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Introduction
Motivation

@ All models are wrong in principle

@ Models of physical systems rely on

@ Presumed theoretical framework
@ Mathematical formulation

@ Practical models of complex physical systems rely on
@ Simplifying assumptions
@ Numerical discretization of governing equations
@ Computational software & hardware

@ model error is frequently non-negligible

@ Estimating model error is useful for

@ model comparison & validation
@ model improvement & scientific discovery
@ reliable computational predictions
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Challenges with Model Calibration due to Model Error

® o Data, N=5 2.0l
=== Truth

= Model prediction
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Conventional parameter estimation context:  ygua = f(2,A) + ¢4
Additional data results in reduced parameteric posterior uncertainty
One gets more confident about predictions with the wrong model
Predictive uncertainty in calibrated model has no utility for prediction
Ignoring model error leads to irrelevant predictive errors
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Challenges with Model Calibration due to Model Error

e o Data, N =20 2.0
=== Truth
= Model prediction
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Conventional parameter estimation context:  ygua = f(2,A) + ¢4
Additional data results in reduced parameteric posterior uncertainty
One gets more confident about predictions with the wrong model
Predictive uncertainty in calibrated model has no utility for prediction
Ignoring model error leads to irrelevant predictive errors
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Challenges with Model Calibration due to Model Error

e o Data, N = 100 2.0
=== Truth
= Model prediction ol
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Conventional parameter estimation context:  ygua = f(2,A) + ¢4
Additional data results in reduced parameteric posterior uncertainty
One gets more confident about predictions with the wrong model
Predictive uncertainty in calibrated model has no utility for prediction
Ignoring model error leads to irrelevant predictive errors
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Introduction

Statistical modeling of model error

Error framework:

Measurements: Ydata = Yiruth T €4
Model predictions: Ytruth = Ymodel T E€m
Thus: Ydata = Ymodel T €m T €4

Error modeling — example

Model: Yrmodel = F(@, A)

Data Error: eq ~ N(0,0?)

Model Error: €,, ~ GP(u(z),C(z,2"))
Model calibration:

Estimate model parameters ) along with those of ¢, ¢,

Kennedy & O'Hagan 2001; Bayarri et al. 2002
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Challenges — Physical Models

@ Arbitrary choice of statistical model (e.g. GP) spatial structure does
not take the physical model into acct

— Potential violation of implicit constraints in physical models

— eg. incompressible flow: V- v =0
@ Difficulty in disambiguation of model & data error

@ Calibration of model error on measured observable does not impact
quality of other model predictions
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Key idea - Targeted model error embedding

@ Embed model error in specific submodel phenomenology(Berliner —

@ a modified transport or constitutive law
@ a modified formulation for a material property

@ Pros:

@ Allows placement of model error term in locations where key
modeling assumptions and approximations are made

@ as a correction or high-order term
@ as a possible alternate phenomenology

@ explore if it can explain discrepancy on observable
@ naturally preserves model structure and associated constraints

@ Cons:
@ complex likelihood p(y|)) for general nonlinear f(z, A, ¢,,,)
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Introduction
Consider a simple no-data-noise setting

@ Calibration of a (simple) model against a complex model

@ Let the complex model be presumed to represent the truth

In this context, the data has no noise

Discrepancy between model and data is all due to model error

Ydata = Ytruth = Ycomplex_model = Ymodel t€m

® €,, = Ydata — YUmodel IS @ deterministic quantity

The only information as to the quality of the calibrated uncertain
model, e.g. via a posterior predictive check, is in a unique ¢,,, forany =
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model-to-model calibration 7

Model: y = f(z,\ d(e,,))

— Random variable ¢ in augmented model components carries
model error

Data: D = {(%;, Ydata i), T = 1,...,N}

@ Goal:
@ Establish )\, p(¢) such that the likelihood of the data is high,
based on the posterior predictive p(y|D)

@ This puts us in a density estimation framework for ¢:
@ The utility of additional data is to improve the specification of A,
and p(¢)
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Proposed
Present Context

Embede,, in A

@ In other words: A A+te,

@ Model: y= f(z,\) withX: Q — RM

@ Density estimation problem for p(\)

