr, : Turbulent Prandtl number, and Schmidt number: Set
o IZ : Turb. intensity (inflow air) horizontal component
o Ir : Turb. intensity (inflow air) ratio: vertical/horizontal
o L,: Length scale of most energetic eddies

2D model surrogate construction

o Account for surrogate error: zero-bias Gaussian noise

o Global sensitivity analysis

— Selected one parameter (I,) for model error embedding

o Calibrate 2D model with observable: Mach no. M(y) at a given x

o Predict both M(y) and pressure P(y), and compare to 3D model
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Molar rror Orrh Number spanwise-average
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o Model error contribution captures the discrepancy

No model error Embedded model error

• • Data from Mgh-fid model
- due to posterior

- Or due to surrogate for low-fid
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• • Data from high-fid model

due to lmv-fid model error
- 2a due to posterior

- due to surrogate for low-Ild
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Model error Posterior uncertainty Surrogate error
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Model

o Model error contribution extends as much as prior & model allow

No model error Embedded model error
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• • Data from high-fid model

- due to posterior

- M due to sunogate for low-fid
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• • Data from Mgh-fid model

- lo due to low-fid model error
M due to posterior

- go due to surrogate for low-fid

y/d

= [01("")] + v3, [mi (-A)] (0.z,o())2

Model error Posterior uncertainty Surrogate error

Najm ModDr 38/39



Introduction Proposed no-noise Chem noise LES Closure

• Presented a strategy for dealing with model error

o targeted at physical models

o Density estimation framework — y = f (x; )k("; a))

o Uncertain predictions with the calibrated model include uncertainty
due to both model-error and data-noise

• Results suggest disambiguation of the two components

• Demonstrations in chemical ignition and LES of jet-in-crossflow

o Including accounting for PC surrogate error

• Limitation of model-error embedding: when no variation of the
chosen parameter in the simple model could reproduce results of
the detailed model

— Expand parameter prior range(s)
— Consider other parameters
— Propose a modification in the model
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