Exceptional service in the national interest

Local Failure Local Recovery:
Toward Scalable Resilient Parallel Programing Model

Keita Teranishi, Sandia National Laboratories, California, USA

#%%, U.S. DEPARTMENT OF @ "4
A YA C»l

g EN ERGY ///’ v" w1 Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
= Sl Muchbor-Seo Ry Awiniekasion, subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.




Sandia
m National
Laboratories

MOTIVATIONS AND BACKGROUND

RAID CONTROLLERS DONT
MAKE SENSE AT OUR SCALE;
EVERYTHING 1S5 REDUNDANT
AT HIGHER LEVELS. WHEN A
DRIVE. FAILS, WE JUST THROW
ALAY THE WHOLE MACHINE.

MACHINE? WE THROU
AWAY LWHOLE. RACKS
AT A TME.

YEAH, LHO
REPU‘\GS

{i

WE JUST REPLACE
LHOLE ROOMS AT
ONCE.. AT OUR SCALE,
MESSING UITH RACKS
mr ECONOMICAL.

LKEG)OGLE'

i

WE DONT HAVE SPRINKLERS
OR INERT GRS SYSTEMS.
WHEN A DATACENTER CATCHES
FIRE, LE JUST ROPE. IT OFF
AND REBUILD ONE TOLN OVER.
MKESSENSE

IUONDERF‘IHEEPE
15 REALLY NECESSARY.

gl

Courtesy: https://xkcd.com/1737




More frequent failures than
advertised

Sandia
m National
Laboratories

3901s 1617s 1612s <«— Recovery+rollback overhead —— 4439s 1928s 6025s

— —_— —_ — —_— —

{ |
| |

‘ i
(|
0 100(10 ‘ 2000F 3Fooo 40000 50000 ‘600‘00 7’0000 ‘ 0000 86400
Execution wall time (s)

= 24-hour tests using Titan (125k cores) Total cost

"  Expected MTBF: 9-12 hours Checkpoint (per timestep) 55s 1.72 %
= 9 process/node failures over 24 hours

Restarting processes 470 s 5.67 %

=  Failures are promoted to job failures, causing
all 125k processes to exit

=  Checkpoint (5.2 MB/core) is done to the PFS
=  Burst buffer provides more BW than the

traditional file 10, but the major bottleneck is
the connection to the burst buffer nodes.




National

System reliability is hard to predict ™.

That means many failures could happen all of sudden.
==Jaguar XT4=~=Jaguar XT5-¢ Jaguar XK6-0-Eos=0-Titan + Not Like:

)]
o
S

]

4
I
/

B
o

N W
© O
MTBF

=3
o

o

0

v

Scale-Norm. MTBF (hr)

@ O O AN 9 v X 6
Q" & & A" QAY A AN A
PSS S S S

Courtesy to Gupta et al, “Failures in large scale systems: long-term
measurement, analysis, and implications,” SC17

= Reliability of large scale HPC systems has been the major concern
= Exascale Goal: 1 Week MTBF with C/R
= No predictable model of reliability derived from observations (Gupta et al and
Ferreira et al.)

4




5 | Different components have
different reliability

HBM DDR

High Bandwidth Low Bandwidth

Low Reliability High Reliability PHY  GPU/CPU/Soc Die
Courtesy: AMD and UCSD = hLL — L

Package Substrate

= Different hardware components have different reliability

= Different reliability per Components
= CPU, GPU, HBM, DDR, NVRAM, Network

= Even for the same component type, reliability differs among different
manufacturers

= How to manage complex interaction between components?
= Are errors and failures contained within a component?
= Which software component manage these? Runtime, OS or Middleware?



Resilience is essential for performance ..
variability

for message)

MPI (Waiting

PO

Compute

P1 Compute MPI (Waiting for message)
>4 Compute MPI (Waiting for message)

P3 Compute (slowdown) MPI

= Performance variability is a new type of system

failure.
= Trinity at LANL experienced a 25x slowdown of a single
compute node
= Static load balancing based on data size won’t work

= Errors in a single DRAM module
= MPI did not report any errors
= Resulted in 25x application delays )




Sandia
National
Laboratories

Resilience is essential for System Co-DesigE;l1J

= Programming model that embraces/controls
failures and unconventional errors permits a
greater flexibility in system co-design.