@ )\:arandom field \(x,w), or a random variable \(w)
— focus on the latter

Let the random variable )\ be parameterized by «
@ For example, define )\ as a polynomial chaos expansion

P
A=) o W)
k=0

Parameter estimation problem for o = (g, -+, ap)

Bayesian setting
@ Prior 7(«)
o Likelihood L(«) = p(D|«)

SNL Najm ModErr 1/39



Full Likelihood

L(a) = p(D|a) = 7Tf(ydata,l’ 7ydata,N\O‘>

where:
7 4(+|a): N-variate density of the random variable (f, ..., f)

with f; = f(z;, A\(& @)

Problem: 7 () is degenerate in general when N > M

@ Consider a case with M = 1, A ~ N(p,0?),and f = A
@ Let N = 2, hence (f,, f5) = (A, A) forany A sample

e With f; = f, = A, (fi, f») are dependent and 7 4(-|1, o) is non-zero
only along the line f, = f;

° 7Tf(ydata,lv Ydata,2 |:u7 U) is non-zero only along the line Ydata,2 = Ydata,1
= potentially can ameliorate singularity with a smoothing nugget
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Marginalized Likelihood 1

N
L(a) = p(Dl]a) = Hﬂ'f,.(ydata.i|a)

i=1
where
7 (-, ) is the univariate density of the RV f; = f(x;, AMa))

Problem: the likelihood has multiple singularities corresponding to a
values leading to vanishing marginal variances at each z,

@ Gaussian example: Let f; ~ N(p; (), 0;(«)?), then

1 1 (1:(@) — Ygatai)?
L(a) = (27T)N/2 H o-i(a) exp (uTz(ay)dQ—>

=1

@ Multiple singularities, o, (o) = 0,4 =1,..., N
@ Posterior maximization always finds one of these singularities, fitting
one point perfectly, while misfitting the rest

= can potentially be controlled via priors on «

v
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Proposed

Approximate Bayesian Computation (ABC)

Employ a kernel density as a pseudo-likelihood to enforce select
constraints:

Uncertain prediction p(y| D) is centered on the data
o With p,(a) = Eg[f(mi» A& )):

minimize || 1; (@) — Ygatai |

The width of the distribution p(y| D) is consistent with the spread of the

data around the nominal model prediction

e With o?(a) = Velf(zi, A& a))):
minimize | o; (o) — |15 (@) = Ygata,i! |

@ ~is a factor that specifies the desired match between ¢, and the
discrepancy |1; (@) — Ygata |, ON average
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ABC Likelihood

With p(8) being a metric of the statistic S, use the kernel function as an
ABC likelihood:
p(S)

Lppc(a) = %K <—>

€

where € controls the severity of the consistency control

Propose the Gaussian kernel density:

i Q) — 'k o,(a) — () — )2
L (o) = Vlz_Hexp (_w )= 1.+ 0 Aia(e) = g1 )
€ 7ri=1 €
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no-noise

Test problem — Cubic data fit by a line — ABC

e « Complex model, g(z)

— MAP predictive mean, ZM () v

mean!

[e:]
.

Q@
.

e o Complex model, g(z)
— MAP predictive mean, ZX ()

‘mean

~
~

4 [ MAP predictive stdev, v/ ZMF (z) .4 I MAP predictive stdev,  Z)F (x)
g g

> 35

[S] o

L4 L4

o o

= 3 =

W

IN]
IN]

=

=

1.0 -0.5 0).(0 0.5 1.0 -1.0 -0.5 0).(0 0.5 1.0

@ MAP predictive (MP) mean centered on data
@ MP standard deviation captures range of discrepancy

@ Increasing number of data points has a small effect on both MP
mean and stdev

Najm ModErr 16/39



no-noise

Test problem — Cubic data fit by a quadratic — ABC

N =11 N =51

8 e « Complex model, g(x) d 4 e o Complex model, g(z)
4 — MAP predictive mean, ZM" (x) 7 — MAP predictive mean, ZM" (z)
d B MAP predictive stdev, \ 227 (z) d EEE MAP predictive stdev, \ 2} (x)
o o
> S5
o o
4 L4
o o
=3 =3
2 2
1 1

