
Exceptional service in the national interest

Local Failure Local Recovery:

Toward Scalable Resilient Parallel Programing Model

Keita Teranishi, Sandia National Laboratories, California, USA

U.S. DEPARTMENT OF ///A / W A I

ENERGY ity,,Kisl Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International, inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2019-11887PE

MOTIVATIONS AND BACKGROUND

RAID CDNIFROLLER5 DINT
MAKE 5EN5E AT OUR SCALE;
EVERYTHING 15 REDUNDANT
AT HIGHEN LEVELS. LINEN A
DRIVE. FAILS, UE JUST THRoU
ALAy THE LkIÖLC MACHINE.

rIACHINE? Lk_ THRcu
MI)/ WHOLE_ RACKS
AT A TIME.

YEN-I, Lliio
IE.FtficEs
Oar SERVER?

'7 WEt

UE JOST RERACE
LJ14XE RooM5 AT
CoNcE. AT Oute SCALE,
t1E5510G WITH RACKS
IsNT EcNOMIcAL.

) LAXAJ.
LIKE.CCOCAV

1

Sandia
National
Laboratories

LIE DONT HAVE SPRINKLERS
OR INERTGAS 5YSTEr15.
UHEN A DalACEUFER CAICHE5
FIRE, LIE xsr ROPE IT oFF
AND REBOLD ONE ToUN OVER.

MAKES SENSE.

1 LICNDER IF THE F,,f7E

/

15 REALLY NECESSARY

7 17S1E1

Courtesy: https://xkcd.com/1737

2

More frequent failures than
advertised

3901s 1617s 1612s - Recovery+rollback overhead —. 4439s
e-'s

H N
H N

I H
I H

if H
if H

H H
H H

II
H H

H
H

H H
H H H

1928s 6025s

II H
II H

H
H

Sandia
National
Laboratories

o
ff

1 0000 20000 3 000 40000 50000

Execution wall time (s)

• 24-hour tests using Titan (125k cores)

• Expected MTBF: 9-12 hours

• 9 process/node failures over 24 hours

• Failures are promoted to job failures, causing
all 125k processes to exit

• Checkpoint (5.2 MB/core) is done to the PFS

• Burst buffer provides more BW than the

traditional file 10, but the major bottleneck is

the connection to the burst buffer nodes.

60000 70000

Checkpoint (per timestep)

Restartiny processes

0000 86400

Total cost

55 s 1.72 %

5.67 %470 s

L

R

T

"Exploring Automatic, Online Failure
Recovery for Scientific Applications at
Extreme Scales", SC14 Marc Gamell,
Daniel S. Katz, Hemanth Kolla, Jacqueline
Chen, Scott Klasky, Manish Parashar

System reliability is hard to predict
That means many failures could happen all of sudden.

- -Jaguar XT4-ErJaguar XT5•<> Jaguar XK6-c-Eos-o-Titan

50

Lr 40
co
I— 30
2

20

8 10
o
cs,b0 Q,

w (1,

owe

03 (r)0?) \C)).(1/
0 0 0 0 0 0 0(1. (1. (1. (1. (1.

47

Courtesy to Gupta et al, "Failures in large scale systems: long-term

1
measurement, analysis, and implications," SC17

A Not Like:

•"*•.-

m
u_

2

Time

Sandia
National
Laboratories

• Reliability of large scale HPC systems has been the major concern
• Exascale Goal: 1 Week MTBF with C/R

• No predictable model of reliability derived from observations (Gupta et al and
Ferreira et al.)

4

1 Different components have
different reliability

HBM

High Bandwidth

Low Reliability

DDR

Low Bandwidth

High Reliability

Courtesy: AMD and UCSD

HBM DRAM Die

NITA

ijijiji
WU 1 P H Y PHY GPU/CPU/Soc Die

■

" ogiAi

Package Subs:latIll
1. • • ID ID al al ID al al al al al

HBM DRAM Die

HBM DRAM Die

HBM DRAM Die

Logic Die

interposer

• Different hardware components have different reliability
■ Different reliability per Components

CPU, GPU, HBM, DDR, NVRAM, Network

• Even for the same component type, reliability differs among different
manufacturers

• How to manage complex interaction between components?

Are errors and failures contained within a component?

Which software component manage these? Runtime, OS or Middleware?

