

SAND2019-12615PE

# Uncertainty Quantification in Large Scale Computational Models

Habib Najm

Sandia National Laboratories  
Livermore, CA, USA

Seminar  
Chinese Academy of Sciences  
Beijing, China  
Oct 22, 2019

# Acknowledgement

Khachik Sargsyan, Cosmin Safta, Xun Huan

Mike Eldred, Gianluca Geraci, Joe Oefelein, Guilhem Lacaze, Zach Vane  
— Sandia National Laboratories, CA

Brian Wirth, Sophie Blondel

— Oak Ridge National Lab, Oak Ridge, TN

David Andersson, Christopher Matthews

— Los Alamos National Lab, Los Alamos, NM

R.G. Ghanem

— U. South. California, Los Angeles, CA

This work was supported by:

- DOE Office of Science
- DOE ASCR Scientific Discovery through Advanced Computing (SciDAC) program
- DOD DARPA

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. The views expressed in the article do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

# Definition of Uncertainty Quantification (UQ)

UQ is the end-to-end estimation and analysis of uncertainty in:

## models and their parameters

- assimilation of experimental/observational data
- model fitting and parameter estimation

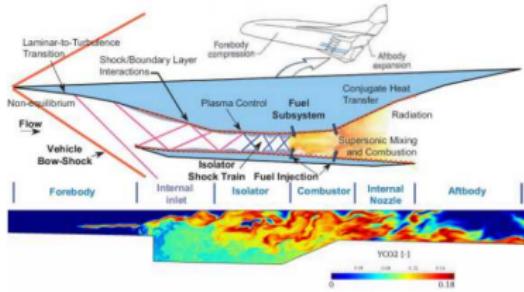
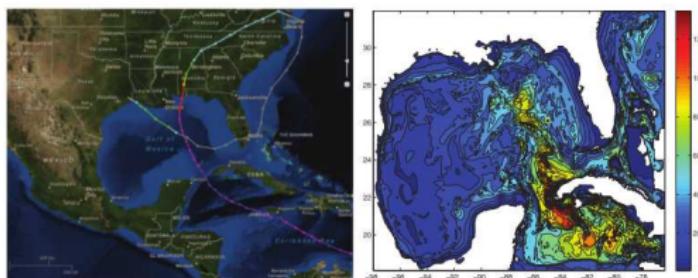
## model predictions

- forward propagation of parametric uncertainty to model outputs
- Analysis, comparison and selection among alternate plausible models

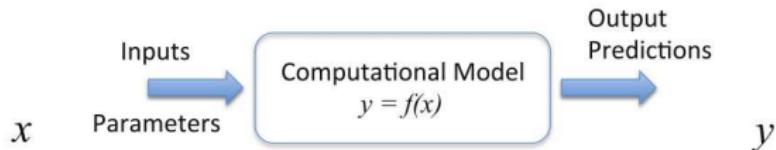
# The Case for Uncertainty Quantification

UQ is needed in:

- Assessment of confidence in computational predictions
- Validation and comparison of scientific/engineering models
- Robust design optimization under uncertainty
- Use of computational predictions for decision-support
- Assimilation of observational data and model construction
- Multiscale and multiphysics model coupling

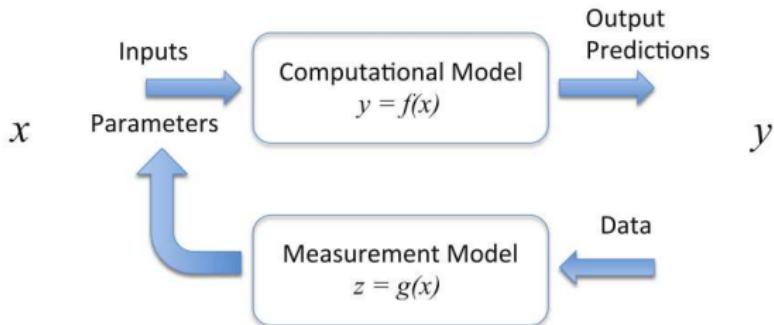


# Uncertainty Quantification and Computational Science



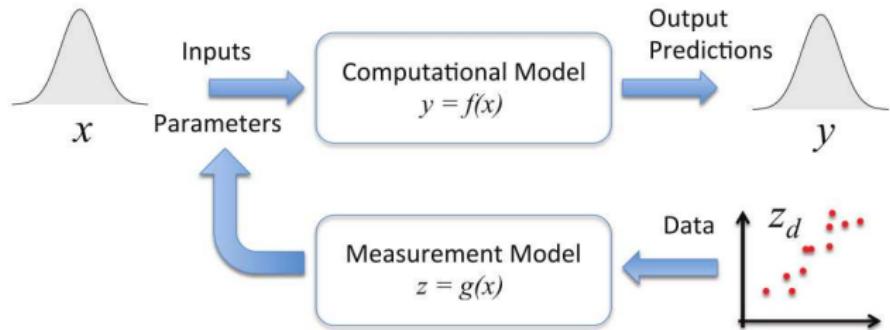
Forward problem

# Uncertainty Quantification and Computational Science



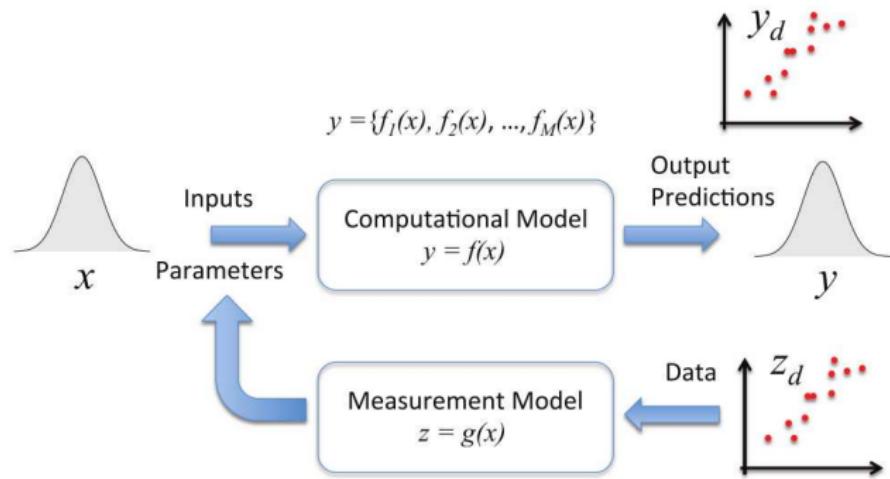
Inverse & Forward problems

# Uncertainty Quantification and Computational Science



Inverse & Forward UQ

# Uncertainty Quantification and Computational Science



Inverse & Forward UQ  
 Model validation & comparison, Hypothesis testing

# Probabilistic Forward UQ

-

$$y = f(x)$$

Represent uncertain quantities using probability theory

## Random sampling, Monte Carlo

- Generate random samples  $\{x^i\}_{i=1}^N$  from the PDF of  $x$ ,  $p(x)$
- Bin the corresponding  $\{y^i\}$  to construct  $p(y)$
- Not feasible for computationally expensive  $f(x)$ 
  - slow convergence of MC/QMC methods
  - ⇒ very large  $N$  required for reliable estimates

## Build a cheap surrogate for $f(x)$ , then use Monte Carlo/others

- Collocation – interpolants
- Regression – fitting
- Galerkin methods
  - Polynomial Chaos (PC) methods

# Role of Surrogates in Probabilistic UQ

Computational forward model, parameter vector  $\lambda$

$$y = f(x, \lambda)$$

## Forward UQ

- Given PDF  $p(\lambda)$ , estimate  $p(y)$  or  $M_q(y) = \mathbb{E}[y^q]$
- General *non-intrusive* methods rely on sampling  $\lambda$
- Require many samples  $(\lambda_k, f(x, \lambda_k)), k = 1, \dots, N$

## Inverse UQ

- Given data  $D := \{(x_i, y_i), i = 1, \dots, M\}$ , estimate  $p(\lambda|D)$
- Bayesian methods often use Markov Chain Monte Carlo (MCMC)
- Require many samples  $(\lambda_k, f(x_i, \lambda_k)), k = 1, \dots, K, \forall i$

