SAND2019- 12044PE

Fugu: Algorithm Development
for Neuromorphic Hardware

I Y i Ll | i
| — X1y :
T -
“‘\. N L. - . ™ =~

Presented by: Srideep Musuvathy f> 5 Adms HCCR

Team: Brad Almone’ Suma Cal’dWCH, FranCCS ChaﬁCC, Ryan Sandia National Laboratories is a multimission
o “ W laboratory managed and operated by National
Dellana, Yang HO’ Leah Reeder, Wllllam SCVCra, Cralg Technology and Engineering Solutions of Sandia
. . LLC, a wholly owned subsidiary of Honeywell
V in c y a r d F c 1 1X Wa n g International Inc. for the U.S. Department of
? Energy’s National Nuclear Security Administration

under contract DE-NA0003525.

Spiking neuromorphic hardware will have significant, widespread
impact if we can both demonstrate compelling utility (algorithms),
and facilitate usability (software)

.| 3 types of neuromorphic users

RN TN

N\ N\

Typical Neural Neural
Computer Algorithms Architecture
Scientist Researcher Developer

.| 3 types of neuromorphic users...

| need to solve a
[yadda yadda yadda...]
algorithm; | heard neur
hardware can do it!

Algorithm yadda yadda yadda
Initialize with data
a=fl (start)

b=f2 (a)

while b != 0
c=f3 (b)
b=f4 (c)

end

Goals for this user:

J Never have to learn anything about
neurons!

O Program like any other machine

(d Take advantage of libraries and great
performance!

| 3 types of neuromorphic users...

| have an idea for
programming a neural
algorithm to solve the first

yadda in the - | leoritn iy
eural algorithm yadda
[yadda yadda yadda'”] Initialize neurons
algorithm! popl = neurons (3)
pop2 = neurons (4)
pop3 = neurons (3)
pop4 = neurons (2)
® O connl 2 = synapses|(5)
- connZ2 3 = synapses|(2)

Goals for this user:

1 Can create spiking neural algorithms!

O Program independently of underlying
hardware

1 Create libraries for first set of users.

6 | 3 types of neuromorphic users...

L a

/

" >
//’—\(\ \/
| know how to tailor the
hardware platform to
enable sparse synapses to
>~ be more efficiently

& accessed for yadd

A(\w

Module neuralCore (pop, syn)
for n in core
neuron (n) .v=pop(n) .v_ini
neuron (n) .v_t=pop(n).v_t
for s in core
synapse (s) .w=syn(s) .w
synapse (s) .source=syn (s)
synapse (s) .targ=syn(s) .t

Goals for this user:

d Can compile algorithms onto specific
hardware platforms

1 Interested in optimizing algorithms for
hardware constraints

L Create libraries for first set of users.

7 | Fugu aims to bring neuromorphic solutions
to general computing world

Typical Computer

Scierists Wants to program with libraries

Neural Architecture

Wants to program hardware directly
Developer

| Algori
Neural Algorithm Wants to program with neurons
Researcher

8|

Potential Tor neuromorpn
extend farther than antici

[y
“‘§‘”%
AR

(e]e]ele]e] lelelele)

C computing may
nated

G b 0

L N AR

$

I [b &g &4 &S

‘f & & & e 8 &

T & L o W 8
Entorhinal

b W b
Cortex

-

ANC A

®
Dentate Gyrus ' b

5

o

CA3

b &

[

Synapses:
/\\ .
LIGHT inhibitory O

electrical ~A\A—

SRS FEEEIEE NS, | T T— 'Iv------()

neural algorithms and kernels

Machine Learning

Convolutions
k-Nearest Neighbor

Support Vector Machines

d Many ‘kernels’ used for common neural
computation are important for
conventional algorithms as well

(1 Neural hardware is capable of
reasonable performance on many non-
ML kernels as well

 View neural algorithms as composable
from linking together neural circuits to
solve broadly useful kernels