Resilience is essential for performance
variability

Po 1

P1 1

P2 1

P3

Compute MPI (Waiting for message)

Compute

Compute

MPI (Waiting for message) J•

Compute (slowdown)
r-- 111,,

• Performance variability is a new type of system
failure.
• Trinity at LANL experienced a 25x slowdown of a single
compute node

Static load balancing based on data size won't work
Errors in a single DRAM module

MPI did not report any errors

• Resulted in 25x application delays

Sandia
National
Laboratories

6

Resilience is essential for System Co-Design
■ Programming model that embraces/controls
failures and unconventional errors permits a
greater flexibility in system co-design.

■ Probabilistic CMOS (PCMOS) for efficiency and low
power

Palem at RICE U. (Performance and accuracy
modeling)

Rinard at MIT (Programming language for unreliable
computing)

■ Memory subsystems with selective reliability
HBM (high bandwidth, less reliable SEC-DED) and DDR
(low bandwidth, reliable Chipkill)
— Gupta, UCSD and AMD

Sandia
National
Laboratories

Checkpoint/Restart evolves toward
Exascale Computing, but....
PO

P1

P2

Px

Run Kill
a

Run

Run j1=i

Run Crash

\/

Kill

Kill

Kill

Notify the Failure to the rest of processes

Restar

Restart r Run
Resta rt

Restart

Run

Run

• VeloC (ECP: https://veloc.readthedocs.io/en/latest/)
accommodates efficient checkpointing/restart
• Multi-level checkpointing

• Leverage the latest I/0 technology.

• Disproportionate use of computing resources is inevitable
• Majority (50-85%) of failures happen at single node/process.

• Cost of global tear-down and global restart (redo).

• Is it designed to handle soft-errors and online recovery?

Sandia
National
Laboratories

8

Local Failure and Local Recovery
Enables Scalable Recovery
Po

P1

Px-1

Px

P x -

• Software framework to augment existing apps with resilience
capability
• The remaining processes stay alive with isolated process/node failure

• Multiple implementation options for recovery

Roll-back, roll-forward, asynchronous, algorithm specific, etc.

• Hot Spare Process for recovery

Sandia
National
Laboratories

9

RESILIENT PROGRAMMING MODEL

FOR MPI PROGRAMMING

Sandia
National
Laboratories

10

MPI-ULFM (User Level Fault Mitigation)
Sandia
National
Laboratories

■ Proposed for future MPI standard

■ MPI calls (recv, irecv, wait, collectives) notify errors when the

peer process(es) dies

■ Survived processes continue to run

■ New MPI functions for fixing MPI communicator

■ MPI_Comm_agree --- Sanity check (resilient collective)

■ MPI_Comm_revoke --- Invalidate MPI Communicator

■ MPI_Comm_shrink --- Fix MPI Communicator removing dead process

■ User is responsible for the recovery after MPI_Comm_shrink

Prototype code is available at http://fault-tolerance.org

■ Developed by U of Tennessee

11

MPI-ULFM does not prescribe how tova,do,tes
recovery

■ MPI-ULFM only provides "minimum" set of low-level APIs for

application recovery

• Users are responsible for fixing MPI communicator

Shrunk Communicator is no longer the same as the original MPI
Communicator

Rank-Process mapping changes after comm_shrink

Typical MPI applications are not designed for the shrinking recovery

• Users are responsible for recovering the application state

Writing an error handler is cumbersome

No data recovery

No rollback

• Our Solution: Fenix

12

Fenix 1.0 Specification (SAND2016-9171)
Sandia
National
Laboratories

■ Fault Tolerant Programming Framework for

MPI Applications

■ Separation between process and data recovery

Allows third party software for data recovery

Multiple Execution Models

■ Process recovery

Extend MPI-ULFM

Process recovery through hot spare process pool

Process failure is checked at PMPI layer and recovery

happens automatically under the cover

■ Data recovery

In-memory data redundancy

Multi-versioning (similar to GVR by U Chicago &ANL)

SANOIA REPORT

, .