-1.0 -0.5 0*0 0.5 1.0

@ Quadratic has better fit to the data
@ Smaller MP stdev consistent with smaller discrepancy
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no-noise

Test problem — Cubic data fit by a cubic — ABC

N =11 N =51

8 e o Complex model, g(x) 8 e o Complex model, g(z)
4 — MAP predictive mean, ZM" (x) 7 — MAP predictive mean, ZM" (z)
B MAP predictive stdev, \ z27 (x) EEE MAP predictive stdev, \ 2} (x)

6 V Zar 6 ‘ V Zuar
> S5
o o
84 84
o o
=3 =3

2 2

1 1

-1.0 -0.5 0).(0 0.5 1.0 -1.0 -0.5 0).(0 0.5 1.0

@ Cubic has perfect fit to the data
@ Negligible MP stdev consistent with negligible discrepancy
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Chemistry problem — ABC

@ Homogeneous ignition, methane-air
mixture 5

@ Single-step global reaction model C E
calibrated against a detailed chemical . Tg
kinetic model — ODE system B

@ Data: ignition time; range of initial 7'& zé
equivalence ratio o

@ Single-step model: «8

CH, +20, — CO, + 2H,0 Bt o

R = [CH4][02]k 1090 2050 4345 Vi
k = Aexp(—E/R°T) Temp,, 70

{ln A} Z .

.
0.8
1250 1300 06 <</0~
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Constant Pressure Ignition — Problem Structure

@ N species, M reactions, rate parameter vector A
@ State vector u = (X4, ..., Xy, T) —mole fractions, temperature
@ ODE system

du;((;A) . :
s = w,(wA), i=1,...,N
u(0) = ug

@ Observable: ignition time  7ig (g, A) = 1 |40, 0)— T
@ Challenge, for any proposed A, computing 7, (g, A) is expensive
— Large stiff ODE system for complex fuels

@ Polynomial chaos formulation allows construction of a surrogate

Tign(uov)‘(&a)) flug, &) = ka(u07

@ Surrogate replaces the forward model in the Likelihood function
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Posterior on « Posterior Predictive on (In A, F
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Chem

Quality of Uncertain Calibrated Model Predictions

Calibrated uncertain fit model
is consistent with the
detailed-model data.

Over the range of (T, ®):

@ MAP predictive mean
ignition-time is centered
on the data

@ MAP predictive stdv
is consistent with the
scatter of the data
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Consider a noisy-data setting

@ Calibration of a model y,,, = f(z, A) against noisy data

@ Synthetic noisy data is generated from a “truth” model + Gaussian
noise

@ Discrepancy between fit model prediction and data is due to both
model error & data noise

Y = Ydata = Ywuth T €= f(xv/\) +e

@ Modeling strategy:

— Model )\ as a random vector, represented with PC
— Represent the noise similarly using PC
— Estimate all PC coefficients using Bayesian inference
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Model Error formulation — noisy data

y=f(z,A)+e
Let e ~ N(0,0?). With Niid. data points we have

y; = f(z;,\)+¢, i=1,..,N

For Hermite-Gaussian PC:
A= fjak@k<§1,~-7sd>, a = (ag, -, ap)
fl@ ) = kam K (€1re 5 €0)
Y = ka #(&sq) + 04y

Augmented PC germ £ = (&, - ,fd,&m, “,&a1N)

em €q
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Model Error Estimation — noisy data

Inverse problem:
o Given:
o data:
D = {(=z;,y;) N
@ data model:

Zf/, Ty ) Up (€151 €a) + 0 8 i=1,..,N

—
Ymodel (€m) €d

@ Estimate parameters (o, o)

Bayesian context:
@ posterior: p(«a, o|D)
@ options: Full Bayesian likelihood; Marginalized; ABC
@ All are viable here in principle, as the data noise introduces regularity
@ We illustrate the case with a Marginalized Gaussian approximation
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Calibrated Uncertain Model Posterior Predictive

Calibrated data model: y; = f(z;; A& ) + &y,

Full posterioron a,0: a0 ~ p(a,0|D)

Marginal posteriors:  a ~ p(«|D), o ~ p(a|D)