= Probabilistic CMOS (PCMOS) for efficiency and low
power

= Palem at RICE U. (Performance and accuracy
modeling)

* Rinard at MIT (Programming language for unreliable
computing)

= Memory subsystems with selective reliability

= HBM (high bandwidth, less reliable SEC-DED) and DDR
(low bandwidth, reliable Chipkill)

— Gupta, UCSD and AMD

7




Checkpoint/Restart evolves toward
Exascale Computing, but....

Sandia
rI‘ National

Laboratories

Px

Restart

1

= VeloC (ECP: https://veloc.readthedocs.io/en/latest/)
accommodates efficient checkpointing/restart

= Multi-level checkpointing
= Leverage the latest |/O technology.
= Disproportionate use of computing resources is inevitable
= Majority (50-85%) of failures happen at single node/process.
= Cost of global tear-down and global restart (redo).

= |s it designed to handle soft-errors and online recovery?




Local Failure and Local Recovery
Enables Scalable Recovery

Run

Sandia
m National
Laboratories

l:>1
Run

Run as P,

P,1

X

= Software framework to augment existing apps with resilience
capability
= The remaining processes stay alive with isolated process/node failure
= Multiple implementation options for recovery
= Roll-back, roll-forward, asynchronous, algorithm specific, etc.
= Hot Spare Process for recovery




RESILIENT PROGRAMMING MODEL
FOR MPI PROGRAMMING

10




Sandia

MPI-ULFM (User Level Fault Mitigation)® .

= Proposed for future MPI standard

= MPI calls (recv, irecv, wait, collectives) notify errors when the
peer process(es) dies

= Survived processes continue to run

= New MPI functions for fixing MPl communicator
= MPI_Comm_agree ---Sanity check (resilient collective)
= MPI_Comm_revoke --- Invalidate MPI Communicator
= MPI_Comm_shrink --- Fix MPI Communicator removing dead process

= User is responsible for the recovery after MPI_Comm_shrink
Prototype code is available at http://fault-tolerance.org
= Developed by U of Tennessee

11




MPI-ULFM does not prescribe how 19:
recovery

Laboratories

= MPI-ULFM only provides “minimum” set of low-level APIs for
application recovery

= Users are responsible for fixing MPI communicator

= Shrunk Communicator is no longer the same as the original MPI
Communicator

= Rank-Process mapping changes after comm_shrink

= Typical MPI applications are not designed for the shrinking recovery
= Users are responsible for recovering the application state

= Writing an error handler is cumbersome

= No data recovery

= No rollback

=  Qur Solution: Fenix

12




Sandia

Fenix 1.0 Specification (SAND2016-917 1)) .

= Fault Tolerant Programming Framework for —
MPI Applications =

Specification of Fenix MPI Fault Tolerance
library

= Separation between process and data recovery el 14

Marc Gamell, Rob F. Van der Wiingaart, Kelta Teranishi and Manish Parashar

Sandia Natoal Laborsioies
Abuaeraue, New Mexico 87185 and Livermare, Calornia 4550

= Allows third party software for data recovery
= Multiple Execution Models

Aoproved for pubic releas; sthe dgseminaton urited.