4

Application

- - - -

]D|ChaHenges

 For spiking neural networks, it is (very) hard to

d Implement someone else’s network

 Integrate multiple kernels into an algorithm

1 Port networks designed for one platform to another

Algorithm

Insert Brick A, input IN //BA=£, (
Insert Brick B, input A //B=£5(
Insert Brick C, input A //C=£(
Insert Brick D, input B, C //D=fj(

W e

\vvz

Q
e $Z3Z3999°@&S§9 449 S |

Scaffold Not actual syntax or network

11

Fugu Overview

. | Fugu Overview

Spiking NeuromorphPIatforms
Il Il I I D S S e . '

Under development
Collaborators welcome!

13 | Fugu OverVIeW - Goals Algorithm |

Insert Brick A, input IN //B=f, (in)
Insert Brick B, input A //B=f4 (R)
Insert Brick C, input A //C=f.(R)
Insert Brick D, input B, C //D=f,(B, C)

O Common linking framework for implementing spiking

algorithms

O Leverage and combine community’s recent progress

O Hardware-independent intermediate representation

O Ability to rapidly change platforms
O Procedural definition of network connectivity
O Kernels and algorithms can scale according to problem
Size
O Flexible, pre-determined communication methods

O Simple interactivity

Not actual syntax or network

14 I Fugu Overview - What Fugu is

* Fuguis a linking framework

* |t's “easy” to build spiking circuits for a single computation
* |t's hard to do application-level computation on neuromorphic

* We provide a mechanism to combine small computational kernels
(Bricks) into large computational graphs

* Fuguis aspec

* For the Bricks to transfer information, we need to agree on data
formatting

* For computation to be consistent, we need to agree on neuron
behavior (lowest common denominator®)

* For this to be useful, we need a hardware independent intermediate

representation

*Usually, for most cases

» | Fugu Overview — What Fugu is not

* Fugu includes but is NOT a simulator ‘

» Uses reference simulators ‘ds” and ‘snn” which can quickly run small-medium
sized spiking networks |

e Simulators instantiates the fugu neuron model (discrete time, point synapses)

* Fugu is designed to support a variety of backends including hardware
platforms

* Fugu includes but is NOT a spiking algorithm

 The goal of Fugu is to have a library of Fugu Bricks for many kernels
* We’re hoping that the community will help contribute
* Fugu includes but is NOT a graph utility

* NetworkX provides (nearly) all of our graph functionality

* Node and edge properties are inherent in NetworkX and only become
meaningful when interpreted by a backend

| Fugu Overview

/) | 9 \\
Remote D ¢ Scientific N\ y
Sensing Computing : < _ .
N J
y b N // \\
/ \\\\\ 4 AN
y, y \ y / \\
(bs & e b
\ Simulator Loihi D
N / N y
\\\\ 4 \ y
N . P

Define Convert to

Computational Bmgir:e:ral Backend Eoncir
Model . (Representation Platform
LAY Platform Specific Specific

Python

Python

NetworkX
Python

Legend

Platform

Build

Library of e Specific
g Individual PELIVC
Functions Bricks Compilation
NetworkX Python
Python NetworkX
y Python Platform
Specific

| Q Convolution) "

// B ¥
N\ N Q
\\ N Y
y.

Graph \
Algorithms
y

\\\\ 9
4 N A
A 4 \
y

\\

\

(_ Examples

N2A) N
y A
\// \ //
4 : /

17

Software Design and Organization

:
M Building a computational
graph . __ Scaffold ‘

. | Software Design m

Example Computational Graph

d Fugu algorlthms: are d<?5|gned e
using computational directed on a map within -
. a vehicle’s range.
acyclic graphs
[Nodes = Functions

J Edges - Data flow

Input
Classification
Graph Search

Constraint
Met?