Posterior Predictive (PP):

p(y|D) = / p(yla, )p(a, 0| D)dade = E, 4 [p(yla, o)]

@ PP Mean:
[EPP[y] = [E(y“Ef[f]]
@ PP Variance:

Veply] = Eol Vel f] 1+ E,[0? ]+ Vol Ee[ f]]

model error data noise
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Calibrated Uncertain Model Predictions

Calibrated model: y = f(z; A(§; @)

Marginal posterioron a.: o ~ p(«|D)

@ Pushed forward posterior (PFP):
p(f1D) = [ p(slaIp(alD)da = E,p(flo)]
@ PFP Mean:
Eprp[f] = Eo[Ee[/]]
@ PFP Variance:
Verp[f] = EL[ Vel f1] + Vol B[ f]]

model error data noise
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noise

Model error embedding — workflow

Forward modelin,
‘— - / Calibration \
D Inverse modeling ‘ Prior p(\, @)
Embed-
Model Surrogate ded model Data
GSA/BF B
1 A fa; A g Likelihood Yi
Preprocess
A

/ 7 ‘ Any Qol

‘ [ Prediction p(h(z)|y) ]4—[ h(z; A+ 0,(8)) ]4—[ Posterior p(\, aly) ]

| y
\\Prediction

@ Predictive uncertainty decomposition: Total Variance =

Posterior uncertainty + Data noise + Model error + Surrogate error
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noise

.. back to toy example

e ¢ Data, N =50
1.04| — Predictive mean
B Predictive stdev

* « Data, N =50
— Predictive mean
B Predictive stdev
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08 1.0 2 1.4 16 18 0.6 0.8 10 0'2 14 18
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noise

Quadratic-fit — Classical Bayesian likelihood

8l ) with noise 8 ._. g:g;::::::: (”“/‘\‘Wllhnmse
7 il oosiibiomubing 7 |- Nmanats® = i o ot v
6 6
5 5
4 4
3 3
2 2
1 . 1
1.0 0.5 0.0 0.5 1.0 -1.0 0.5 0.0 0.5 1.0
xr r
e With additional data, predictive 8| . e
uncertainty around the wrong RS s g
model is indefinitely reducible :
@ Predictive uncertainty not .
indicative of discrepancy from
truth 5
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noise

Quadratic-fit — ModErr — MargGauss

N oW A O N

8
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4
i, 3 .
T T 2] \ — uth funcon 7] )
@ @ Observations {y;} with noise o 2 ||e @ Observaiions {y} with ro ¥ |
= 17 pushed-forward posterior 1 pushed-forward posteri A |
- pushed-forward posterior: model error term Eu[Vel/] 1 1o pushed-forward posterior: modal error term Eo[Ve(/]] Y
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
@ With additional data, predictive &
uncertainty due to data noise is 7
reducible 8
s . 5
@ Predictive uncertainty dueto |
model error is not reducible .
2 « Observations {y;} with noise
— Mean pushed-forward posterior Eer|f
= 1 pushed-forward posterior Ve
1 117 pushed-forward posterior: model ertor term E,|
-1.0 -0.5 0.0 0.5 1.0
T
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Model Error — Fit with Different Models
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Ignition time in chemical kinetics

@ Two-step global reaction model calibrated against shock tube
experimental data

@ Operating conditions: pressure P, initial temperature T}, &
equivalence ratio ¢

ky
CioHyg + 20, — 12CO +13H,0

k2f 2000

C0+30, = CO,. s

— Ae(—%%) 0.25 1.25 i
ky = Ael" 1) [Cy5Hyq|"*[O,] 40
@ Data: log(ignition time) i

@ Embedding
(nA, E) = Zk o, V()
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noise

Ignition time in chemical kinetics

Without model error
|

o Data

With model erro

¢ Posterior Uncertainty
=5 4 Data Noise -5, +
| 4 b
H PRI | .