**Require a cheap surrogate**  $S_\alpha(x, \lambda) \simeq f(x, \lambda), \alpha \in \mathbb{R}^L$

# Challenges with Surrogate Construction

- Choice of surrogate function is informed by structure of  $f(x, \lambda)$ 
  - Structure of  $f(x, \lambda)$  not known *a priori*
  - Discontinuities, say at some  $\lambda^*(x)$ , require particular care
    - Local versus global surrogates
  - Nonlinearities, shape ...
    - e.g. polynomials have trouble with sigmoid response
    - Surrogate complexity can grow, requiring a large  $L$
- High dimensionality in  $\lambda$ 
  - Large number of uncertain parameters
  - Non-smooth random fields
- Large computational cost for  $f(x, \lambda)$ 
  - e.g. a global climate simulation
  - Can only afford a few samples

# Surrogate types

- Global vs local surrgates
- Many smooth functions have been used as surrogates in smooth regions
  - Polynomials
  - Padé approximants – Rational functions
  - Wavelets
  - Radial basis functions
  - Gaussian processes
  - Neural networks
  - etc ...
- Probabilistic structure, *i.e.* given that  $\lambda$  is random, motivates the use of Polynomial Chaos expansions (PCEs)
  - A PCE is an expansion in terms of orthogonal functions of simple random variables
  - A generalized fourrier series

# Polynomial Chaos Expansion (PCE)

- Model uncertain quantities as random variables (RVs)
- Given a *germ*  $\xi(\omega) = \{\xi_1, \dots, \xi_n\}$  – a set of *i.i.d.* RVs
  - where  $p(\xi)$  is uniquely determined by its moments

Any RV in  $L^2(\Omega, \mathfrak{S}(\xi), P)$  can be written as a PCE:

$$u(\mathbf{x}, t, \omega) = f(\mathbf{x}, t, \xi) \simeq \sum_{k=0}^P u_k(\mathbf{x}, t) \Psi_k(\xi(\omega))$$

- $u_k(\mathbf{x}, t)$  are mode strengths
- $\Psi_k()$  are multivariate functions orthogonal w.r.t.  $p(\xi)$

Non-intrusive sampling-based forward UQ :  $u = u(\lambda(\xi); x, t)$

$$u_k = \frac{\langle u \Psi_k \rangle}{\langle \Psi_k^2 \rangle} = \frac{1}{\langle \Psi_k^2 \rangle} \int u(\lambda(\xi)) \Psi_k(\xi) \rho(\xi) d\xi, \quad k = 0, \dots, P$$

- $\lambda \in \mathbb{R}^n \Rightarrow$  (at least an)  $n$ -dimensional integration problem

# Use of PCE in forward UQ & surrogate construction

## Strategy:

- Represent model parameters/solution as random variables

$$\lambda \equiv \lambda(\xi) = \sum_{k=0}^P \lambda_k \Psi_k(\xi) \quad (\lambda_k \text{ known})$$

- Construct PCEs for uncertain parameters

$$y \equiv y(\xi) = \sum_{k=0}^P y_k \Psi_k(\xi) \quad (y_k \text{ unknown})$$

- Evaluate PCEs for model outputs

$$y_k = \frac{\langle f \Psi_k \rangle}{\langle \Psi_k^2 \rangle} = \frac{1}{\langle \Psi_k^2 \rangle} \int_{\Xi \subset \mathbb{R}^n} f(x, \lambda(\xi)) \Psi_k(\xi) p_\xi(\xi) d\xi, \quad k = 0, \dots, P$$

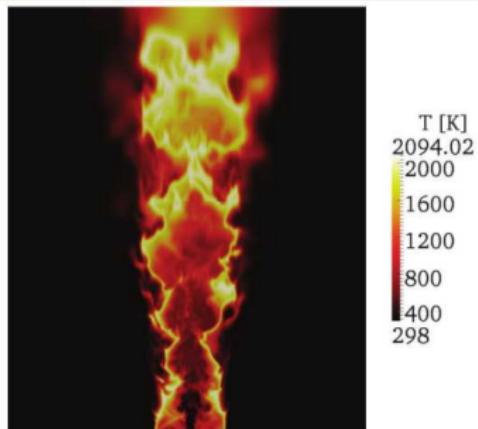
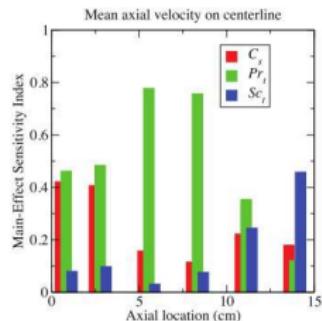
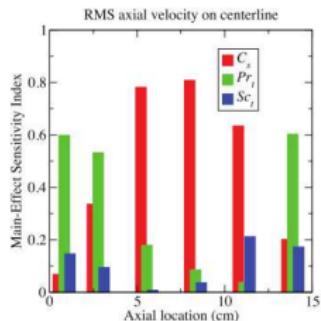
## Advantages:

- Computational efficiency in low-to-moderate dimensionality
- Moments:  $E(u) = u_0, \text{var}(u) = \sum_{k=1}^P u_k^2 \langle \Psi_k^2 \rangle, \dots$
- Global Sensitivities – fractional variances, Sobol' indices

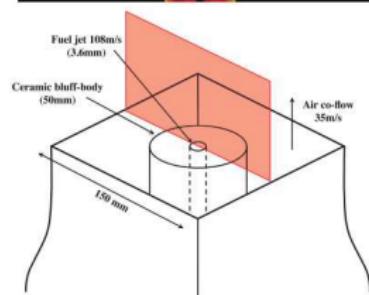
# UQ in LES computations: turbulent bluff-body flame

with M. Khalil, G. Lacaze, & J. Oefelein, Sandia Nat. Labs

- $\text{CH}_4\text{-H}_2$  jet, air coflow, 3D flow
- $\text{Re}=9500$ , LES subgrid modeling
- $12 \times 10^6$  mesh cells, 1024 cores
- 3 days run time,  $2 \times 10^5$  time steps
- 3 uncertain parameters ( $C_s$ ,  $Pr_t$ ,  $Sc_t$ )
- 2<sup>nd</sup>-order PC, 25 sparse-quad. pts



Main-Effect Sensitivity Indices

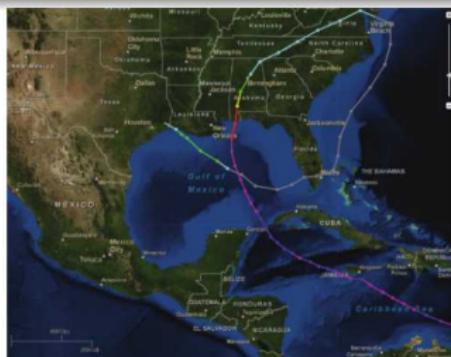
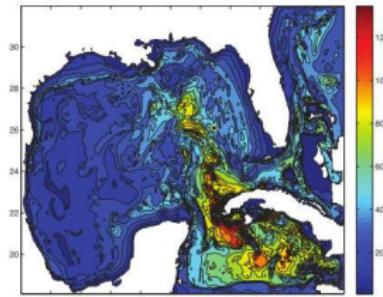


J. Oefelein & G. Lacaze, SNL

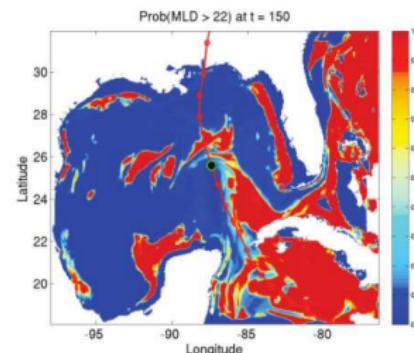
# UQ in Ocean Modeling – Gulf of Mexico

A. Alexanderian, J. Winokur, I. Sraj, O.M. Knio, Duke Univ.

A. Srinivasan, M. Iskandarani, Univ. Miami; W.C. Thacker, NOAA



- Hurricane Ivan, Sep. 2004
- HYCOM ocean model ([hycom.org](http://hycom.org))
- Predicted Mixed Layer Depth (MLD)
- Four uncertain parameters, *i.i.d.* U
  - subgrid mixing & wind drag params
- 385 sparse quadrature samples