= Process recovery
= Extend MPI-ULFM
= Process recovery through hot spare process pool

() sandia Natonal Laboratries

= Process failure is checked at PMPI layer and recovery
happens automatically under the cover

= Data recovery Application
* In-memory data redundancy
= Multi-versioning (similar to GVR by U Chicago &ANL) Fenix

MPI-ULFM




Sandia
National
Laboratories

S3D Modifications

Original VS Fenix-enabled

€ #include "fenix f.h"
REAL :: stime ->
REAL, ALLOCATABLE, DIMENSION(:,:,:, :) :: yspc €= REAL, TARGET :: stime
REAL, ALLOCATABLE, DIMENSION
=> INTEGER ckpt itime, ckpt yspc
INTEGER, TARGET :: world;

1, i), TARGET :: yspc

€itime = 1
! Other initializations ! Other initializations
€ allocate(T(nx,ny,nz))
-> allocate(P(nx,ny,nz))
allocate(deriv_result(nx,ny,nz,nslvs,3)) o
allocate(deriv_sum(nx,ny,nz,nslvs))
allocate(yspc(nx,ny,nz, nslvs))
allocate(wdot(nx,ny,nz, nslvs) )
allocate(rho(nx,ny,nz)) THK

Only 35 new, changed, or
rearranged lines in S3D

! Setup MPI, Cartesian MPI grid, etc.
call initialize topology(6, nx, ny, nz, &
npx, npy, npz, &
iorder, iforder )

inction

5 hew,

! Setup grid - scale arrays for stretched grid
! used in derivatives, coordinates useful for
! generating test data
call initialize grid(6)

: Only

> I I r
! Allocate derivative arrays g , l I l d I
call initialize derivative(6) O u e
allocate(T(nx,ny,nz)) ->

allocate(P(nx,ny,nz))
allocate(deriv_result(nx,ny,nz,nslvs,3))
allocate(deriv_sum(nx,ny,nz,nslvs))
allocate(yspc(nx,ny,nz, nslvs))
allocate(wdot(nx,ny,nz, nslvs) )
allocate(rho(nx.nv.nz)) THK

! Setup test data

xshift = (xmax - xmin)*@.1

rearranged lines
in S3D code

doi=1, nx \/S;

'HK in Kelvin
T(i,j,k) = 1000.0*(sin(x(i)-xshift)*sin(y(j)-yshift)*sin(z(k)-

yshift = (ymax - ymin)*0.1
zshift = (zmax - zmin)*e.1
do k =1, nz
do j 1, ny

Fenix-enabled

= € call MPI Comm rank(world, myid, ierr)

zshift)) + 1500.0 - -
= call __Comm_size Sl It ., Npes, 1err call MPI Comm size(world, npes, ierr
§ = €  if(process status.eq.FENIX PROC NEW) then ! Create communicator duplicate for global calls ! Create communicator duplicate for global calls
yspe(i,j,k,:) = 0.01 yspc(i,j,k,:) = 0.01 call MPI_Comm_dup(MPI_COMM WORLD, gcomm, ierr) - € gcomm = world
yspe(i,j,k, 1) = 6.1 yspc(i,j,k, 1) = 0.1
yspe(i,j.k, 2) = 0.7 yspc(i,j,k, 2) = 0.7
) 5 yspc(i,j,k,3) = 0.05 ’ s 5
5 yspc(i,j,k,4) = 0.05 ! %{eate communliat?rs for the x, y, and z dlrgctlons ) ! f{eate communl{at?rs for the x, y, and z dlr;([lcns
) : . Y i = ; i % Y call MPI_Comm_split(gcomm, mypy+1000*mypz, myid, xcomm,ierr call MPI_Comm _split(gcomm, mypy+106@*mypz, myid, xcomm,ierr
1.6 - sum( yspc( i,j,k, 1:nslvs-1) ) = ysgg#l,],k,nslvs) 1.0 - sum( yspc( i,j,k, 1:nslvs-1) ) call MPI_Comm split(gcomm, mypx+100@*mypz, myid, ycomm,ierr) call MPI_Comm split(gcomm, mypx+100@*mypz, myid, ycomm,ierr)
S = . = en‘l. . call MPI Comm split(gcomm, mypx+1000*mypy, myid, zcomm,ierr) call MPI Comm split(gcomm, mypx+1000*mypy, myid, zcomm,ierr)
P(i,j,k) = 12.0*pres_atm !HK. 12 atm expressed in SI units P(i,j,k) = 12.0*pres_atm !HK. 12 atm expressed in SI units - € call FT Comm add(xcomm)
enddo enddo ! Create MPI Comminicators for boundary planes. This is call FT_Comm_add(ycomm);
enddo enddo used in the Boundary conditions call FT_Comm add(zcomm)
enddo enddo call MPI_Comm split(gcomm, xid, myid, yz comm, ierr