 Overall Fugu algorithm graph

- Scaffold
 Neural circuits for functions Tt 1® 2 can be implemented by a distinct
=> Bricks ~ " neural circuit

Each function within the algorithm |

. | Software Design

e Key Classes:
e Scaffold ‘
* Provides the main entry point for people using Fugu

 Manages the computational graph (Scaffold.circuit), metadata, |
backend, and network graph (Scaffold.graph)
 Fugu.Scaffold in Fugu.py
* Brick
* Represents a fundamental spiking computational kernel |

* Spiking algorithms should inherit from Brick (or one of its subclasses);
Fugu.Brick is an abstract class

* Responsible for building a portion of the network graph |
e Fugu.Brick in Fugu.py |

. | Software Design — More about Bricks

e S :‘;!,'/{’, T
O Fugu will contain a growing library of bricks ",,'},)
M Bricks can be linked together to compose bigger ey ..
algorithms

1 Bricks are individually responsible for

1 Building their portion of the graph

(1 Adapting to a list of acceptable input codings
(unary, binary, temporal, etc)

 Scaling to the input dimensionality
M Providing an output in a standard representation

 Incorporating any specialized components (e.g.,
learning)

.| Example of Linking

You can think of the scaffold as linking bricks’ graphs together and those graphs adjust as needed.
trassen) Matrix Multiplication SpikeSort

Xin

i[....’..;J

Xia

! 00000000

"Wmm

.| Example of Linking

Build process

The scaffold holds references to each brick, ‘lays’ the bricks iteratively, and each brick builds its portion of
the graph when all build conditions are satisfied.

= S = Scaffold.circuit isa
= (@) .
5 @ = NetworkX Digraph of
o = £ = subclasses of
Y e = g Fugu.Brick
v O A —
e
S
S Control Flow for a Bricks’ building
i : process
o
o A Brick
& - isBuilt
O —
n

These bricks have been built (i.e. their portions of
Scaffold.graph are complete).

.| Software Design

* The scaffold (mostly) handles coding issues for

the User

* Extenders, however, do need to worry about
codings; bricks are built to a list of acceptable
codings

Coding Types

hame —— Joeserpuon |

Unary coding, large values first

unary-L

binary-L

temporal-L
Raster
Population
Rate
Undefined

Current

Unary, small values first
Binary, large values first
Binary, small values first
Temporal, large values first
Temporal, small values first
Grid-like array

active represents value
Rate coded neurons
Neurons without a coding

Used for pre-threshold
computation

. | Software Design — More about backends

1 A backend generates platform-specific
code from the platform-independent
network graph (Scaffold.graph)

M Included in Fugu today are basic
reference simulators ‘ds’ and ‘snn’

[The backend handles inputs
(represented by input bricks)

(1 Hardware platform backends can be
developed by hardware partners
(though we hope to provide a few as
well)

-

Scaffold

Metadata

4 N
Scaffold.circuit
(NetworkX Digraph)
. J
()
Scaffold.graph .
(NetworkX Digraph)

. /1
4 Backend \
4)

S

2/

B Dash P -+ = g
&« -5 Q@ G ® 127.0.0.1:8050 e Q_ search o =
Sandia
) faona |
Labo
scaffold.circuit decode results
P output neurons
& = }
. 1, 2 ‘
B - view decoded results here
3 o ‘ %
spike raster
16
14
scaffold.graph 12
5 .
o 10 *
g .
e B .
c
24
35 6
(]
| 2 .
4 .
2 .
0 -
0 0.5 1 15 2 2.5
time
hover over a node to view its attributes
timestep
3
. v Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energya€™s National@
OENERGY .’y._‘& Security Administration under contract DE-NA0003525.

| Impacting Broad Areas of Computation

Scientific Computing
Linear Algebra Particle Method Density Method

Circuit per walker Circuit per position

Pattern Matching

w
Optimizations
) 1

. —) Y " B similacity foyes
x; T) Wi%;m_) 5 Smin o ::;E: X _,1 p1(t)

_fwepapy tO#D] inner-take-all B | :
Xp W%ﬁ— 5 winner-take-a Neural NN %j% g ".j p;(t)
. EM:] Xp pp(t)