(Alexanderian *et al.*, Winokur *et. al.*, *Comput. Geosci.*, 2012, 2013)

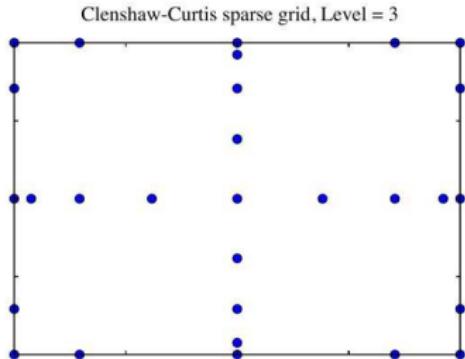
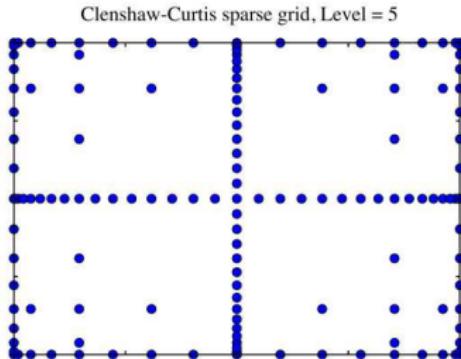
# PC and High-Dimensionality

Dimensionality  $n$  of the PC basis:  $\xi = \{\xi_1, \dots, \xi_n\}$

- $n \approx$  number of uncertain parameters
- PCE order  $p$
- $P + 1 = (n + p)!/n!p!$  grows fast with  $n$

Impact:

- Hi-D projection integrals  $\Rightarrow$  large # non-intrusive samples
  - Sparse quadrature methods



## PC Sparse Quadrature in hiD

## – Climate land model

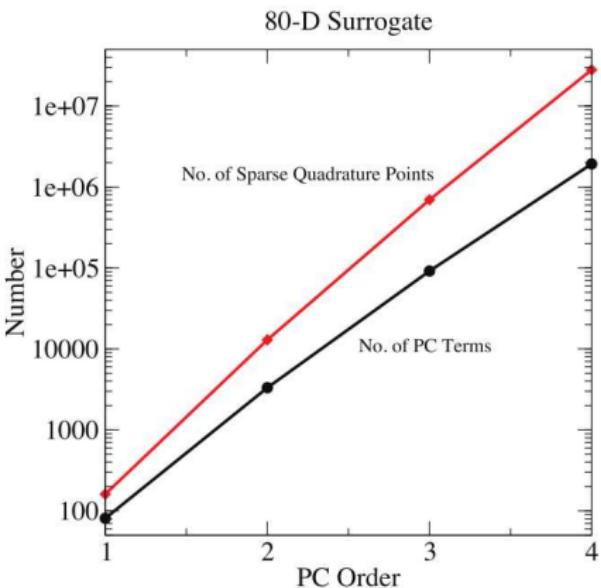
Full quadrature:  $N = (N_{1D})^n$

### Sparse Quadrature

- Wide range of methods
- Nested & hierarchical
- Clenshaw-Curtis:  $N = \mathcal{O}(n^p)$
- Adaptive – greedy algorithms

Number of points can still be excessive in hi-D

- Large no. of terms
- Reduction/sparsity



# High dimensionality is a major challenge in forward UQ

- High dimensionality is the result of
  - Large number of uncertain parameters/inputs
  - Large number of degrees of freedom in random field inputs
- Sparse-quadrature requires an unfeasible number of model evaluations for very high dimensional systems
- Monte Carlo requires similarly large number of samples when the number of important dimensions is very high
  - However, typically, physical model output quantities of interest are *smooth*  $\Rightarrow$  Only a small number of inputs are important
- In this case, the way out is:
  - Use global sensitivity analysis (GSA) with Monte Carlo to identify important parameters
  - Use polynomial Chaos expansions (PCE) with sparse quadrature on the reduced dimensional space for accurate forward UQ

# Global sensitivity analysis: Sobol indices

## Global sensitivity analysis (GSA) (Saltelli:2004,2008)

- For a given quantity of interest (QoI) ...
- QoI variance decomposed into contributions from each parameter
- Sobol indices rank parameters by their contributions (Sobol:2003)

Total effect

$$S_{T_i} = \frac{\mathbb{E}_{\lambda \sim i} [\text{Var}_{\lambda_i} (f(\lambda) | \lambda_i)]}{\text{Var}(f(\lambda))}$$

$S_{T_i}$  small  $\Rightarrow$  low impact parameter  $\Rightarrow$  fix value (eliminate dimension)

## How to compute?

- Monte Carlo estimators (Saltelli:2002,2010) still prohibitive if used directly for large scale computational models

# Hi-dimension with large-scale computational models

When the number of feasible samples for GSA is highly limited due to computational costs:

- Reliable MC-estimation of sensitivity indices requires regularization
- Presuming smoothness, use MC samples to fit a PCE, which is subsequently used to estimate the sensitivity indices
- Employ  $\ell_1$ -norm constrained regression to discover a sparse PCE
  - compressive sensing
- Employ Multilevel Monte Carlo (MLMC), as well as Multilevel Multifidelity (MLMF) methods
  - Optimal combination of coarse/fine mesh and low/high fidelity models to minimize computational costs for a given accuracy

Similarly for forward PC UQ:

- Employ generalized adaptive non-isotropic sparse quadrature with MLMF methods on reduced dimensional input space

# Estimation of GSA Sobol' Indices with PC regression

- When # samples is small, GSA indices can be computed with improved accuracy, relying on PC regression/smoothing
- Polynomial Chaos expansion (PCE):  $u(\xi) = \sum_{\alpha \in \mathcal{I}} c_{\alpha} \Psi_{\alpha}(\xi)$ 
  - Germ:  $\xi = \{\xi_1, \dots, \xi_d\}$ , Multi-index  $\alpha = \{\alpha_1, \dots, \alpha_d\}$ ,
  - Polynomials, orthogonal w.r.t.  $p(\xi)$ ,  $\Psi_{\alpha}(\xi) = \prod_{i=1}^d \psi_{\alpha_i}(\xi_i)$
- Use regression with MC samples to fit a PCE to the data

$$\underset{c_{\alpha}}{\operatorname{argmin}} \sum_{s=1}^N \left( f(\lambda(\xi^{(s)})) - \sum_{\alpha \in \mathcal{I}} c_{\alpha} \Psi_{\alpha}(\xi^{(s)}) \right)^2$$

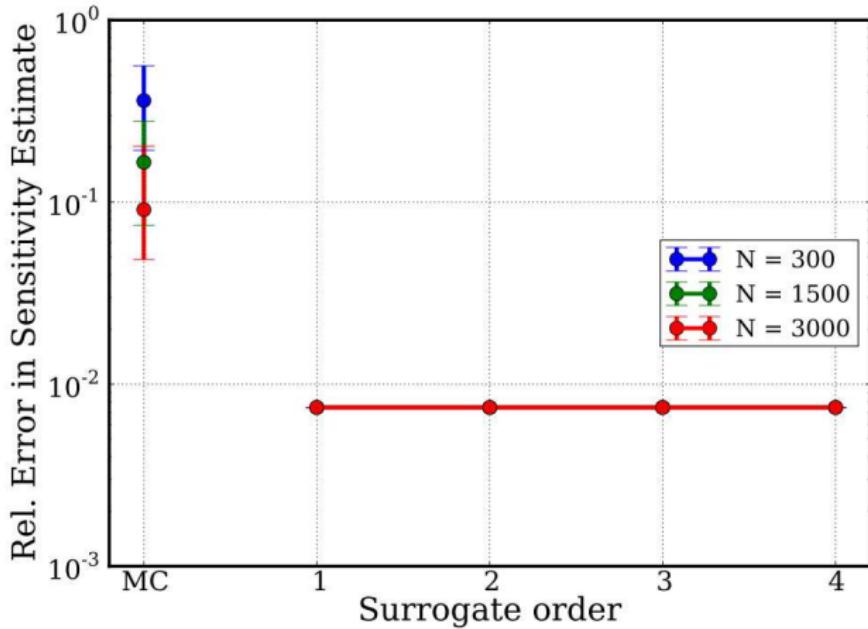
- Use PCE to evaluate Sobol indices

$$S_{T_i} = \frac{\sum_{\alpha \in \mathcal{I} | \alpha_i > 0} c_{\alpha}^2 \langle \Psi_{\alpha}^2 \rangle}{\sum_{\alpha \in \mathcal{I} | \alpha \neq 0} c_{\alpha}^2 \langle \Psi_{\alpha}^2 \rangle}$$