! Create MPI Comminicators for boundary planes. This is

call MPI_Comm_split(gcomm, yid, myid, xz_comm, ierr)
used in the Boundary conditions

call MPI Comm split(gcomm, zid, myid, xy comm, ierr)

TIMESTEPIdO SE 3> €f call MPI_Comm split(gcomm, xid, myid, yz comm, ierr)
3 et P’ i ' , myid, ) 1
! ITERATE AND UPDATE YSPC if(mod(itime-1,CHECKPOINT PERIOD).eq.0) then o e :g{itigﬁm b e b can iere)
call FT_Checkpoint(ckpt yspc); € call FT_Comm add(yz comm); B
enddo TIMESTEP call FT_Checkpoint(ckpt itime); call FT_Comm_add(xz_comm);
endif call FT_Comm_add(xy comm);

! ITERATE AND UPDATE YSPC

€ itime = itime + 1
if( itime .gt. ntsteps ) exit
enddo

e ..




Sandia
National
Laboratories

Global Online Recovery — Results

6025s

1928s

—— 4439s

©
(3]
O ==
W o=
f -
[0]
>
© =
X
[&]
©
8 __
©
S
+
P
e —_——
>
[e]
QO
(0]
R =
&
o
5

uni
uooNpPoId

86400

20000 30000 40000 50000 60000 70000 80000

10000

= = ==

-z = =

— =

= =i =

= = =

-T mm =

=t /

- — w—— e

Of  ——— o o w

o ! (SN

< © o 5

C/IH - = 3

|nnw —— () m ‘©

o S m © L
——0ao 0o \

o < N~
© () <

—

(s) 491\ wajlsAs pajoalu|

300 400 500 600
Execution wall time (s)

200

100

Uses S3D (scientific application)

Titan Cray XK7 (#3 on top500.0rg)

Injecting node failures (16-core failures)

MTBF Total overhead

31 %
10 %
15%
31 %

26 h

189 s

Production

Global recovery

94 s

Global recovery

47 s

Global recovery




Sandia

Asynchronous Localized Online Recoveri .

= Fenix-1.0 is the first step toward local recovery
= Avoid global termination and restart
= All processes rollback to the Fenix_Init() call

= Natural for algorithms and applications that makes collective calls
frequently

= Some applications fit more scalable recovery model
= Stencil Computation
= Master-Worker execution model

= Solution: Local Online Recovery




Local Recovery Methodology ) .

1. Replace failed processes
2. Rollback to the last checkpoint (only replaced processes)
3. Other processes continue with the simulation

= How do we guarantee consistency?
= |mplicitly coordinated checkpoint
= Log messages since last checkpoint in local sender memory

= Message logging has been studied in MPI fault tolerance and Actor
Execution Model (Charm++)

= Performance may not be optimal for many parallel applications

= Stencil computation provides built-in message logging == Ghost
Points

= |mplemented in new framework: FenixLR




Sandia

Target: Stencil-based Scientific Applicatiof$ .

Rank ry4

Rank 75

e i—lti\ "’**)tj(_}host from rq
Ghost from 79

Rank 73 4& Ghost from 73

) Ghost from 4

[j Data transfer

Application domain is
partitioned using a block
decomposition across
processes

Typically, divided into
iterations (timesteps),
which include:

= Computation to advance
the local simulated data

= Communication with
immediate neighbors

Example: PDEs using
finite-difference
methods, S3D




Performance Model of Local Recovéby:-

Simulated execution of a 1D PDE

Wall time

Rank Rank

No failures One failure



Effect of Multiple Failures with Loc:ﬂw
Recovery

Simulated execution of a 1D PDE

ig?%

Wall time

=t
3
—
=\

Rank Rank

No failures One failure



Experimental Evaluation with S3D (@

= Same experiment executed injecting different number of failures

= X axisis rank number, but more complex to see than 1D, because 3D domain is mapped to
core ranking in a linear fashion

