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Definition of Uncertainty Quantification (UQ)

UQ is the end-to-end estimation and analysis of uncertainty in:

models and their parameters

• assimilation of experimental/observational data

• model fitting and parameter estimation

model predictions

o forward propagation of parametric uncertainty to model outputs

o Analysis, comparison and selection among alternate plausible
models
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The Case for U certainty Quantification

UQ is needed in:

o Assessment of confidence in computational predictions

o Validation and comparison of scientific/engineering models

o Robust design optimization under uncertainty

o Use of computational predictions for decision-support

o Assimilation of observational data and model construction

o Multiscale and multiphysics model coupling

zz:' I ^ft-, I
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Uncertain y Quantifi ation and Computational Science
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Uncertain y Quantifi ation and Computational Science
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Probabilistic Forward UQ = f (x)

Represent uncertain quantities using probability theory

Random sampling, Monte Carlo

• Generate random samples {xi}iiv_1 from the PDF of x, p(x)

• Bin the corresponding { yt } to construct p(y)

e Not feasible for computationally expensive f (x)

— slow convergence of MC/QMC methods
very large _V required for reliable estimates

Build a cheap surrogate for f (x), then use Monte Carlo/others

o Collocation — interpolants

o Regression — fitting

o Galerkin methods

— Polynomial Chaos (PC) methods
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Computational forward model, parameter vector

y = f (x, À)

Forward UQ

• Given PDF p(A), estimate p(y) or Mci(y) = E[0]

• General non-intrusive methods rely on sampling

• Require many samples (Ak. f (x, Ak)), k = 1.... , N

Inverse UQ

fa Given data D := {(xi, yi), i = 1, , M}, estimate p(A

• Bayesian methods often use Markov Chain Monte Carlo (MCMC)

• Require many samples (Ak, f (xi, Ak)), k = 1, , K, Vi

Require a cheap surrogate Sc,(x, À) ̂  f (x, À), a E PL
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Challenges ith Surrogate Construction

o Choice of surrogate function is informed by structure of f (x, A)

o Structure of f (x, À) not known e priori
• Discontinuities, say at some A* (x), require particular care

— Local versus global surrogates

• Nonlinearities, shape ...

— e.g. polynomials have trouble with sigmoid response
— Surrogate complexity can grow, requiring a large L

o High dimensionality in A

— Large number of uncertain parameters
— Non-smooth random fields

• Large computational cost for f (x, A)

— e.g. a global climate simulation
— Can only afford a few samples
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Surrogate t pes

o Global vs local surrgates

• Many smooth functions have been used as surrogates in smooth
regions

• Polynomials
• Padé approximants — Rational functions
• Wavelets
• Radial basis functions
• Gaussian processes
• Neural networks
• etc ...

o Probabilistic structure, i.e. given that A is random, motivates the use
of Polynomial Chaos expansions (PCEs)

— A PCE is an expansion in terms of orthogonal functions of
simple random variables

— A generalized fourrier series

SNL Najrn U0 9 / 40



o Model uncertain quantities as random variables (RVs)

o Given a germ (c.,.2) = — a set of Lid. RVs

— where p() is uniquely determined by its moments

Any RV in L2 (Q , Es') P) can be written as a PCE:

21,(x , t, (.()) = 744,011 jk((W))
k=0

— uk (x, t) are mode strengths
— k() are multivariate functions orthogonal w.r.t. p()

Non-intrusive sampling-based forward UQ : u = rt(A( -): x, t)

uk =   =  12,) f u(A())k I k()p()ck, k = 0, , P

— a E En (at least an) n-dimensional integration problem
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Use of PCE in1=--tarcl UQ & surrogate construction

o Represent model parameters/solution as random variables

A = A(') = E AkWkW (AA known)
k=0

o Construct PCEs for uncertain parameters

Y = E YkTk() (yk unknown)
k=0

o Evaluate PCEs for model outputs

k — 2 — 2(f  fk) — 1 I (x A04 I kW13 WCZ
OP k) EcOR'

k=0,...,P

Advantages:

o Computational efficiency in low-to-moderate dimensionality

o Moments: E(u) = uo, var(u) = kP 1 uz(4q),
o Global Sensitivities — fractional variances, Sobor indices
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luff-body flame