Sudret, 2008; Crestaux, 2009; Sargsyan, 2017; Ricciuto, 2018

## Estimation of GSA Sobol' Indices with PC regression

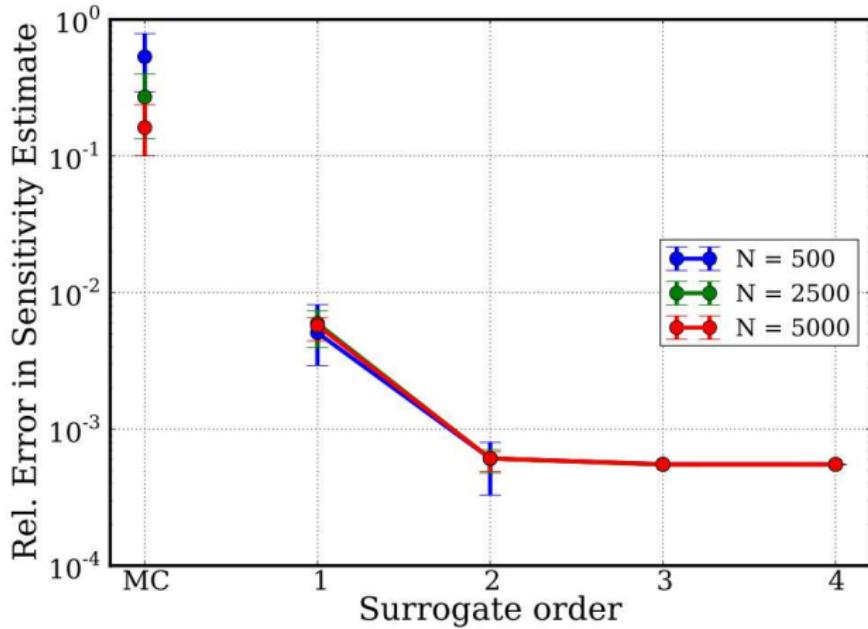
$$d = 1$$



Sargsyan, 2017

# Estimation of GSA Sobol' Indices with PC regression

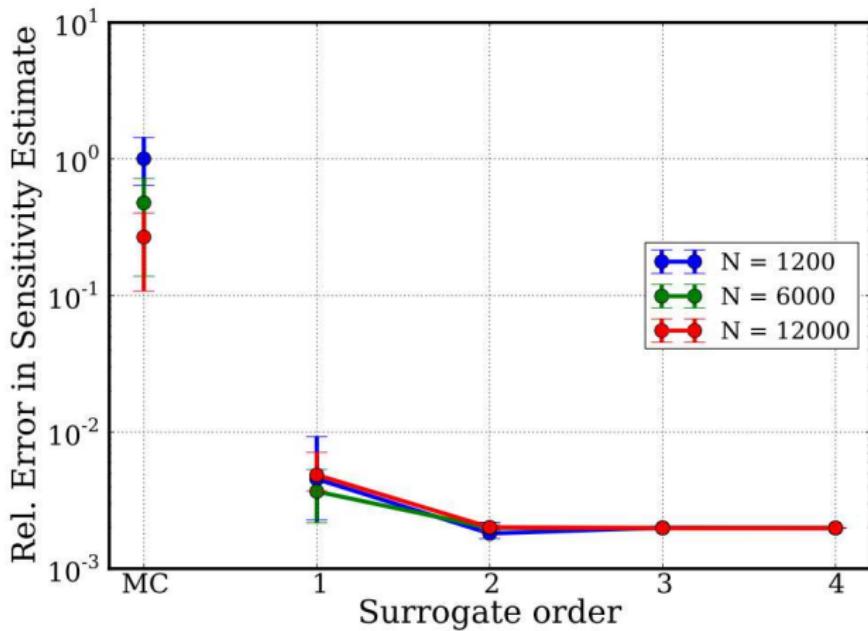
$d = 3$



Sargsyan, 2017

# Estimation of GSA Sobol' Indices with PC regression

$$d = 10$$



Sargsyan, 2017

# Sparse regression

Model:

$$y = f(\xi) \simeq \sum_{\alpha \in \mathcal{I}} c_{\alpha} \Psi_{\alpha}(\xi)$$

- With  $N$  samples  $(\xi^1, y^1), \dots, (\xi^N, y^N)$ , estimate  $K$  terms  $c_{\alpha}$

$$\min \|y - Ac\|_2^2$$

With  $N \ll K \Rightarrow$  under-determined, need regularization

- Use  $\ell_1$  norm regularization to discover sparsity
- Discover a sparse fitted PCE – many zero coefficients

Compressive Sensing; LASSO; basis pursuit; etc ...

|                                             |                                           |        |
|---------------------------------------------|-------------------------------------------|--------|
| $\min \{\ y - Ac\ _2^2\}$                   | subject to $\ c\ _1 \leq \epsilon$        | LASSO  |
| $\min \{\ y - Ac\ _2^2 + \lambda \ c\ _1\}$ |                                           | uLASSO |
| $\min \{\ c\ _1\}$                          | subject to $y = Ac$                       | BP     |
| $\min \{\ c\ _1\}$                          | subject to $\ y - Ac\ _2^2 \leq \epsilon$ | BPDN   |

# Unconstrained LASSO (uLASSO) – Practicalities

A broad range of methods exists for solving the optimization problem:

$$\mathbf{c}^* = \operatorname{argmin}_{\mathbf{c}} \{ \|\mathbf{y} - \mathbf{A}\mathbf{c}\|_2^2 + \lambda \|\mathbf{c}\|_1 \}$$

[l1\\_ls](#) (Kim 2007), [SpaRSA](#) (Wright 2009), [CGIST](#) (Goldstein 2010), [FPC\\_AS](#) (Wen 2010), [ADMM](#) (Boyd 2010)

- Choice of  $\lambda \geq 0$  controls the degree of overfitting vs underfitting
- This choice can be viewed as a model selection problem
  - Can base the choice on Bayesian model evidence maximization
- A cross-validation (CV)  $\lambda$ -choice strategy: minimize  $K$ -fold CV error

$$\lambda^* = \operatorname{argmin}_{\lambda \geq 0} E_{\text{cv}}(\lambda)$$

- For expensive models, also target optimal data sample size
  - Increase sample size  $m$  adaptively
  - Stop sampling when the rate of decrease of  $\lambda$ -optimal CV error with increasing  $m$  drops below a given threshold

[Huan, SIAM JUQ 2018](#)

# Bayesian Regression

- Bayes formula

$$p(\mathbf{c}|D) \propto p(D|\mathbf{c})\pi(\mathbf{c})$$

- Bayesian regression: prior as a regularizer, e.g.

