
Fugu: Algorithm Development
for Neuromorphic Hardware

Presented by: Srideep Musuvathy

Team: Brad Aimone, Suma Cardwell, Frances Chance, Ryan
Dellana, Yang Ho, Leah Reeder, William Severa, Craig
Vineyard, Felix Wang

.141:1V49rICED
SimuLdwrion
CornpuTirm- :r.CCR

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology and Engineering Solutions of Sandia
LLC, a wholly owned subsidiary of Honeywell
International inc. for the U.S. Department of

Energy's National Nuclear Security Administration
under contract DE-NA0003525.

SAND2019-12044PE

Spiking neuromorphic hardware will have significant, widespread
impact if we can both demonstrate compelling utility (algorithms),

and facilitate usability (software)

3 3 types of neuromorphic users

Typical

Computer

Scientist

Neural

Algorithms

Researcher

Neural

Architecture

Developer

4 3 types of neuromorphic users...

i

l need to solve a
[yadda yadda yadda...]
algorithm; l heard neur

hardware can do it!

/
Algorithm yadda yadda yadda

Initialize with data

a=f1 (start)

b=f2 (a)

while b != 0

c=f3 (b)

b=f4 (c)

end

Goals for this user:
❑ Never have to learn anything about

neurons!
❑ Program like any other machine
❑ Take advantage of libraries and great

performance!

5 3 types of neuromorphic users...
l have an idea for

programming a neural
algorithm to solve the first

yadda in the
[yadda yadda yadda...1

algorithm!

/
Neural algorithm yadda

Initialize neurons

popl = neurons(3)

pop2 = neurons(4)

pop3 = neurons(3)

pop4 = neurons(2)

connl 2 = synapses(5)

conn2 3 = synapses(2)

Goals for this user:
CI Can create spiking neural algorithms!
CI Program independently of underlying

hardware
CI Create libraries for first set of users.

6 3 types of neuromorphic users...

\

l know how to tailor the
hardware platform to

enable sparse synapses to
be more efficiently
accessed for yadda

/
Module neuralCore(pop, syn)

for n in core

neuron(n).v=pop(n).v ini

neuron(n).v t=pop(n).v t

for s in core

synapse(s).w=syn(s).w

synapse(s).source=syn(s)

synapse(s).targ=syn(s).t

Goals for this user:
❑ Can compile algorithms onto specific

hardware platforms
❑ Interested in optimizing algorithms for

hardware constraints
❑ Create libraries for first set of users.

Fugu aims to bring neuromorphic solutions
to general computing world

Typical Computer

Scientists

Neural Algorithm

Researcher

Neural Architecture

Developer

Wants to program with libraries

Wants to program with neurons

Wants to program hardware directly

Potential tor neuromorphic computing may
extend farther than anticipated

Entorhinal
Cortex _

Dentate Gyrus

CA3 41

CA1

WHETSTONE

0 0 ED 0 • 0 0 0 (11.

'a:

•
•

us.
sosisX s

4, e-9 4 4
,-, 161 ,* ,u9 •

4, 4 4
✓NI 4 4 4 4 4
4C4 4 4 4 4 4 4

e,-,) 4 4 .4, 4 4r 4

141

1141

L IGHT

4 4 4 4

Se•ground Objecl

- - V -

9 I neurl algorithms and kernels

Machine Learning

Whetstone

Convolutions

k-Nearest Neighbor

Support Vector Machines

i— - -(...)

CI Many 'kernels' used for common neural
computation are important for
conventional algorithms as well

CI Neural hardware is capable of
reasonable performance on many non-
ML kernels as well

CI View neural algorithms as composable
from linkin together neural circuits to
solve broa ly useful kernels

Application
"`•.‘,.
•
i

10 Challenges

Algorithm

Insert

Insert

Insert

Insert

CI For spiking neural networks, it is (very) hard to

CI Implement someone else's network

CI Integrate multiple kernels into an algorithm

CI Port networks designed for one platform to another

Brick A,

Brick B,

Brick C,

Brick D,

input IN

input A

input A

input B, C

//A=fA(in)

//B=fB(A)

//C=fc(A)

//D=fp(B, C)

Sca o d Not actual syntax or network

Fugu Overview

12 Fugu Overview

Whetstone

(Spiking for Keras)

Specialized Deep

Learning Extensions

FUGU
Python API

Various Spiking Kernels

(xcorr, cn•k crt ty

Strassen)

Machine Learning Applications

•
Custom

Corelets •

Neural Random

Walkers

Numerical Computing Applications

■

MI4

Spiking Neuromorphic Platforms
41=

mi*

Under development
Collaborators welcome!