• CH4-H2 jet, air coflow, 3D flow
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UQ in Oce
A. Atexanderian, J. W
A. Srinivasan, M. lska

Inlro Pat Sparse MLMF Scram ec

n Modeling — Gulf of Mexico
nokur, I. Sraj, O.M. knio, Duke Univ.
darani, Univ. Miami; W.C. Thacker, NOAA

o Hurricane Ivan, Sep. 2004

o HYCOM ocean model (hycom.org)

o Predicted Mixed Layer Depth (MLD)

o Four uncertain parameters, i.i.d. U

— subgrid mixing & wind drag params

o 385 sparse quadrature samples

PrOb(PALD 22) alt .150

90
Longitude

80

(Alexanderian et al., Winokur et. al., Comput. Geosci., 2012, 2013)
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PC and Hig
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-Dimensionality

Dimensionality n of the PC basis: = ,

o n number of uncertain parameters

o PCE order p

o P 1 = (n + p)! n!p! grows fast with n

Impact:

o Hi-D projection integrals large # non-intrusive samples

• Sparse quadrature methods

Clenshaw-Curtis sparse grid, Level = 3

• • • •

• 

•

▪ • • •

•

Clenshaw-Curtis sparse grid, Level = 5

• • • • • • . • 4: • •
• 

• • •

•

..

•

• •

• • • fl • •
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PC Sparse Quadr ture in hiD — Climate land model

Full quadrature: N = (N1D)n

Sparse Quadrature

o Wide range of methods

o Nested & hierarchical

o Clenshaw-Curtis: N = (9(nP)

o Adaptive — greedy algorithms

Number of points can still be
excessive in hi-D

— Large no. of terms
— Reduction/sparsity

le+05

z
10000

80-D Surrogate

2 3
PC Order

4
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High dimensionalty is a major challeng in forwa d UQ

o High dimensionality is the result of
• Large number of uncertain parameters/inputs
• Large number of degrees of freedom in random field inputs

• Sparse-quadrature requires an unfeasible number of model
evaluations for very high dimensional systems

• Monte Carlo requires similarly large number of samples when the
number of important dimensions is very high

• However, typically, physical model output quantities of interest
are smooth Only a small number of inputs are important

co In this case, the way out is:

• Use global sensitivity analysis (GSA) with Monte Carlo to
identify important parameters

• Use polynomial Chaos expansions (PCE) with sparse quadrature
on the reduced dimensional space for accurate forward UQ

SNL Nap, U0 16/40
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Global sensitivit analysis: Sobol indices

Global sensitivity analysis (GSA) (Saltelti:2004,2008)

CO For a given quantify of interest (Qol)

o Qol variance decomposed into contributions from each parameter

• Sobol indices rank parameters by their contributions (Sobol:2003)

Total effect ST —
EA [VarA, ( f (A)1Ai)]

Var( f (À))

ST, small low impact parameter fix value (eliminate dimension)

How to compute?

• Monte Carlo estimators (Saltelli:2002,2010) still prohibitive if used directly
for large scale computational models

SNL Najrn UO 17/ 40
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Hi-dimension with large-scale computational models

When the number of feasible samples for GSA is highly limited due to
computational costs:

o Reliable MC-estimation of sensitivity indices requires regularization

o Presuming smoothness, use MC samples to fit a PCE, which is
subsequently used to estimate the sensitivity indices

o Employ frnorm constrained regression to discover a sparse PCE

— compressive sensing

o Employ Multilevel Monte Carlo (MLMC), as well as Multilevel
Multifidelity (MLMF) methods

o Optimal combination of coarse/fine mesh and low/high fidelity
models to minimize computational costs for a given accuracy

Similarly for forward PC UQ:

o Employ generalized adaptive non-isotropic sparse quadrature with
MLMF methods on reduced dimensional input space

SNL Najrn UO 18/40
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Estimation f GSA Sobor Indices with PC regon

o When # samples is small, GSA indices can be computed with
improved accuracy, relying on PC regression/smoothing

o Polynomial Chaos expansion (PCE): u() = cc,Ta()
aEJ

o Germ: = , C./}, Multi-index a = {al, , ad},

o Polynomials, orthogonal w.r.t. p(), =

o Use regression with MC samples to fit a PCE to the data

argmin   (f(A(e9)))) — E cawa (es))
s=, aE,

o Use PCE to evaluate Sobol indices

E
aEDIce,>0

) 2

E c
aE31cyc*0

Sudret, 2008; Crestaux, 2009; Sargsyan, 2017; Ricciuto, 2018

SNL Najrn UO 19/ 40



Estimation of GSA Sobor Indices wit
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Sargsyan, 2017
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Estima ion of GSA Sobor Indices with PC region