- Log Likelihood  $\Leftrightarrow \|\mathbf{y} - \mathbf{A}\mathbf{c}\|_2^2$
- Log Prior  $\Leftrightarrow \|\mathbf{c}\|_p^p$

- Laplace sparsity priors  $\pi(c_k|\alpha) = \frac{1}{2\alpha}e^{-|c_k|/\alpha}$

- uLASSO (Tibshirani 1996, Van den Berg 2008) ... formally:

$$\min \{\|\mathbf{y} - \mathbf{A}\mathbf{c}\|_2^2 + \lambda \|\mathbf{c}\|_1\}$$

Solution  $\sim$  the posterior mode of  $\mathbf{c}$  in the Bayesian model

$$\mathbf{y} \sim \mathcal{N}(\mathbf{A}\mathbf{c}, \mathbf{I}_N), \quad c_k \sim \frac{1}{2\alpha}e^{-|c_k|/\alpha}$$

- Bayesian LASSO (Park & Casella 2008)

# Bayesian Compressive Sensing (BCS)

- BCS (Ji 2008; Babacan 2010) – hierarchical priors:
  - Gaussian priors  $\mathcal{N}(0, \sigma_k^2)$  on the  $c_k$
  - Gamma priors on the  $\sigma_k^2$

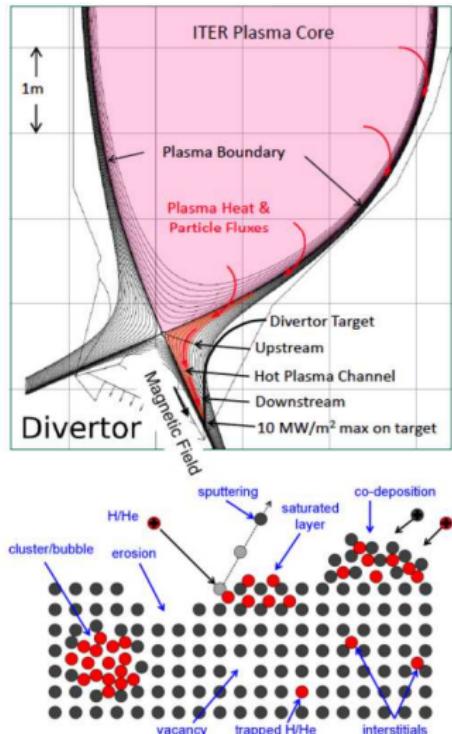
⇒ Laplace sparsity priors on the  $c_k$
- Evidence maximization establishes maximum likelihood estimates of the  $\sigma_k$ 
  - many of which are found  $\approx 0 \Rightarrow c_k \approx 0$
  - iteratively include terms that lead to the largest increase in the evidence
- Iterative BCS (iBCS) (Sargsyan 2012):
  - adaptive iterative order growth
  - BCS on order- $p$  Legendre-Uniform PC
  - repeat with order- $p + 1$  terms added to surviving  $p$ -th order terms

# Demonstration in Cluster Dynamics Computations

- Material damage processes associated with plasma surface interactions in the ITER fusion reactor – He in W/Be
- Xe gas bubble transport in nuclear fuel rods in fission reactors
- “Xolotl” C++ cluster dynamics code for prediction of gas bubble evolution in solids
- Solves PDE ( $x, t$ ) for concentration of clusters of different sizes
- 2D/3D - relies on PETSc solvers
- <https://github.com/ORNL-Fusion/xolotl>

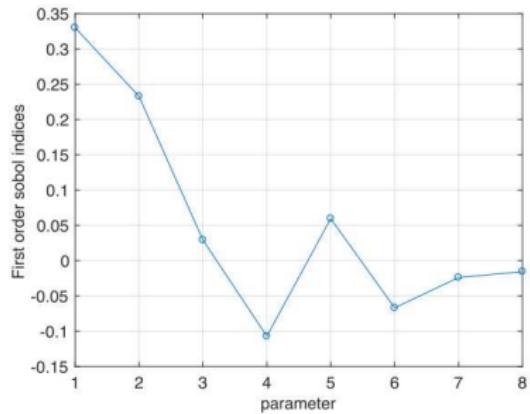
Brian Wirth, Sophie Blondel – Oak Ridge National Lab

ITER Plasma Material Interface



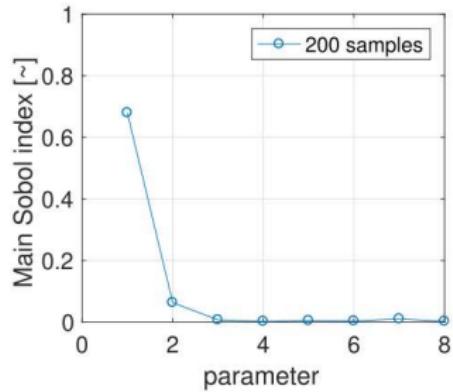
S. Blondel et al., COSIRES, 2018

# GSA in Xolotl

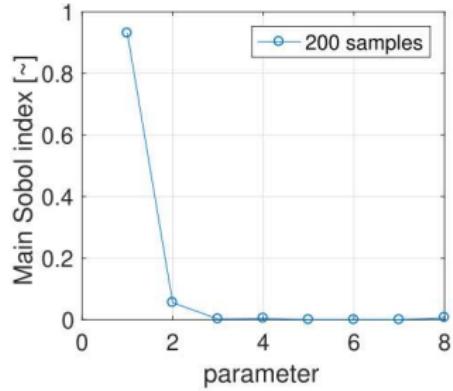


- 400 samples GSA MC study
- 8 parameters
- Noise/negativity in indices eliminated with sparse PC regression @ 200 samples

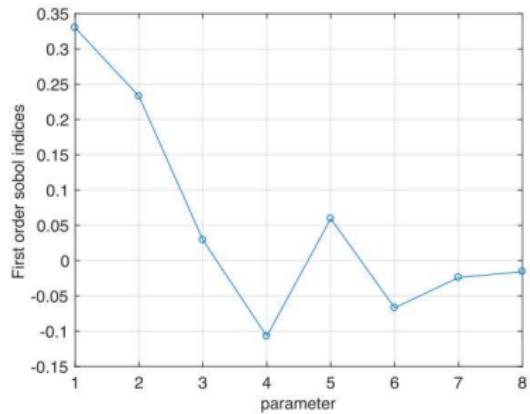
**LSQ-PC:  
Main:**



**BCS-PC:  
Main:**

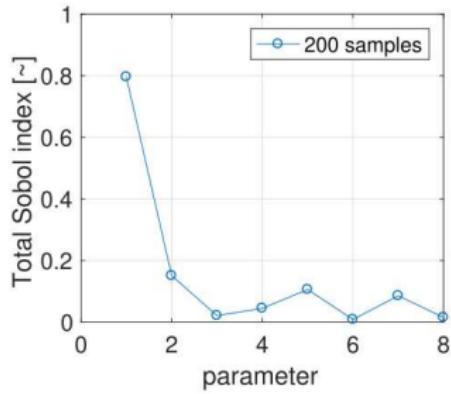


# GSA in Xolotl

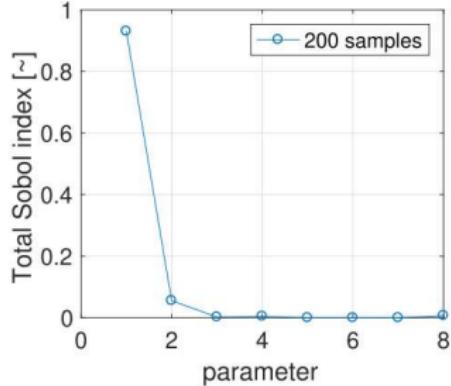


- 400 samples GSA MC study
- 8 parameters
- Noise/negativity in indices eliminated with sparse PC regression @ 200 samples

**LSQ-PC:  
Total:**



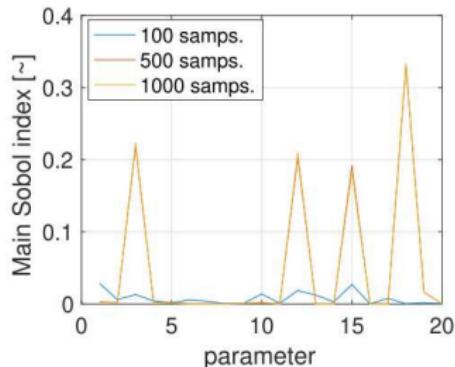
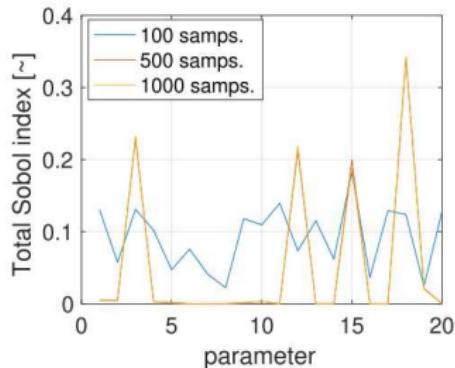
**BCS-PC:  
Total:**