13 Fugu Overview - Goals

O Common linking framework for implementing spiking

algorithms

O Leverage and combine community's recent progress

O Hardware-independent intermediate representation

O Ability to rapidly change platforms

O Procedural definition of network connectivity

O Kernels and algorithms can scale according to problem

size

O Flexible, pre-determined communication methods

O Simple interactivity

Algorithm

Insert Brick A, input IN //A=fA(in)

Insert Brick B, input A //B=fB(A)

Insert Brick C, input A //C=f,(A)

Insert Brick D, input B, C //D=f,(B, C)

Scaffo d

Not actual syntax or network

14 Fugu Overview -What Fugu is

• Fugu is a linking framework

• It's "easy" to build spiking circuits for a single computation

• It's hard to do application-level computation on neuromorphic

• We provide a mechanism to combine small computational kernels
(Bricks) into large computational graphs

• Fugu is a spec

• For the Bricks to transfer information, we need to agree on data
formatting

• For computation to be consistent, we need to agree on neuron
behavior (lowest common denominator*)

• For this to be useful, we need a hardware independent intermediate
representation

*Usually, for most cases

15 Fugu Overviev. What Fugu is not

• Fugu includes but is NOT a simulator

• Uses reference simulators (ds' and ̀ snn' which can quickly run small-medium
sized spiking networks

• Simulators instantiates the fugu neuron model (discrete time, point synapses)

• Fugu is designed to support a variety of backends including hardware
platforms

• Fugu includes but is NOT a spiking algorithm

• The goal of Fugu is to have a library of Fugu Bricks for many kernels

• We're hoping that the community will help contribute

• Fugu includes but is NOT a graph utility

• NetworkX provides (nearly) all of our graph functionality

• Node and edge properties are inherent in NetworkX and only become
meaningful when interpreted by a backend

16 1 Fugu Overview

Remote Scientific
Sensing Computing

image
Processing

Define
Computational

Model
Fugu

Python

KF.ibrary ofunctions
Networkx
Python

Convolution

Filters

Build Neural
Graph

NetworkX
Python

Graph
Algorithms

Build
Individual
Bricks /

NetworkX
Python

Convert to
Backend

Representation
Platform Specific

Python

Platform
Specific

Compilation
Python
Platform
Specific

SpiNNaker

DS
Simulator

Execute
Platform
Specific

Legend

Workflow

Code

17 1

Software Design and Organization

18 Software Design

CI Building a computational
graph

CI Fugu algorithms are designed
using computational directed
acyclic graphs

CI Nodes 4 Functions

CI Edges 4 Data flow

CI Overall Fugu algorithm graph
4 Scaffold

CI Neural circuits for functions
4 Bricks

Example Computational Graph

r

Find a destination

on a map within

a vehicle's range.

,

-IM -:j1-

Bricks

r

Cl
as

si
fi

ca
ti

on

L A

Scaffold

,

Co
ns
tr
ai
nt

)

Each function within the algorithm
can be implemented by a distinct
neural circuit

Software 'Design
• Key Classes:

• Scaffold

• Provides the main entry point for people using Fugu

• Manages the computational graph (Scaffold . circuit), metadata,
backend, and network graph (Scaffold . graph)

• Fugu.Scaffold in Fugu.py

• Brick

• Represents a fundamental spiking computational kernel

• Spiking algorithms should inherit from Brick (or one of its subclasses);
Fugu . Brick is an abstract class