100
co

o-4 MC

d = 3

1 2 3
Surrogate order

4

Sargsyan, 2017
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Estimation of GSA Sobor Indices with

101

10°

• 10• -1
En

o• -3 MC

d = 10

1 2 3
Surrogate order

4

Sargsyan, 2017

SNL Najm Lk) 20/40



Intro PCfit Sparse MLMF Scram Clos

Sparse regression l

Model: y = f () E c. a (
aE3

• With Nsamples N\,y ) estimate K terms Ca

min

With N << K under-determined, need regularization

o Use f, norm regularization to discover sparsity

o Discover a sparse fitted PCE — many zero coefficients

Compressive Sensing; LASSO; basis pursuit; etc ...

min {MY — AcID
min filY — Acfl +

min {ilch}
min flIchl

subject to lIch < E

subject to y = Ac
subject to IIy - ACH < E

LASSO
u LASSO

BP
BPDN
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Sparse

Unconstrai ed LASSO (uLASSO) — Practicalities

A broad range of methods exists for solving the optimization problem:

c* = argrnin { + 01

11_ls (Kim 2007), SpaRSA (Wright 2009), CGIST (Goldstein 2010), FPC_AS (Wen 2010), ADMM (Boyd 2010)

• Choice of A > 0 controls the degree of overfitting vs underfitting

• This choice can be viewed as a model selection problem

• Can base the choice on Bayesian model evidence maximization

• A cross-validation (CV) A-choice strategy: minimize K-fold CV error

A* = argmin Ecv(A)
A>o

co For expensive models, also target optimal data sample size

co Increase sample size m adaptively
co Stop sampling when the rate of decrease of A-optimal CV error

with increasing Tri drops below a given threshold 
Huan, SIAM JUQ 2018

— Ac
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ayesia
1.

• Bayes formula

p(c cx p(D1c)7(c)

• Bayesian regression: prior as a regularizer, e.g.

• Log Likelihood <=>
o Log Prior <=>

• Laplace sparsity priors 7T(Ck

y — 2

=
o uLASSO (Tibshirani 1996, Van den Berg 2008) ... formally:

min { y — Ac + A McMi}

Solution — the posterior mode of c in the Bayesian model

y .3\1 (Ac, IN),

o Bayesian LASSO (Park & Casella 2008)

1
C — CHekV
k 2a

SNL Najm UQ 23 /40
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Bayesian Compressive Sensi g (BCS)

o BCS 2008; Babacan 2010)— hierarchical priors:

o Gaussian priors .7V(0, oi) on the ck
• Gamma priors on the a?,

Laplace sparsity priors on the ck

• Evidence maximization establishes maximum likelihood estimates
of the crk

o many of which are found 0 ck 0
• iteratively include terms that lead to the largest increase in the

evidence

• Iterative BCS (iBCS) (Sargsyan 2012):

o adaptive iterative order growth
• BCS on order-p Legendre-Uniform PC
• repeat with order-p + 1 terms added to surviving p-th order

terms

SNL Najnn U0 24/40
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Demonstration in Cluster Dynamics Co putations

• Material damage processes associated
with plasma surface interactions in the
ITER fusion reactor — He in W/Be

o Xe gas bubble transport in nuclear fuel
rods in fission reactors

• "Xolotr C++ cluster dynamics code for
prediction of gas bubble evolution in
solids

o Solves PDE (x, t) for concentration of
clusters of different sizes

• 2D/3D - relies on PETSc solvers

o https://github.com/ORNL-Fusion/xolotl
Brian Wirth, Sophie Blondel — Oak Ridge National Lab

ITER Plasma Material Interface

II 

.

ITER Plasma Core

J

Plasma ndary

AY'''  PIa H t &

.1

,.,bsroa d.re,
.,

I
.

PI ,.0.„
.,

. 