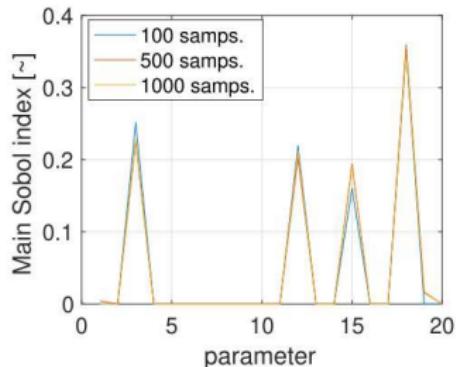
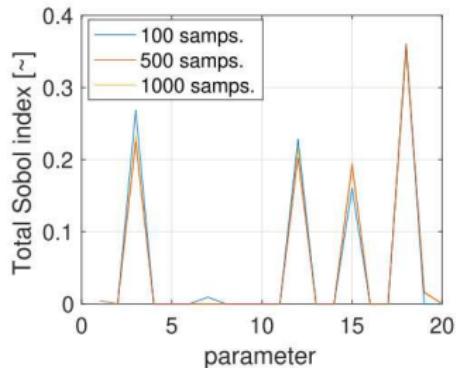
# Free Energy Cluster Dynamics (FECD) computations

- FECD computes diffusivities of small gas clusters in solid matrix
  - Defect mobilities in  $\text{UO}_2$
  - Relies on Density Functional Theory (DFT) using VASP  
*David Andersson, Christopher Matthews – Los Alamos National Lab*
- Implemented under the MARMOT umbrella, uses the MOOSE framework  
<https://moose.inl.gov/marmot>
- Involves 177 parameters
- Nominal parameter values from DFT simulations
- Uncertainties specified as upper and lower bounds from expert opinions

# FECD GSA Study



LSQ-PC



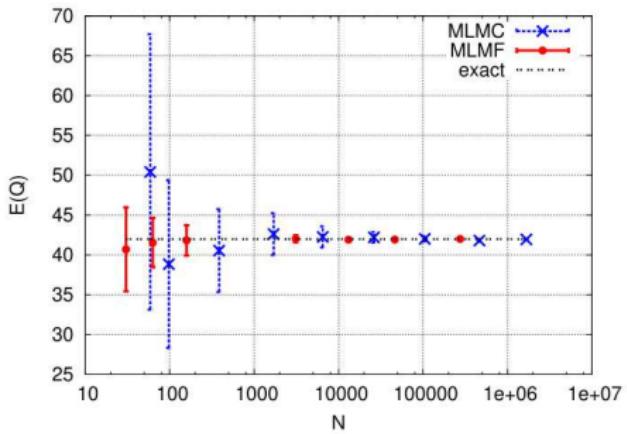
BCS-PC

# Multilevel Multifidelity (MLMF) Methods for UQ

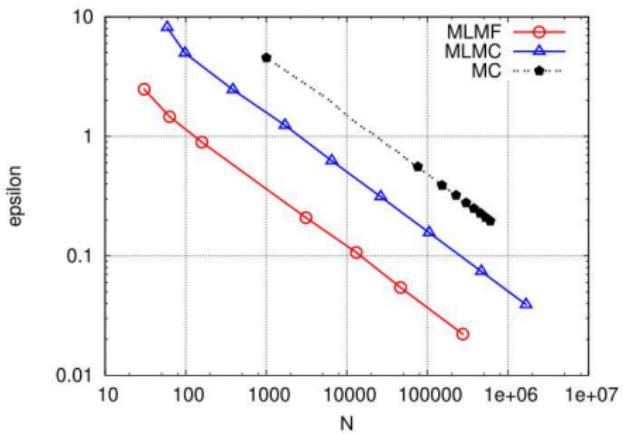
When the computational model is quite expensive, we still seek more reduction in the required number of expensive samples

- Multilevel Multifidelity (MLMF) methods allow further savings by combining information judiciously from low/high-resolution and low/high-fidelity models
- Use many low resolution/fidelity model computations and a minimal necessary number of high resolution/fidelity model computations to achieve target accuracy with MC
- Choice of how many simulations to run at low and high fidelity/resolution is done adaptively

# Heat equation–MLMF vs. MLMC vs. plain MC



Expected Value

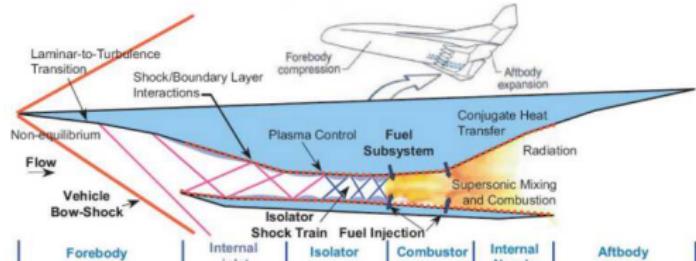


Accuracy  $\varepsilon$

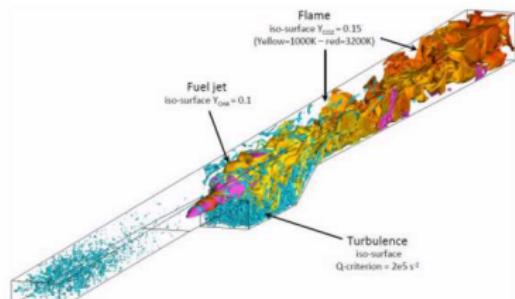
Heat equation with uncertain diffusivity and initial condition

Gianluca Geraci, Michael S. Eldred, Alex Gorodetsky and John Jakeman Sandia National Labs., 2017.

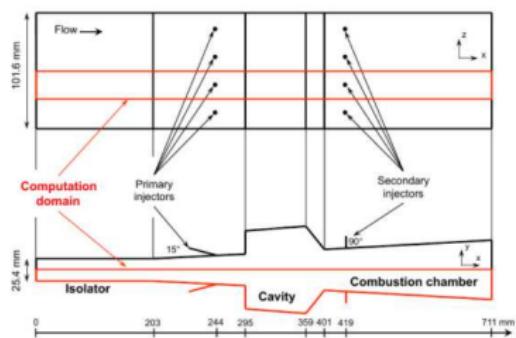
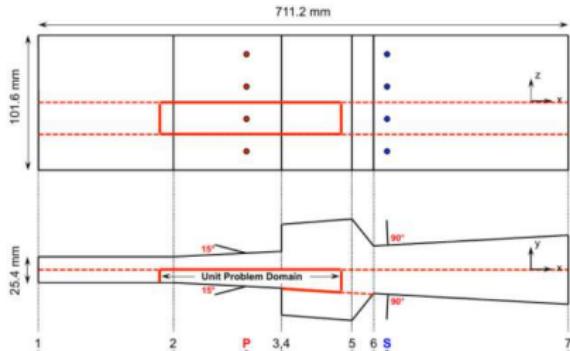
# Supersonic Combusting Ramjet (scramjet)