= Note that total overhead is as if only one failure occurred (except in 4224c 8f)

:mmnmmmmmﬂmmmmmmr el SHE '&&&%ﬁgﬁ;::ffiiji
ITRTATATAYAVATATA n a Ve VNN rqva Ta T VaVaVaVaautatated FA WA WA M Yoo aVa U Ve VoV araranaeaa e oW &

YU e piiiiiine ARG SIIIUL_angas PV,
_,JLJ)L//U\,/J\/W.V_\,_,‘WPV_N.V_. _»J\J)EJULA_,_ ___________ X 1 *ﬁ U ", Af'/\‘f']&"/bjl/*lt/“’\f’"\f“\f’\/"\/“’m/"\/’%ﬁf—
(a) 4224c 1f (b) 4224c 2f (c) 4224c 4f (d) 4224c 8f

CEEE
; X, g
%

kb MM W Y N W N T N 5 G R S

1 1 X i p— X >MWWWW
W 1&,” APVAANA - X V‘M’V""’WW"WWM‘”"V“"VMWV‘W“’W
L > 1 HT A Y MM I A A A~ AAANAAA
Ly _WMMWWWV‘MMF _HWHIWNIWHIW'“'W“ AT NN TS

[ A AN ANV AAARANARA AN AR VAN WA Aot AN AR WA MA Y - A A s IV WINV NV RNV RN A Ay e
: [ AP AN AN ANAAARAAAANAAIAANRAAAA A TAARA AN A A AAARAAARASAAMNSARNVANN L S —— P\ S\ MW A A A A A AN

e e e s e e S

(q) 64128c 1f (r) 64128¢ 2f (s) 64128c 3f (t) 64128¢c 5f



Performance of Fenix-LR ) i,

= Using MTBF of 10s
= Core count from 4224 to 262272 (including 128 spare cores)
= Result shows the average recovery time for all failures injected.

s 005
(O]
£ 0.04
S 0.03]
>
3
3 002
2  00H
3
£  0-

4224 8128 13952 32896 64128 140736262272
Core count (including 128 spare cores)

= Conclusion:
" Process recovery time is independent of system size

"  Good scalability



Local Recqvery

Total Overhead of Fault Tolerance “®t=

" End-to-end time vs 1.6+
failure-free, ~ 508 recovery (process+data+rollback) total time
checkpoint-free time @ 15 checkpoint total time !
=  Qverall overhead: @ 240
) © 180
= Checkpomll
* Process/da Total overhead 48
recovery Production (MTBF 26h) 31 %
= Rollback Global recovery (MTBF 189s) 10 %
e 4096 cores + Global recovery (MTBF 47s) 31 % a8 | 48
spare cores Local recovery (MTBF 45s) 8%
* Right-most bar Local recovery (MTBF 20s) 25% | | |
global recover 40 |_45|K7/GR
with MTBF of 4\‘

= Local recovery has
scalability advantages
over global recovery

— Local recovery is superior to global recovery in this
scenario:

« compare MTBF 45s (8%)



Resilient Asynchronous Many Task (AMT)
Parallel Execution Model

o BB T3

=  AMT allows

= Concurrent task execution
= Qverlap of communication and computation
= Qver-decomposition of Data
= Abstraction of data objects and tasks allows failure containment and transparent
application recovery with ease.
= Node/Process Failure is manifested as loss of task and data
= Generic model for online local recovery

= Recovery is done through task replay, replication and ABFT task (special task for
recovery)

Sandia
National
Laboratories

24




Resilient AMT Prototype )

Laboratories

= Resilience Extension of
Habanero C++
= AMT programming
Interface by Vivek Sarkar
= Simple extension allows
the user to introduce 3
major resilient proguram
execution patterns
= Task Replication Interface