• Responsible for building a portion of the network graph

• Fugu.Brick in Fugu.py

20 Software Design More about Bricks

CI Fugu will contain a growing library of bricks

CI Bricks can be linked together to compose bigger
algorithms

CI Bricks are individually responsible for

CI Building their portion of the graph

CI Adapting to a list of acceptable input codings
(unary, binary, temporal, etc)

CI Scaling to the input dimensionality

CI Providing an output in a standard representation

CI Incorporating any specialized components (e.g.,
learning)

II

21 Example of _inking

You can think of the scaffold as linking bricks' graphs together and those graphs adjust as needed.

p
0
0
0
0
0
0
0

•
•
•
•
•
•
•
•

•

•
•
•
•

•
•

rie•••
.••••
•••frob
•••efe
MOO Kest

• • •••00
larar"

2 2 Example of _inking
The scaffold holds references to each brick, 'lays' the bricks iteratively, and each brick builds its portion of

the graph when all build conditions are satisfied.

• *
re
•
 ro
ce

ss
in

*

A
m
u
r
w
s
u
n
i

These bricks have been built (i.e. their portions of
Scaffold.graph are complete).

ea
rM

IM
IT

MI
R

*

A Brick
is Built

/

*
Scaffold. circuit is a

NetworkX Digraph of

subclasses of
Fugu . Brick

Control Flow for a Bricks' building
process

Are all
input
bricks
built?

i
Wa it

-

 .

I

Build local
graph

1
Report
Built

23 Software r)esign

• The scaffold (mostly) handles coding issues for
the User

• Scaftoia may provide automatic casting
between codingc

• Extenders, however, do need to worry about
codings; bricks are built to a list of acceptable
codings

Coding Types

escription

Unary coding, large values first

unary-L Unary, small values first

Binary, large values first

binary-L Binary, small values first

Temporal, large values first

temporal-L Temporal, small values first

Raster Grid-like array

Population # active represents value

Rate Rate coded neurons

Undefined Neurons without a coding

Current Used for pre-threshold

computation

24 Software r-)esign More about backends

CI A backend generates platform-specific
code from the platform-independent
network graph (Scaffold . graph)

CI Included in Fugu today are basic
reference simulators (ds' and ̀ snn'

CI The backend handles inputs
(represented by input bricks)

CI Hardware platform backends can be
developed by hardware partners
(though we hope to provide a few as
well)

Scaffold

7'

Scaffold.circuit

(NetworkX Digraph)
Bricks

Li.Scaffold.graph

(NetworkX Digraph)

I
r

latform-Specific Code

Backend
.

Neurons

1
I

1
1

® 127.0.0,1

scaffold.circuit

scaffold.graph

hover over a node to view its attributes

timestep

decode results
output neurons

view decoded results here

spil,T raster

n
e
u
r
o
n
 n
u
m
b
e
r

14

12

10

8

6

4

2 •

0 •

0

* Q. Search

0.5 1 1.5 2

time

111\ 0 E

k:odinaal

 Laboratori

CIOa , I, c.,..„3, Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia LLC a wholly owned subsidiary of Honeywell lntemational Inc for the U S Department of EnergyaC's National

OENEitGY .1.14.1.— Security Administration under contract DE-NA0003525

27

Xp

Impacting Broad Areas of Computation

Pattern Matching

Optimizations

. ,.,,„. vt..„.„.....,_.

winner-take-all

WHETSTONE

Context Modulated Deep Learning

Linear Algebra
Tee c!) al)
/

mi am

"nodes

O

Parti

Circuit per walker

Scientific Computing

Density

Circuit per position

siindarity layer

x„ • pl(t)

n,

pi(t)

ni

P • At)

np

Machine Learning

Intelligent Storage

Li

Adaptive Deep Learning

•

28 1

Whetstone

Whetstone Overview

Whetstone provides a drop-in mechanism for tailoring a
DNN to a spiking hardware platform (or other binary
threshold activation platforms)
• Hardware platform agnostic
• Compatible with a wide variety of DNN topologies
• No added time or complexity cost at inference
• Simple neuron requirements: Integrate and fire

Keras
Model

J L

Adaptive
Sharpener

Callback

J L

CUDA

Spiking Platform
(N2A)

•

"
=
M
1
 =
=
.
N

Whetstone Overview
• Generally, gradient descent generates a sequence of weights Ai

with the goal of

minimizing the error of f (Aix) in predicting the ground truth y.