Specification of Fenix MPI Fault Tolerance
library
version 1.0

CISandia National Laboratories

Application

Fenix

MPI-ULFM

Original
REAL :: stime
REAL, ALLOCATABLE, DIMENSION(.) yspc

Other initializations

I Setup MPI, Cartesian MPI grid, etc.
call initialize_topology(6, nx, ny, nz, &

npx, npy, npz, &
iorder, iforder)

! Setup grid - scale arrays for stretched grid
! used in derivatives, coordinates useful for

generating test data
call initialize_grid(6)

! Allocate derivative arrays
call initialize_derivative(6)

vs Fenix-enabled
4-Binclude "'Fenix f.h"

4-REAL, TARGET stime
REAL, ALLOCATABLE, DIMENSION): , : , : , :), TARGET :: yspc

-B INTEGER ckpt_itime, ckpt_yspc;
INTEGER, TARGET :: world;

= 1
! Other initializations

4-allocate(T(nx,ny,nz))
-B allocate(P(nx,ny,nz))

allocate(deriv_result(nx,ny,nz,nslvs,3))
allocate(deriv_sum(nx,ny,nz,nslvs))
allocate(yspc(nx,ny,nz, nslvs))
allocate(wdot(nx,ny,nz, nslvs))
allocate(rho(nx,ny,nz)) !HK

-)

allocatefT(nx.ny.nz))
allocate(P(nx,ny,nz))
allocate(deriv_result(nx,ny,nz,nsIvs,3))
allocate(deriv_sum(nx,ny,nz,nslvs))
allocate(yspc(nx,ny,nz, nslvs))
allocate(wdot(nx,ny,nz, nslvs))
allocate(rho(nx.nv.nz)) !HK

Setup test data
xshift = (xmax - xmin).0.1
yshift = (ymax - ymin).0.1
zshift = (zmax - zmin).0.1

do k = 1, nz
do j = 1, nY
do i = 1, nx
!HK in Kelvin
T(i,j,k) = 1000.0.(sin(x(i).xshift)nsin(Y0)-yshift)nsin(z(k)-

zshift)) 1500.0

4-r,11 mat inittf.rrn

Sandia
National
Laboratories

S3D Modifications

• Only 35 new, changed, or
rearranged lines in S3D

Only 35 new,
changed, or

rearranged lines
in S3D code

--
4 4- if(process

yspc(i,j,k,:)
yspc(i,',k,
yspc(i„k,
yspc(i„k,3)
yspc(i„k,4)
s (i,j,k,nslvs)

status.eg.FENIX FT len
yspc(i,j,k,:) = 8.01
yspc(i,j,k, 1) = 8.1
yspc(i,j,k, 2) = 0.7
yspc(i,j,k,3) = 0.85
yspc(i,j,k,4) = B.B5
yspc(i,j,k,nsIvs) = 1.0 - sum(yspc(i,j,k, 1:nslvs-1))

= 0.01
1) = 0.1
2) = 0.7
= 0.05
= 0.05

= 1.0 - sum(yspc(i,j,k, 1:nslvs-1))
4 4-

P(i,j,k) = 12.0npres_atm !HK. 12 atm expressed in SI units
enddo
enddo
enddo

P(i,j,k) = 12.0.pres_atm INK. 12 atm expressed in SI units
enddo
enddo
enddo

TIMESTEPOldo itime = 1, ntstei. 4 4-do

if(MOd(itiMe-1,CHECKPOINTPERIOD).eg.0)
call FT_Checkpoint(ckpt_yspc);
call FT

endif

then

Checkpoint(ckpt_itine);

! ITERATE AND UPDATE YSPC

-)enddo TIMESTEP

! ITERATE

itime = itime
if(itiMe

enddo

AND UPDATE YSPC

+ 1
.gt. ntsteps) exit

inction

gy module

VS Fenix-enabled
4 4-call MPI_Comm_rank(morld, myid, ierr)

call MPIComm_size(MPICOMMWORLD, npes, ierr) call MPI Comn size(world, npes, ierr)
! Create communicator duplicate for global calls ! Create communicator duplicate for global calls
call mi_comm_dup(mPi_comm WORLD, gcomm, ierr) -4 4-gnamm = world

! Create communicators for the x, y, and z directions ! Create communicators for the s, y, and z directions
call Mptromn_split(gcomm, mypy+leam.mypz, myid, xcomm,ierr) call MPI_Comm_split(gcomm, mypycl0000mypz, myid, xcomm,ierr)
call moi_comn_split(gcomm, mypxoloBe*mypz, myid, ycomm,ierr) call MPI Commsplit(gcomm, mypoul0001mypz, myid, ycomm,ierr)
call MPI_Comm split(gcomm, mypx4l000.mypy, myid, zcomm,ierr) call MPI Comm split(gcomm, mypxoloee.myny, myid, zcomm,ierr)

ik.call FT_Comm_add(xcomm);
call FT_Comm_add(ycomm):
call FT Comm add(zcomM):