= Task Replay Interface
= ABFT Interface

Original Task Launch

hclib::async await ( lambda,
hclib future t *f1, ..,
hclib future t *£f4);

Task Launch with Replication

diamond: :async await check<N> (
lambda, hclib::promise<int> out,
hclib future t *f1, ..,

hclib future t *£f4);

Task Launch with Replay

replay::async await check<N>(
lambda, hclib::promise<int> out,
std: : function<int (void*)>
error_check fn, void * params,
hclib future t *£f1, .. ,

hclib future t *f4);

25



Task Replication ) =,

Fork
| Replicite

Compute

Join

= diamond::async_await check<N> ( lambda,
hclib: :promise<int> out, hclib_ future t *f1,
.., heclib future t *£f4);

= Preventive failure mitigation

= N-plicates the task and checks for equality of put operations at the end of
the task

= |f error checking succeeds, actual puts are done

= |f error checking fails, puts are ignored and the error is reported using an

output promise

26
-



Replication (Continued) h

Sandia
National
Laboratories

diamond::async await check<2> (.. diamond::async_await check<3>( ..

Fork

Compute Compute

. Detected
Join

= Duplicate (N=2) — Create two tasks and check for error in puts
= |f error checking fails, a third task is created

= Triplicate and more (N=3 ore more) — Create three tasks and check for error in puts
= Two out of three outputs should match for success

27



Task Replay ) B

Detected Up to N times

WA
-~ -

Replay

replay::async await check<N>( lambda,

hclib: :promise<int> out, std::function<int(void*)>
error_check fn, void * params, hclib future t *fl,
.. , hclib future t *£f4);

= Dynamic response to failure
= Executes the task and checks for error using the error checking function
= error_check _fn(params) returns true if there is no error

= The task is executed N times at most if there is any error

= |f error checking fails, puts are ignored and the error is reported using an output
promise

28
-



ABFT Tasks ) .

Detected

abft::async await check ( lambda, hclib::promise<int>
out, std::function<int(void*)> error check fn, void *
params, hclib future t *f1, .. , hclib future t *£f4,
ABFT lambda);

= Executes the task and checks for error using the error checking function
= error_check_fn(params) returns true if there is no error

= |fthereis error then ABFT_lambda is executed and checked for error again at its
end
= |f error checking fails, puts are ignored and the error is reported using an output promise

29
-



Resilience Overhead in the absence of ..

failure

= Replay is less expensive
= 7%-9%
= |nthe 1D cases,

replication doubles the
execution time. (+101%)

= |nthe 3D cases, the
replication penalty is
about 45%.

= More L3 cache hits are
observed

Walltime (s)

120 -

100 -

0
o
1

[*)]
o
1

40 -

Laboratories

Overhead of resilience in the absence of failures

vam No resilience, checksums
WA Replay, checksums

BN No resilience, no checksums
mm Replication, no checksums

3D 1D Case A 1D Case B
Application type




Resilience with synthetic failure ..
injection

Laboratories

= Test a range of task failure rate (0.01%-1%)

= Failure is detected as checksum error (replay) or different
results from the first two tasks (replication)

= We applied mixed mode so that the last X% of iterations are
replicated, and replay is applied to the first (100-X)% of
iterations.

= The performance numbers from replay-enabled code with

no-failure are fed to our resilient-AMT simulator to predict
the execution time with different task failure rate.

= Qverhead of replay and replication are based on the cost task.




Resilience with synthetic failure injection
(1D Stencil, 128 tiles of 16000 doubles)

Laboratories

Resilience Overhead with Respect to Failure Rate, 1D Case A
1001 o ° . —

L 4 v

—e— Replication Only
1 —e— 30% Replication
—m— 20% Replication

[o2]
o

—&— 10% Replication
—e— Replay Only

(o)}
o

Overhead (% Normalized to Non-Resilient Case)

401 & # >~ =y
| = - —8
20 7 & L & —A
@ © *— —e
0 T T T T
0 104 1073 1072

Failure Rate

= Slight increase in the wall time with the increase of task-
failure rate.