• We generalize this by replacing the activation function f with a

sequence fk such that fk f, where f is now the threshold

activation function.

• Now, the optimizer must

minimize the error of fk(Aix) in predicting y.

• Since the convergence in neither i nor k is uniform, this is a

mathematically dangerous idea

• However, with a little care and a few tricks, the method reliably

converges in many cases.

Training Process

Whetstone Overview
When/Where do we decide to 'sharpen' the activations?

1) Bottom-up Sharpening (The 'toothpaste tube'
method)

• Begin sharpening at the bottom layer

• Wait until previous layer is fully sharpened

• Increases stability of convergence

2) Adaptive Sharpening Callback

• Hand-tuning sharpening rates is hard

• Instead, use loss as a guide for an adaptive
sharpener

• Adaptive sharpener implemented as a callback
automatically adjusts sharpening based on loss
thresholds

Or
ig
in
al
 M
o
d
e
l
 E
x
a
m
p
l
e

Mo
di

fi
ed

 M
o
d
e
l
 E
x
a
m
p
l
e

model.add(Dense(256))
model.add(Activation(`relu'))
model.add(Dense(10))
model.add(Activation(`softmax'))

model.fit(x,y)

model.add(Dense(256))
model.add(Spiking_BRelu())
model.add(Dense(10))
model.add(Spiking_Brelu())
Model.add(Softmax_Decode(key))

sharpener = AdaptiveSharpener()
model.fit(x,y,callbacks=[sharpener])

Effective Across Various Topologies, Datasets,
• and Tasks

Semantic Segmentation (Trained on COCO Dataset; Videos from HMDB51 Dataset)

Residual Networks with Skip Connections
Accuracy and Loss

0.7

0.65

0.6

0.55

0.50
100

21 Layers Sharpened

14

7

D

400

100 200 300 4C7.

Autoencoders

7 7 2_ / 1C. - r(I I
CC??C)0(0(9 (100 I 5 5

7 -7 Li 9 .7 6 (42 14P
Li 'I 0 0 `-/ 0 1 1 3 3 1 1
3 3 Li 7 7 7-7 1 1 2- 1, f

7144/..2-i35511))
41 6 6 -3'3 5 5- '3 (.9 Cia 0 0

Li 14 l 1 9 9 —7 2 .9 ci .;

7 7 si %F.,(4' 433on-7 -200

+1 n 6 6a.2-1risraiiI77 7. 2,
(0(4/ / 3 3 6 6 9 3 3 I ti-
\ T C• int 9 (0 (f. 0 0 5 5- J-1 14
q ci /114 Li 8 3 7

3 3 9' ? q

S S 6 %-r a e4 0 C

DQN

•

Established Deep Learning Techniques

• Sharpening process is sensitive to

optimizer selection

• Adaptive optimizers often work

better
0.8

• Learning rate modulation by moving ra
z - 0.6

average seems to help stability i=c

• A custom Whetstone-aware 0.4

optimizer is in early stages
0.2

Accuracy Across Optimizers and Learning Rates

11
•
.

i
0 0 0 .̀1/ '''- <6 (0 <0 rlf D, cb

0 0 0 0 0
0 (1.

0 0
0 0 0"..: Co.' cb' 0 0 0

0' 0'
0'
(Z) 0'

0'
Q) 0' 0' 0'

1
a

adadeita nadam adagrad adamax

34 1

Scientific Computation on neuromorphic hardware

„ PURPOSE, GOALS AND APPROACH
Research Question

Can neuromorphic platforms be used for efficient and valid
numerical computation critical to Sandia's mission?