! Create MPI Comminicators for boundary planes. This is
used in the Boundary conditions
call micomm_split(gcomm, yid, nyid, yzcomm, ierr)
call mi commsplit(gcomm, yid, myid, xzcomm, ierr) ■ ! Create MPI Comminicators for boundary planes. This is
call MPI Conn split(gcomm, zid, myid, xy comm, ierr) -- used in the Boundary conditions

call MPI Comm split(gcomm, xid, myid, yz_comm, ierr)
call MPI Comm split(gcomm, yid, nyid, oz_comm, ierr)
call MPI Comm_split(gcomm, zid, nyid, xy comm, ierr)

4-call FTConm_add(yzcomm);
call FTconmadd(xzcomm);
call FT Comm add(ny coon):

o

▪ C
73 2
o
li

ca ▪ 189
2

a) 94

-a
▪ 47
a)
•E

Global Online Recovery Results

3901s 1617s

H H

1612s Recovery+rollback overhead 4439s
t•-•

H H H H H H
H N

H
H H H

H
H H H

H
II

H
I
I

1928s 6025s

Hi
HH

Sandia
National
Laboratories

111111
I 1 1111

10000 20000 30000 40000 50000 60000

Lost Checkpoints Lost
ckpt)- 4 ckpt

I 11111 1 1 11 11 4/ 111
114/

IIIIIHHIIIIII 111

I— Proc. recovery

111111111 Data recovery

-"------- Failures ----'

70000 80000 86400

111.1.1
' 1-1

11111 A 111111111111111111111111111111 111111111 11 1ThH11 11 11 11 11 1111111f1111111 111111 11
.. 1--1

A
1
1

11 1111111111111111111 111111111111111111111 111111111111111111111111 FH11111111111111111111 FH11111111111111 111
1--1 1--1

I-1
I-1

1--1 1--1 1--1

I1 1
1 .. . 1 1 1

1

1111111111111111 ,_1111111114,,11111111111111 JIIIIiii111111 ,_,111111111111111111„1111111111111111 F.11111111111111 J1111111111111111111, 11H1 111 1111 111 11 11 111

1--I1 I:: HI "1

1--1
1
1

H-H
H

100 200 300 400 500
Execution wall time (s)

Production

Global recovery

Global recovery

Global recovery

MTBF

2.6 h

189 s

94 s

47 s

Total overhead

31 %

10 %

15 %

31 %

600

• Uses S3D (scientific application)

• Titan Cray XK7 (#3 on top500.org)

• Injecting node failures (16-core failures)

Sandia

Asynchronous Localized Online Recovery [laa111:11es

■ Fenix-1.0 is the first step toward local recovery

■ Avoid global termination and restart

■ All processes rollback to the Fenixinit() call

■ Natural for algorithms and applications that makes collective calls
frequently

■ Some applications fit more scalable recovery model

■ Stencil Computation

■ Master-Worker execution model

■ Solution: Local Online Recovery

16

Local Recovery Methodology

1. Replace failed processes

2. rcoiiaacr to the last checkpoint (only replaced processes)

3. Other processes continue with the simulation

■ How do we guarantee consistency?

■ Implicitly coordinated checkpoint

■ Log messages since Iast checkpoint in local sender memory

■ Message logging has been studied in MPI fault tolerance and Actor
Execution Model (Charm++)

Performance may not be optimal for many parallel applications

Stencil computation provides built-in message logging == Ghost
Points

■ Implemented in new framework: FenixlR

Sandia
National
Laboratories

Target: Stencil-based Scientific Applications aboratoriesa

Rank r4

Rank r5

Rank r1
I I

Rank r3

Rank r2

Ghost from r1
Ghost from T2
Ghost frorn r3
Ghost from 7-1

Data transfer

■ Application domain is

partitioned using a block

decomposition across

processes

■ Typically, divided into

iterations (timesteps),

which include:

■ Computation to advance

the local simulated data

■ Communication with

immediate neighbors

■ Example: PDEs using

finite-difference

methods, S3D

Performance Model of Local Recoveriaes

Simulated execution of a 1D PDE

E

•

Rank Rank

No failures One failure

Effect of Multiple Failures with Local
Recovery

Simulated execution o(a 1D PDE

-ff •MMII

f

Rank Rank

No failures One failure

Sandia
National
Laboratories

Experimental Evaluation with S3D
Sandia
National
Laboratories

■ Same experiment executed injecting different number of failures

■ X axis is rank number, but more complex to see than 1D, because 3D domain is mapped to
core ranking in a linear fashion

■ Note that total overhead is as if only one failure occurred (except in 4224c 8f)

(a) 4224c lf (b) 4224c 2f (c) 4224c 4f (d) 4224c 8f

x

(q) 64128c lf (r) 64128c 2f (s) 64128c 3f (t) 64128c 5f

Performance of Fenix-LR

■ Using MTBF of lOs

■ Core count from 4224 to 262272 (including 128 spare cores)

■ Result shows the average recovery time for all failures injected.