71 ity =f“*“mn+++m My,
“lo=05 “m¢=14o }mm* “lo=05 s“.:(t=1.o
- 4 8 12 16 20 24 28 32 36 40 7 4 12 16 20 24 28

Data Id Data Id

—— No model error Model error ~ ~~- Nominal, 0=0.1

@ Model error disambiguated
from data error

@ Data error correctly captured

Data noise, o

@ Meaningful extrapolative
predictions

)|

L)
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LES

LES subgrid static-vs-dynamic — Jet-in-crossflow

Large Eddy Simulation (LES) subgrid model fidelity

@ Dynamic: subgrid parameters variable in space/time, g,
@ Static : subgrid parameters constant in space/time, f;())

Target: Calibrate a static model against a dynamic model

o Fit parameters A = (Cp, Pr; 1, Sc; ) of static model f(\) to data
from dynamic model simulations, accounting for model error

Static model surrogate uses 43 = 64 simulations of f(\)

@ Legendre polynomial expansion surrogate of 3-rd order
— Account for surrogate error: i.i.d. zero-bias Gaussian noise

@ Global sensitivity analysis: impact of C, > that of Pr; ! & Sc;*
— Selected only C', for model error embedding

Veplfl = Eol Vel f1] + Vol B[ f] ] + [EJSW%]

model error « posterior surrogate error
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LES

Calibrate with TKE data; Predict both TKE and Pressure

SNL

0.00 0.0
#* * Data from high-fid model # * Data from high-fid model
0.007] 0 po 0.007]  due to low-fid model error
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LES

LES subgrid 2D-vs-3D — Jet-in-crossflow
Target: Calibrate a 2D LES model against a 3D model

o Fit parameters A\ = (Cy, Pr; 1, Sc; 1, I, 1,., L;) of 2D model to data

I

from 3D model simulations, accounting for model error

@ Parameters:

C'R : Smagorinsky constant

Pr, : Turbulent Prandtl number, and Schmidt number: Se,
I, : Turb. intensity (inflow air) horizontal component

I..: Turb. intensity (inflow air) ratio: vertical/horizontal

L, : Length scale of most energetic eddies

2D model surrogate construction

@ Account for surrogate error: i.i.d. zero-bias Gaussian noise

@ Global sensitivity analysis
— Selected one parameter (1) for model error embedding
@ Calibrate 2D model with observable: Mach no. M (y) at a given

@ Predict both M (y) and pressure P(y), and compare to 3D model
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LES

Model Error — Mach Number spanwise-average

@ Model error contribution captures the discrepancy

No model error

Embedded model error

2.8, 2.
2. I BN~
...-*"'""".‘ ..--.-.-..---"
2.6 2.6
2.5) 29 J
"
s =
2.4 2.4
2.3 2.3
+* * Data from high-fid model
ata from high-fid model 20 due to low-fid model error
2.2 due to posterior 2.2 B 2 due to posterior
due to surrogate for low-fid 20 due to surrogate for low-fid
215 =1 =3 215 =7 =3 = =1
y/d y/d
~ ~
= 5 [020) ()] + @0y
o =5 [of (M) |+ V5 |, (N)| + (o7
Y
Model error Posterior uncertainty ~ Surrogate error
SNL Najm ModErr 38/39




LES

Model Error r Mach Number centerline

@ Model error contribution extends as much as prior & model allow

No model error Embedded model error
R RN } P
.-...-.-:-"""" '-----..--""""
2.6} . 2.6 «
. .
24 24
] s ] .
2.2 2.2
5 .
2.0 + + Data from high-fid model 2.0
B 20 due to posterior
20 due to surrogate for low-fid
1.8 1.8
s -1 =3 %5 -1 =3

2 — 20 3 LOO
o? =5 [o?N)] + V3 [1(V)] + (6£00)2
Model error Posterior uncertainty Surrogate error
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Closure
Closure

Presented a strategy for dealing with model error
@ targeted at physical models

Density estimation framework — y = f(z; A(§; )

Uncertain predictions with the calibrated model include uncertainty
due to both model-error and data-noise

Results suggest disambiguation of the two components

Demonstrations in chemical ignition and LES of jet-in-crossflow
@ Including accounting for PC surrogate error

Limitation of model-error embedding: when no variation of the
chosen parameter in the simple model could reproduce results of
the detailed model

— Expand parameter prior range(s)

— Consider other parameters

— Propose a modification in the model
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