Emerging low-power computing platforms can potentially
dramatically change how we approach our high-performance
computing mission

Non-Neural

Networt
implantatS./
Wearable

S rt
r‘i

Clete •

IllOtiobtS

Data
Oassitnabon

Biology
Sensor-

Inspired

Video

Basic
Benchmark

Tests

Sos.nd

Image
Cl".if.4 Ali. Jr.

Prorel,mc

Fit 13 Breakdosen Y app1.tcabons to whbch netat,ma-ph: systems ha'
been applied- 'The sue of the boles corresponds lu the rLmtrr ,
winch a neurcenorphic sesvm was dereloced for dna sppl.cal

Only —1%

neuromorphic

applications are

not ANN-like

These aren't

solving PDEs...

How is this different from previous research?

❑ Neuromorphic computing research has generally
focused on Al applications

0 Similarly, primary emphasis on application to
scientific computing is on machine learning

Katie Schuman, ORNL 2017

Spiking random walk algorithms
diffusion is a pure scientific computing task for
spiking algorithms

• Diffusion can be modeled either as a
deterministic PDE or a stochastic process
• For an initial distribution of particles, P0, what is

distribution of particles at time t?

• Diffusion can be modeled as the PDE

6C(x,t) Da2C(x,t)

at ax2
*OD

with B.C. + I.C.

• Stochastic process implements many random
walkers to statistically approximate a solution
• Mean position of N walkers approaches expected
mean of deterministic solution at rate of 1/sqrt(N)

-49

One dimensional random walk case

• Model:

I I I
• Stochastic Brownian motion
• Particle can either move or not (1-D case: probability p1 right or p2 left, with 1-
p1-p2 for no move)

• Approximating PDE solutions requires sampling over MANY particles

q e2

l- -01

1
1-131-P2

• Goal: Ensemble of neurons that represent stochastic particles, such that
• Efficient to update (randomly add / subtract value)
• Has sparse representation
• Requires few neurons
• Scalable across multiple dimensions / multiple particles

Two spiking algorithms for random walk with different costs and
38 benefits

Particle Method

Circuit per walker
0 o • •••,•.•0 0

0 ei •
0 0 fi O • •• •

0
0
0

00 firc•„,
01,

00
0
00 %-•••9

Density Method

Circuit per position

Each method offers unique advantages

• Particle method
• Path dependent behavior is readily available
• Communication is entirely local within particles (embarrassir
• With unlimited neurons, can run in constant time
• Ideal for sparse particles in large spaces

• Density method
• Densities are readily available at all times
• Non-local or other complex graphs can easily be implemented
• With limited neurons, can tradeoff statistical approximation (i.e., number

of walkers) with longer or shorter simulations
• Ideal for dense particles in small spaces

vertex of mesh

• Each vertex encodes
density of particles in the
internal potential of certain
nodes

• Each time step "hands off"
particles to connected
vertices according to
probabilistic maps

From Other Units

Buffer 4.

Walker s.

Counter

Supervisor

Readout

Walker
Generator

414

Probability Gale

To Other Units
. 4

Output
Gates

Measure Cost (for k locations, simulating N

walkers; 1-D case)

Walker memory

Connection memory

Total neurons

0(1)

0(k)

0(k)

Time per physical timestep 0(max(p,)), where p, is the density of

walkers at each location

Position energy per timestep 0(N)

Update energy per timestep O(N)

Density model can model arbitrary graphs,
enabling complex behaviors

• This example uses a mesh with
one-way edges that permit
walkers to move into colored
parts of the image, but not out

• Scale of simulation
• 1600 vertices
• 8000 walkers
• 1000 timesteps
• 19205 neurons
• 60802 synapses

Applications of Random Walks to solve PDE

• Numerous applications:
• Diffusion equations

• Radiation transport

• Capacitance

• Not a traditional machine learning application

• Highly scalable at low power budgets

Concluding thoughts

• Fugu provides a framework for rapid development of general
neural algorithms

• Fugu enables backend agnostic development
• Makes benchmarking easy

• Whetstone can help with building bricks

• Neural algorithms can target a wide array of applications
• Enables neuromorphic hardware to be used for in several domains