;iverton.rorgeo

(11," i7::',,,171thao„.,,g•

-rtor % 10 MW/rn° rnax on target

clu

sputtering co-dsposilion

Hein • etyreetred 1 2,,

”.i.k 

eros\

.41ion
•

• • • •S
/ 

1221114 
• • • • • • ••••••

olio 
• • • •

• • *
• • • • • • • • lo • • • •
OOOOOOO • • • •filb • • • •

vacancy trapped FitHe Inters..

•

S. Blondel et al., COSIRES, 2018
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GSA in Xolotl
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GSA in Xolotl
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Free Energ Cluster Dynamics(FECD) c mputations

o FECD computes diffusivities of small gas clusters in solid matrix

se Defect mobilities in UO2
o Relies on Density Functional Theory (DFT) using VASP

David Andersson, Christopher Matthews — Los Alamos National Lab

• Implemented under the MARMOT umbrella, uses the MOOSE
framework

https://moose.inLgov/marmot

• Involves 177 parameters

o Nominal parameter values from DFT simulations

• Uncertainties specified as upper and lower bounds from expert
opinions

SNL Najrn UO 27/ 40



FECD GSA Stud
0.4

7‹ 0.3
a)
-o
E
7, 0.2
_o
o

.% 0.1

2

 100 samps.
—500 samps.
— 1000 samps.

o
o

0.4

x 0.3

0.2
_o
o
(.0
To 0.1
o

5 10 15

parameter
20

— 100 samps.
 500 samps.
 1000 samps.

0 5 10 15

parameter

LSQ-PC

20

0.4

x 0.3
a)
-o

0.2
.o
o
cr)
s 0.1

o
o

 100 samps.
—500 samps.
— 1000 samps.

0.4

x 0.3
a)
-o

7. 0.2
_o
o
(.0
Ts 0.1
o

0

5 10 15

parameter
20

— 100 samps.
 500 samps.
 1000 samps.

A A
5 10 15

parameter

BCS-PC

20

SNL Najrn LKD 28/40



Multilevel Multifidelity (MLMF) Method

When the computational model is quite expensive, we still seek more
reduction in the required number of expensive samples

o Multilevel Multifidelity (MLMF) methods allow further savings by
combining information judiciously from low/high-resolution and
how/high-fidelity models

o Use many low resolution/fidelity model computations and a
minimal necessary number of high resolution/fidelity model
computations to achieve target accuracy with MC

o Choice of how many simulations to run at low and high
fidelity/resolution is done adaptively
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Heat equati n—MLMF vs. MLMC vs. plain MC

70 10
MLMC'

65

60

55

Er 50

45
j..*.....*.

40 0.1

35

30

25 0.01
10 100 1000 10000 100000 1e-F(76 1e+07

N

Expected Value

MLMF
MLMC

10 100 1000 10000 100000 1e+06 1e+07

N

Accuracy e

Heat equation with uncertain diffusivity and initial condition
Gianluca Geraci, Michael S. Eldred, Alex Gorodetsky and John Jakeman Sandia National Labs., 2017.
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Supersonic Co busting Ramjet (scramjet)
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Scram HD

LES Pe
Joe Oefelein

formed using RAPTOR Code Fr
Sandia National Labs. - now at Georgia Tech

Theoretical framework ... Massively-parallel ... (Highly-scalable)
(Comprehensive physics) - Demonstrated performance on full hierarchy of
- Fully-coupled, compressible HPC platforms (e.g., scaling on ORNL CRAY XK7

conservation equations TITAN architecture shown below)

Real-fluid equation of state - Selected for early science campaign on next
(high-pressure phenomena) generation SUMMIT platform (ORNL Center for

Detailed thermodynamics,
transport and chemistry

Accelerated Application Readiness, 2015 - 2018)

Multiphase flow, spray 150000 100
- Dynamic SGS modeling
(No Tuned Constants) o_

Numerical framework ...
(High-quality numerics)

Staggered finite-volume
differencing (non-dissipative,

a)
a) 100000a_
(/)

-
-

-

95
0
a)

90
discretely conservative)

Dual-time stepping with
generalized preconditioning
(all-Mach-number formulation)

_c
",-7 50000
o

-
-

• Near linear scalability

rll

85 TT:1
Detailed treatment of geometry,
wall phenomena, transient BC's

beyond 100,000 cores -80

50000 100000 150000
Number of Cores
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Instantaneous Flow Structure — z-inj-cut — 3D d16