32
-



Explicit PDE Solver for Unstructured gz

Laboratories

Mesh

= Repetition of Task based
SPMV

= Evaluated crankseg 1 matrix
from SuiteSparse web site at
Texas A&M.

= Tried 32 and 128 tile cases

= No overdecomposition

= Qverdecomposition by the
factor of 8

= 500 hundred iterations

33




Irregular distribution of task OED
dependencies

crankseg_1, 32 tiles crankseg_1, 128 tiles
EEm dependencies I dependencies
30 A
80 A
25 A
20 7
15 4
40
10 A
20 4
5 .
0 .
0 5 10 15 20 25 30 0 20 40 60 80 100 120

tile index tile index




Irregular distribution of nonzero OED
entries per task

crankseg_1, 32 tiles crankseg_1, 128 tiles
600000 - B Non-zeros 160000 - B Non-zeros
140000 -
500000 -
120000 -
400000 -
100000 -
300000 - 80000
60000 -
200000 -
40000 -
100000 -
20000 A
0 0- -
0 5 10 15 20 25 30 0 20 40 60 80 100 120

tile index tile index




Overhead of Resilience Techniques e,
the absence of Failures

Overhead of resilience in the absence of failures

10 -

8 "
0
£ 6
T
2,

2 .

0- . .

Replication

No Resilience Replay
Resilience Method

= Approximately 5% of overhead to enable replay.

= Replication doubles the execution time.




Execution Time under synthetic
failures

Sandia
m National
Laboratories

Resilience Overhead with Respect to Failure Rate, SPMV :‘,,3 Resilience Overhead with Respect to Failure Rate, SPMV
x — - S 100
10- €
=
2 801 , =i
81 =
w A 2 —&— Replication Only
° - * ) g %01 o Replay Only
E ] 3
= N
g 4- g 40 -
—— Replication Only s
—e— Replay Only =
21 S 20+
®
£ -— =—- -
0 T T T E 0 T T T
0 103 102 5 0 103 1072
Failure Rate Failure Rate
= Slight increase in the execution time.
= Tasking can hide the delay due to failures.
37



Ongoing Work: Resilient Kokkos @
. Kokks |
_

Intel Multicore Intel Acclerator NVIDIA GPU AMD Multlcore/APU IBM Power

3

GPU Device Checkpoint

Memory System




Sandia
m National
Laboratories

" Applications Libraries

UT Uintah
Combustion

SNL LAMMPS
Molecular Dynamics

e

SNL NALU

Wind Turbine CFD ORNL Raptor

Large Eddy Sim

Kokkos

ORNL Summit ‘ . ' SNL Astra

IBM Power9 / NVIDIA Volta LANL/SNL Trinity ANL Aurora ARM Architecture
Intel Haswell / Intel KNL Intel Xeon CPUs + Intel Xe Accelerators

Courtesy of Christian Trott
39




Kokkos Ecosystem

4 8l Science and Engineering Applications

Trilinos

Kokkos EcoSystem
Kokkos Kernels

[ Kokkos Remote Spaces

Sandia
National
Laboratories

Courtesy of Christian Trott 40




‘ Parallel Programming using Kokkos

for (size t i = 0; i < N; ++i)
{

/* loop body */
}

Serial

#pragma omp parallel for
for (size t i = 0; i < N; ++i)
{
/* loop body */
}

OpenMP

Kokkos: :View<double *> myarray(“Name”,100);
Kokkos::parallel for (( N, [=], (const size t i)
&

/* loop body */
})i

Kokkos

Kokkos information courtesy of Carter Edwards

= Provide parallel loop operations using C++ language features

= Conceptually, the usage is no more difficult than OpenMP. The
annotations just go in different places. 4



Kokkos Core Abstractions ) e,

Kokkos -
Courtesy of Christian Trott

Data Structures Parallel Execution

Memory Spaces (“Where”) Execution Spaces (“Where”)

- HBM, DDR, Non-Volatile, Scratch - CPU, GPU, Executor Mechanism

Memory Layouts Execution Patterns

- Row/Column-Major, Tiled, Strided - parallel_for/reduce/scan, task-spawn

Memory Traits (“How”) Execution Policies (“How")

- Streaming, Atomic, Restrict - Range, Team, Task-Graph

Resilience/redundancy in both abstractions

* Resilient Kokkos provides “resilient” data and execution spaces to enable

resilience/fault tolerance without major modification in application program source.