Algorithms] @

NN

WH ETSTONE

: .
@ @ . 1: E : sl — Cooee G000

Context Modulated Deep Learnmg Adaptive Deep Learning

28

Whetstone

Whetstone Overview

Whetstone provides a drop-in mechanism for tailoring a
DNN to a spiking hardware platform (or other binary
threshold activation platforms)

 Hardware platform agnostic

 Compatible with a wide variety of DNN topologies

* No added time or complexity cost at inference
 Simple neuron requirements: Integrate and fire

oY)
=
=

e
=

i

Adaptive

Sharpener

Callback

Spiking Platform

(N2A)

Network

Whetstone Overview

* Generally, gradient descent generates a sequence of weights A;
with the goal of

minimizing the error of f(A;x) in predicting the ground truth v.

* We generalize this by replacing the activation function f with a
sequence fi such that fi -, f, where f is now the threshold

activation function.

* Now, the optimizer must

minimize the error of f,(A4;x) in predicting v.

* Since the convergence in neither i nor k is uniform, this is a

ocess

mathematically dangerous idea Training P'
 However, with a little care and a few tricks, the method reliably

converges in many cases.

Whetstone Overview

When/Where do we decide to ‘sharpen’ the activations?

1) Bottom-up Sharpening (The ‘toothpaste tube’
method)

Begin sharpening at the bottom layer
Wait until previous layer is fully sharpened
Increases stability of convergence

2) Adaptive Sharpening Callback

Hand-tuning sharpening rates is hard

Instead, use loss as a guide for an adaptive
sharpener

Adaptive sharpener implemented as a callback
automatically adjusts sharpening based on loss
thresholds

Original Model Example

Modified Model Example

model.add(Dense(256))
model.add(Activation(‘relu’))
model.add(Dense(10))
model.add(Activation(‘softmax’))

model.fit(x,y)

model.add(Dense(256))
model.add(Spiking BRelu())
model.add(Dense(10))
model.add(Spiking Brelu())
Model.add(Softmax_Decode(key))

sharpener = AdaptiveSharpener()
model.fit(x,y,callbacks=[sharpener])

DQN

Autoencoders

Semantic Segmentation (Trained on COCO Dataset; Videos from HMDB51 Dataset)

Effective Across Various Topologies, Datasets,
and Tasks
Residual Networks with Sip Connections

_ . Accuracy and Loss
|

25

SUN—==~TOMONOIPTT L
SN~~~ OMONRY T~
TN~ o inmy o
F=S NN~ N~ =inn>Q
SOV —-—0U{QATMOT Ty
SOV ~—LWVWHOAIFMOITF
SO\ n TR >
TN FA\ NN YDIND o>
QIO TTNNLMNMLYH+CVWINTS
QO TINNM T8
~O0NCNTFTIECS =S ™~
~O0D N>V TS—=—(NOTY ™+~ —
NANDIECT~r N9 o
NAND I AT~ ANO N0 oD
N oV —PFTTNOOCIS ~ TN
NPSTTO—FT AN — T in

Y\W"“‘«\-

4
Y \J’\Iﬂ"’""lwl/‘,;ww

T o T e L
L\"L);ﬁ Wy v (‘u’.‘ “-\\Iﬂ'r Wy M)lw \ WAL 11'%") N"A-“w’\“

Rl A
MW \IlJ! i,

A
| ‘l4 !"‘*,’"#H N

A\
WA YT

.. Layers Sharpened

Established Deep Learning Technigques

Accuracy Across Optimizers and Learning Rates
* Sharpening process is sensitive to

optimizer selection 1]

* Adaptive optimizers often work

Q
o)

better

e Learning rate modulation by moving

Accuracy
o
[#)]

© :
~

average seems to help stability
* A custom Whetstone-aware

optimizer is in early stages .

adagrad adamax

34

Scientific Computation on neuromorphic hardware

, | PURPOSE, GOALS AND APPROACH

Research Question

Can neuromorphic platforms be used for efficient and valid
numerical computation critical to Sandia’s mission?