In flight



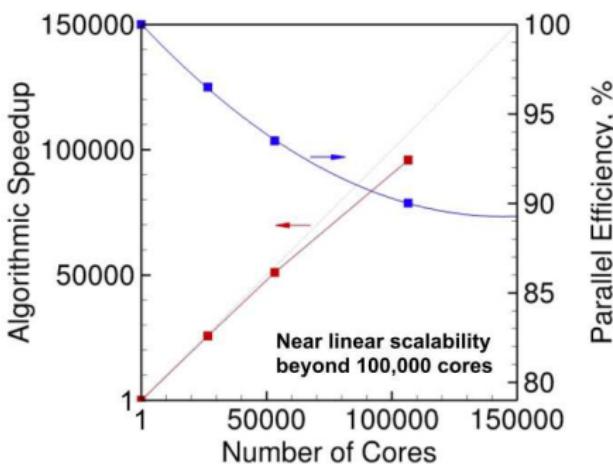
Numerical model



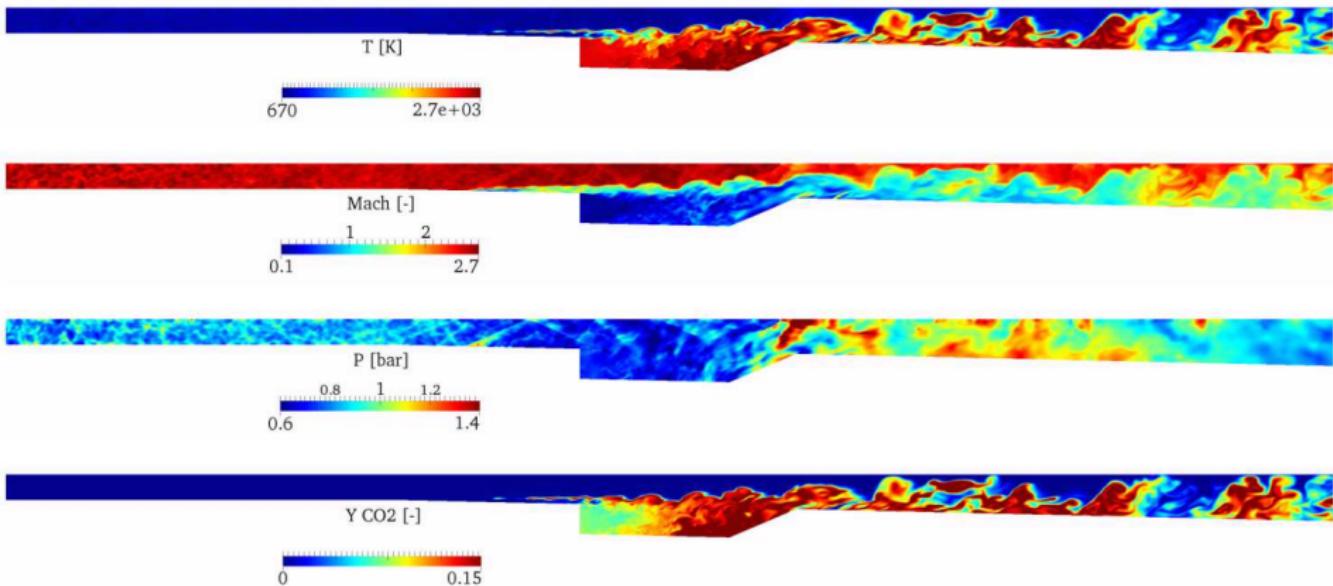
# LES Performed using RAPTOR Code Framework

Joe Oefelein – Sandia National Labs. – now at Georgia Tech

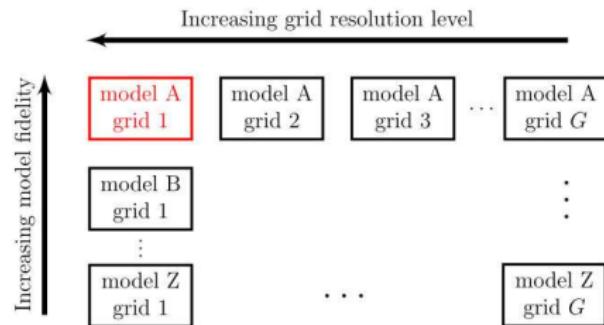
- Theoretical framework ...  
**(Comprehensive physics)**
  - Fully-coupled, compressible conservation equations
  - Real-fluid equation of state (high-pressure phenomena)
  - Detailed thermodynamics, transport and chemistry
  - Multiphase flow, spray
  - Dynamic SGS modeling (No Tuned Constants)
- Numerical framework ...  
**(High-quality numerics)**
  - Staggered finite-volume differencing (non-dissipative, discretely conservative)
  - Dual-time stepping with generalized preconditioning (all-Mach-number formulation)
  - Detailed treatment of geometry, wall phenomena, transient BC's
- Massively-parallel ... (**Highly-scalable**)
  - Demonstrated performance on full hierarchy of HPC platforms (e.g., scaling on ORNL CRAY XK7 TITAN architecture shown below)
  - Selected for early science campaign on next generation SUMMIT platform (ORNL Center for Accelerated Application Readiness, 2015 – 2018)



## Instantaneous Flow Structure – z-inj-cut – 3D d16



# Multilevel and multifidelity forms



**Telescopic sum:**

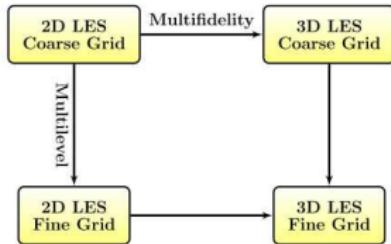
$$f_L(\lambda) = f_0(\lambda) + \sum_{\ell=1}^L f_{\Delta_\ell}(\lambda)$$

- $\ell$  indicates different grid levels or fidelity of models
- $\Delta_\ell$  indicates difference between models  $\ell$  and  $\ell - 1$

**Function approximation:**

$$f_L(\lambda) \approx \hat{f}_L(\lambda) = \hat{f}_0(\lambda) + \sum_{\ell=1}^L \hat{f}_{\Delta_\ell}(\lambda)$$

# High-D – ML/MF UQ Results



Two model forms and two mesh discretization levels

- Model form: 2D (LF) and 3D (HF) LES
- Meshes:  $d/8$  and  $d/16$

|        | 2D   | 3D   |
|--------|------|------|
| $d/8$  | 1    | 204  |
| $d/16$ | 25.5 | 1844 |

*Optimize statistical accuracy given a limited number of high fidelity model evaluations by leveraging cheaper lower fidelity simulations.*

The jet-in-crossflow problem (24 inputs):  
Five Qols extracted over a plane at  $x/d = 100$ .

- $\mathbb{E}_{y,t}$  stagnation pressure ( $P_{0,mean}$ )
- $\mathbb{E}_y$  RMS<sub>t</sub> stagnation pressure ( $P_{0,rms}$ )
- $\mathbb{E}_{y,t}$  Mach number ( $M_{mean}$ )
- $\mathbb{E}_{y,t}$  turbulent kinetic energy ( $TKE_{mean}$ )
- $\mathbb{E}_{y,t}$  scalar dissipation rate ( $\chi_{mean}$ )

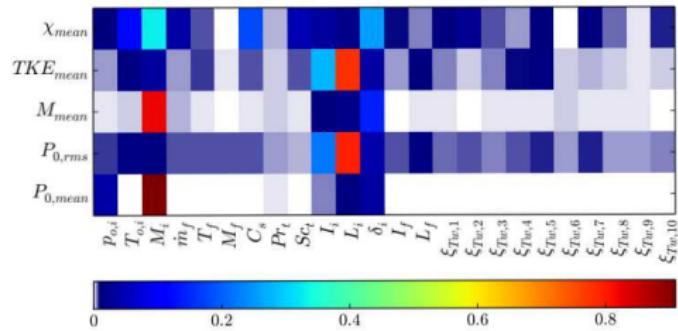
Relative computational cost for the model forms and discretization levels.

# Jet in crossflow problem: 24 parameters, 3<sup>rd</sup>-order PCE

| Parameter                       | Range                                            | Description                                                  |
|---------------------------------|--------------------------------------------------|--------------------------------------------------------------|
| Inlet boundary conditions       |                                                  |                                                              |
| $p_0$                           | [1.406, 1.554] MPa                               | Stagnation pressure                                          |
| $T_0$                           | [1472.5, 1627.5] K                               | Stagnation temperature                                       |
| $M_0$                           | [2.259, 2.761]                                   | Mach number                                                  |
| $\delta_a$                      | [2, 6] mm                                        | Boundary layer thickness                                     |
| $I_i$                           | [0, 0.05]                                        | Turbulence intensity magnitude                               |
| $L_i$                           | [0, 8] mm                                        | Turbulence length scale                                      |
| Fuel inflow boundary conditions |                                                  |                                                              |
| $\dot{m}_f$                     | $[6.633, 8.107] \times 10^{-3}$ kg/s             | Mass flux                                                    |
| $T_f$                           | [285, 315] K                                     | Static temperature                                           |
| $M_f$                           | [0.95, 1.05]                                     | Mach number                                                  |
| $I_f$                           | [0, 0.05]                                        | Turbulence intensity magnitude                               |
| $L_f$                           | [0, 1] mm                                        | Turbulence length scale                                      |
| Turbulence model parameters     |                                                  |                                                              |
| $C_R$                           | [0.01, 0.06]                                     | Modified Smagorinsky constant                                |
| $Pr_t$                          | [0.5, 1.7]                                       | Turbulent Prandtl number                                     |
| $Sc_t$                          | [0.5, 1.7]                                       | Turbulent Schmidt number                                     |
| Wall boundary conditions        |                                                  |                                                              |
| $T_w$                           | Expansion in 10 params<br>of $\mathcal{N}(0, 1)$ | Wall temperature represented via<br>Karhunen-Lo  e expansion |