670 2.7e+03

P [bar] , "64

0.6 1.4

0.15

JeRW10-- ri
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Multilevel and multifdelity forms

In
cr
ea
si
ng
 m
od

el
 f
id

el
it

y 

Telescopic sum:

lrrcreaviag grid resolution level

model A
grid 1

model B
grid 1

model Z
grid 1

model A
grid 2

model A
grid 3

model A
grid G

model Z
grid G

fLPO = foN + h,(A)
P=1

o k indicates different grid levels or fidelity of models

o Ae indicates difference between models and 1' —1

L
Function approximation: fL(A) fL(A) = f0(x) + E fA,(A)

t=i
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High-D — ML/MF UQ Results

2D LES
Coarse Grid

2D LES
Fine Grid

Multifldelity 3D LES
Coarse Grid

3D LES
Fine Grid

Two model forms and two mesh
discretization levels

• Model form: 2D (LF) and 3D (HF) LES

• Meshes: d/8 and d/16

The jet-in-crossflow problem (24 inputs):
Five Qols extracted over a plane at x/d = 100.

• Ey,t stagnation pressure (Po,mean)

• Ey RMSt stagnation pressure (P0,,rno)

o Ey,t Mach number (‘Mmean)

o Ey,t turbulent kinetic energy (TKEmcan)

• [Ey,t scalar dissipation rate (Xmean)

2D 3D Relative computational cost for the model
d/8 1 204 forms and discretization levels.
d/16 25.5 1844

Optimize statistical accuracy given a limited number of high fidelity model evaluations by
leveraging cheaper lower fidelity simulations.
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Jet in cross ow problem: 24 parameter , 3rd-order PCE

Parameter Range Description
inlet boundary conditions

PO [1.406,1.554] MPa Stagnation pressure
To [1472.5,1627.5] K Stagnation temperature

MO [2.259, 2.761] Mach nurnber
do, [2, 6] rnm Boundary layer thickness
Ii [0, 0.05] Turbulence intensity magnitude
L i [0, 8] mm Turbulence length scale

Fuel inflow boundary conditions

Tf

Mf

I f

L f

[6.633, 8.107] x 1 0-3 kg/s

[285, 315] K

[0.95,1.05]

[0, 0.05]

[0,1] mm

Mass flux

Static temperature

Mach number

Turbulence intensity rnagnitude

Turbulence length scale

Turbulence model parameters
CR [0.01, 0.06] Modified Smagorinsky constant

P,t [0.5,1.7] Turbulent Prandd number

SOt [0.5,1.7] Turbulent Schmidt number
Wall boundary conditions

Tu, Expansion in 10 params Wall temperature represented via
of .7V(0 , 1) Karhunen-Loève expansion

o Qols computed at x/d = 100, averaged over (y, t)

9 2D runs: 1939 (coarse grid), 79 (fine grid)

o 3D runs: 46 (coarse grid), 11 (fine grid)
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Intro PCfit Sparse MLMF Scram Cos

Unit prob em: total sensitivity

0.2 0.4 0.6 0.8

I I

0.2 0.4 0.6 0.8

Multilevel expansion of:

f2D,d/16 = f2D,d/8 f02D4/16-2D,d/8

Multifidelity expansion of:

f3D,d18 = f2D,d/8 L3D,d/8-2D,d/8

IjD



Intro PCfit Sparse MLMF Scram Clos

MC-Predicted Uncertainty in Mean Flow Quantities — 3D
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Intro PCfit Sparse MLMF Scram Clos

MC-Predicted Uncertai ty in Mea Flow Quanti
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Discussion and Cl

• Necessary workflow for UQ in large-scale computational models

• Global sensitivity analysis to cut dimensionality, assisted by

— Polynomial Chaos regression
— fl-norm regularization / compressive sensing
— Multilevel Monte Carlo & Multifidelity

o Adaptive sparse quadrature forward UQ on reduced
dimensional space

o Resulting PC surrogate can be used in Bayesian inference on
model parameters and optimization under uncertainty

o Other avenues to re-cast the problem in low-D:

• Basis adaptation & active subspace methods
o Manifold discovery, e.g. via lsomap or diffusion maps
o Low rank tensor methods, etc

o Caution: Noisy computational Qols due to finite averaging windows
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