Emerging low-power computing platforms can potentially
dramatically change how we approach our high-performance
computing mission

Only ~1% . L _
neuromorphic How is this different from previous research?
applications are
not ANN-like . ;
[Neuromorphic computing research has generally
These aren’t focused on Al applications
solving PDEs... O Simi ' . : .
Similarly, primary emphasis on application to
S — scientific computing is on machine learning

henq;i':d'ﬂnn’rofa.:bms ponds to the ber of works in
which a newromorphic system was developed for that application.

Katie Schuman, ORNL 2017

. | Spiking random walk algorithms —

diffusion is a pure scientific computing task for

spiking algorithms

 Diffusion can be modeled either as a
deterministic PDE or a stochastic process

* For an initial distribution of particles, P, what is
distribution of particles at time t?

e Diffusion can be modeled as the PDE

dC(x,t) 82C(x,t)
— - D
ot ox
with B.C. + I.C.

e Stochastic process implements many random
walkers to statistically approximate a solution

* Mean position of N walkers approaches expected
mean of deterministic solution at rate of 1/sqrt(N)

One dimensional random walk case

* Model:

L S G T
] Y 1
1-p4-p;

e Stochastic Brownian motion

* Particle can either move or not (1-D case: probability p, right or p, left, with 1-
p,-p, for no move)

e Approximating PDE solutions requires sampling over MANY particles

e Goal: Ensemble of neurons that represent stochastic particles, such that
* Efficient to update (randomly add / subtract value)
* Has sparse representation
* Requires few neurons
 Scalable across multiple dimensions / multiple particles

Two spiking algorithms for random walk with different costs and
s | benefits

Particle Method Density Method

Circuit per walker Circuit per position

Each method offers unique advantages

* Particle method ‘
* Path dependent behavior is readily available
 Communication is entirely local within particles (embarrassir
e With unlimited neurons, can run in constant time T

* |deal for sparse particles in large spaces lﬁ
|

* Density method
* Densities are readily available at all times
* Non-local or other complex graphs can easily be implemented

* With limited neurons, can tradeoff statistical approximation (i.e., number
of walkers) with longer or shorter simulations

 |deal for dense particles in small spaces

— ~— — vlvvv--' - — e W e = TR B e ot S

vertex of mesh

* Each vertex encodes
density of particles in the
internal potential of certain
nodes

e Each time step “hands off”
particles to connected
vertices according to
probabilistic maps

From Other Units
|

Walker .“/

Counter

Supervisor

Walker memory
Connection memory
Total neurons

Time per physical timestep

Position energy per timestep

Update energy per timestep

W .
Butter g~ '

Readout
v

To Other Units
.

Walker

1Y Generator
\/

P s LA

. |
o i Output
i 5» E™ n Gales

™

.

~ ‘o,

ol

L,

Probability Gate

Cost (for k locations, simulating N

walkers; 1-D case)

0(1)
0(k)
0(k)

O(max(p;)), where p; is the density of

walkers
O(N)
O(N)

at each location

Density model can model arbitrary graphs,
enabling complex behaviors

* This example uses a mesh with
one-way edges that permit
walkers to move into colored
parts of the image, but not out

« Scale of simulation
1600 vertices
« 8000 walkers
* 1000 timesteps
19205 neurons
« 60802 synapses

Applications of Random Walks to solve PDE

* Numerous applications:
e Diffusion equations
e Radiation transport
* Capacitance

* Not a traditional machine learning application
* Highly scalable at low power budgets

Concluding thoughts

* Fugu provides a framework for rapid development of general
neural algorithms

* Fugu enables backend agnostic development
* Makes benchmarking easy

* Whetstone can help with building bricks

* Neural algorithms can target a wide array of applications
* Enables neuromorphic hardware to be used for in several domains