Productive Resilience Support using Kokkos

VeloC

Kokkos

VELOC Mem protect(0, &i, 1, sizeof(int)); )); // Bind every single memory allocation

VELOC_Mem protect(l, h, M * nbLines, sizeof (double
VELOC Mem protect(2, g, M * nblLines, sizeof (double)) ;
LiE W = WIHLOE Restein: tese (Vassechia, 0) 2
if (v > 0) {

VELOC Restart test is returning

assert (VENOCIRestart (Mheatdislt, vl == VELOCHSUECERSS);
} else
i= 0;

while (i < n) {

// iteratively compute the heat distribution
// (5): checkpoint every K iterations

if (1 % K == 0)

assert (VELOC Checkpoint ("heatdis", i) ==
VELOC_SUCCESS) ;

// increment the number of iterations

ikt

}

Kokkos: :View<double *, Kokkos::resilience> m data(1000) ;
iiope (b = (0 Al = g alaer)
KokkosResilience: :checkpoint ( *resilience context, "final", n,
{ // Automatically checkpoint all active Kokkos: :Views
Kokkos::parallel for (rp, KOKKOS LAMBDA (const int i)
{
m data(i)=i; // It’s Kokkos::View. No need to bind to
1)
N KokkesRe siblilen ekt ililee maitnthiftte natton i fabitEe =< R = BIIN
}

[=] () mutable

checkpoint storage

Sandia
National
Laboratories



Resilient Kokkos enables resilient ..
data parallel computation

Kokkos::View <double *, .., ResilientSpacr\
R paraliel for ( RangePolicy<>(@, 100 ),

parallel for ( RangePolicy<> (@122 KOKKOS_LAMBDA ( const int 1)
KOKKOS_LAMBDA ( const int i) Replication -
{

{
A(l) = .. ; c A1) = .
1)

.});

Kokkos: :View <double *, .., ResilientSpace > A(1000);

parallel for ( “loop_1”, RangePolicy<>(©, 100 ),
KOKKOS_LAMBDA ( const int i)

: Checkpoint
i) = .. ; | “loop_1,A”

Automatic Checkpointing
|




CONCLUSION




Conclusion

= Discussed Resilient Programming Models for:

= SPMD (MPI) Model
= Online recovery
= Fenix accommodates generalization of recovery using MPI-ULFM
capability
= Localized Recovery (Fenix-LR)

= Exploit application’s (stencil) communication pattern to enable
redundancy

= Failure-Masking to hide the major recovery overhead
=  Asynchronous Many Task Programming Model
= Resilience is embedded to the programming model itself.

= Simple extension of tasking API to enable resilient computation patterns

= Kokkos

= Extend Memory and Execution Space concept to enable reslience in

application data and computation

Sandia
National
Laboratories

46



Acknowledgement ) S

= Robert Clay, Hemanth Kolla, Michael Heroux, David Hollman,
Jackson Mayo, Jeff Miles, Nicole Slattengren, Christian Trott,
Matthew Whitlock (Sandia National Labs)

= Shaohua Duan, Mark Gamell (Ab-Initio LLC), Pradeep Subedi
and Manish Parashar (Rutgers U.)

= George Bosilca, Aurélien Bouteiller and Thomas Herault (U of
Tennessee)

= Seonmyeon Bak, Sri Raj Paul, Akihiro Hayashi, and Vivek
Sarkar (Georgia Tech and Rice U.)

= Hartmut Kaiser and Adrian Serio (Louisiana State U.)




Q&A ) .