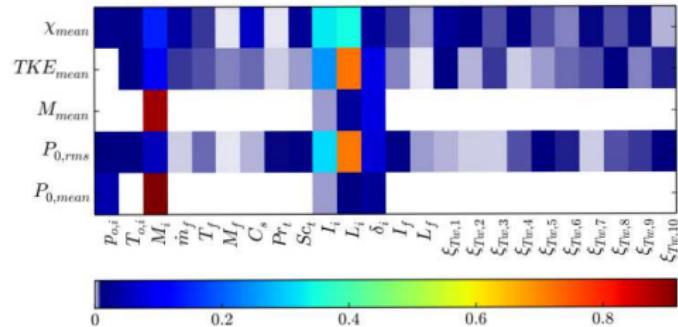
- Qols computed at  $x/d = 100$ , averaged over  $(y, t)$
- 2D runs: 1939 (coarse grid), 79 (fine grid)
- 3D runs: 46 (coarse grid), 11 (fine grid)

# Unit problem: total sensitivity



Multilevel expansion of:

$$\hat{f}_{2D,d/16} = \hat{f}_{2D,d/8} + \hat{f}_{\Delta_{2D,d/16-2D,d/8}}$$

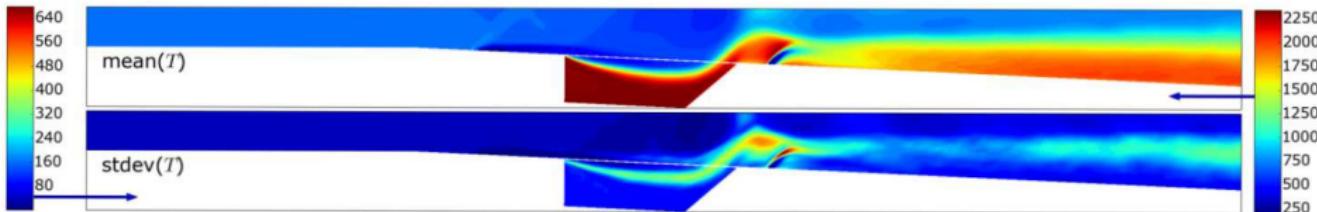


Multifidelity expansion of:

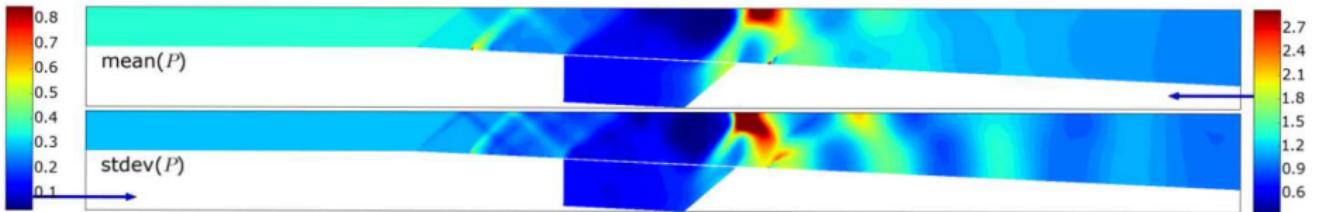
$$\hat{f}_{3D,d/8} = \hat{f}_{2D,d/8} + \hat{f}_{\Delta_{3D,d/8-2D,d/8}}$$

# MC-Predicted Uncertainty in Mean Flow Quantities – 3D

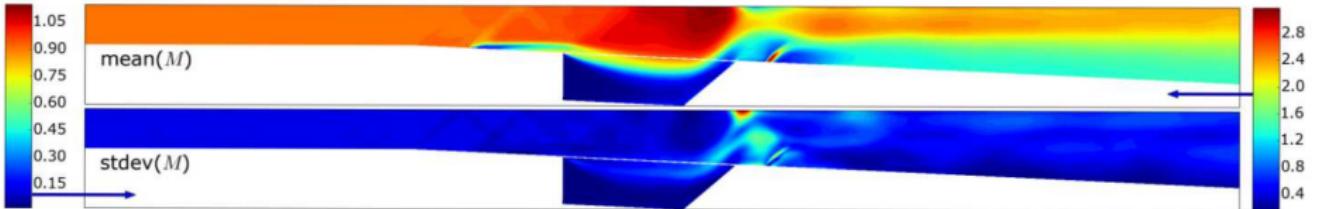
Temperature [K]



Pressure [bar]

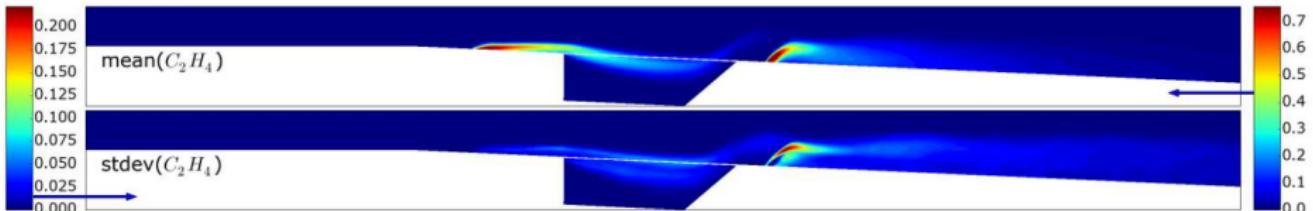


Mach Number

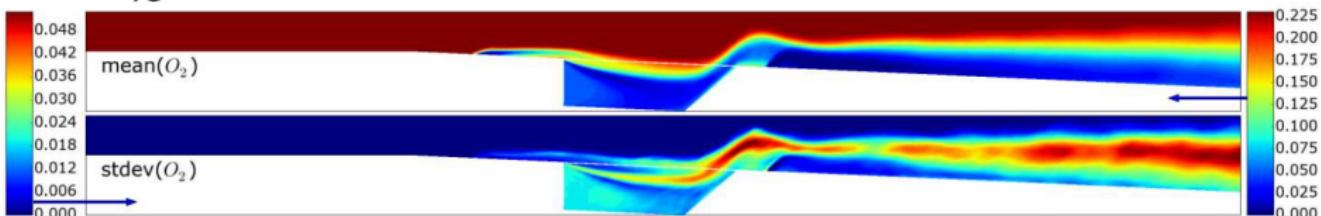


# MC-Predicted Uncertainty in Mean Flow Quantities – 3D

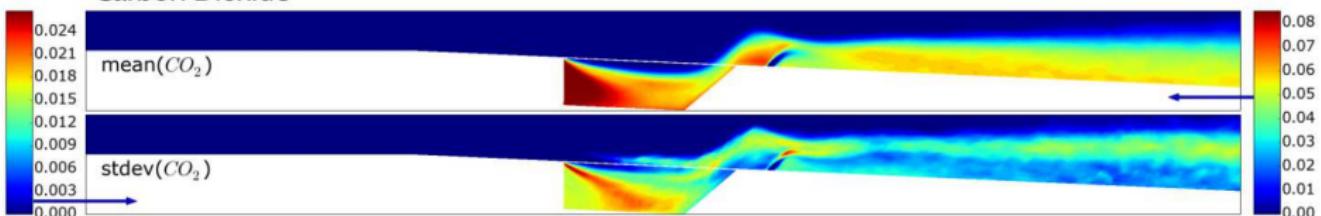
Ethane



Oxygen



Carbon Dioxide



# Discussion and Closure

- Necessary workflow for UQ in large-scale computational models
  - Global sensitivity analysis to cut dimensionality, assisted by
    - Polynomial Chaos regression
    - $\ell_1$ -norm regularization / compressive sensing
    - Multilevel Monte Carlo & Multifidelity
  - Adaptive sparse quadrature forward UQ on reduced dimensional space
  - Resulting PC surrogate can be used in Bayesian inference on model parameters and optimization under uncertainty
- Other avenues to re-cast the problem in low-D:
  - Basis adaptation & active subspace methods
  - Manifold discovery, e.g. via Isomap or diffusion maps
  - Low rank tensor methods, etc
- Caution: Noisy computational Qols due to finite averaging windows