Pr
oc

es
s
re

co
ve

ry
 t
im
e
(s
)

0.0

0.0

0.0

0.0

0.0

0
4224 8128 13952 32896 64128 140736 262272

Core count (including 128 spare cores)

■ Conclusion:

■ Process recovery time is independent of system size

■ Good scalability

Sandia
National
Laboratories

Local

Total Overhead of Fault Tolerance

• End-to-end time vs
failure-free,
checkpoint-free time

• Overall overhead:

• Checkpoint

• Process/da
recovery

• Rollback

1.6-

1.5-
528 recovery (process+data+rollback) total time

checkpoint total time

240
i an

• 4096 cores +
spare cores

• Right-most bar
global recover)
with MTBF of 4

• Local recovery has

scalability advantages
over global recovery

Total overhead

Production (MTBF 2.6h) 31%

Global recovery (MTBF 189s) 10%

Global recovery (MTBF 47s) 31%

Local recovery (MTBF 45s) 30/0

Local recovery (MTBF 20s) 25%

48 48

ol
40 45

48

i
47/G

— Local recovery is superior to global recovery in this
scenario:

• compare MTBF 45s (8%)

• WIM IVI I tsr Lit/UK (317o)

Resilient Asynchronous Many Task (AMT)

Parallel Execution Model

EN EN mul NE / • EN moi EN EN

tX .•dwo
'w

Pending Running Done

• AMT allows
• Concurrent task execution

• Overlap of communication and computation

• Over-decomposition of Data

• Abstraction of data objects and tasks allows failure containment and transparent
application recovery with ease.

• Node/Process Failure is manifested as loss of task and data
• Generic model for online local recovery

• Recovery is done through task replay, replication and ABFT task (special task for
recovery)

Sandia
National
Laboratories

24

Resilient AMT Prototype

• Resilience Extension of

Habanero C++

• AMT programming

Interface by Vivek Sarkar

• Simple extension allows
the user to introduce 3
major resilient proguram

execution patterns

• Task Replication Interface

• Task Replay Interface

• ABFT Interface

Sandia
National
Laboratories

Original Task Launch
hclib::async await (lambda,

hclib future t *fl, ..,

hclib future t *f4);

Task Launch with Replication

diamond::async_await_check<N> (

lambda, hclib::promise<int> out,

hclib future t *fl, ..,

hclib future t *f4);

Task Launch with Replay

replay::async await_check<N>(

lambda, hclib::promise<int> out,

std::function<int(void*)>

error check fn, void * params,

hclib future t *fl, ..

hclib future t *f4);
r

25

Task Replication

Replicate

Fork

4 (0 I Compute

C Join

• diamond::async_await_check<N> (lambda,

hclib::promise<int> out, hclib_future_t *fl,

.., hclib_future_t *f4);

Sandia
National
Laboratories

• Preventive failure mitigation

• N-plicates the task and checks for equality of put operations at the end of
the task

• If error checking succeeds, actual puts are done

• If error checking fails, puts are ignored and the error is reported using an
output promise

26

Replication (Continued)
diamond::async_await_check<2>(_

Fork

Compute

Join
Detected 4.

Decide

Sandia
National
Laboratories

rdiamond::async await check<3>(_-7

Compute

Fork

Join

• Duplicate (N=2) — Create two tasks and check for error in puts
• If error checking fails, a third task is created

• Triplicate and more (N=3 ore more) — Create three tasks and check for error in puts
• Two out of three outputs should match for success

27

Task Replay
Detected Up to N times

al t ...* N t
Replay

replay: :async await check<N>(lambda,
hclib: :promise<int> out, std: : function<int (void*) >
error check fn, void * params , hclib future t *fl,
.. , hclib future t *f4);

• Dynamic response to failure

• Executes the task and checks for error using the error checking function

• error check fn(params) returns true if there is no error

• The task is executed N times at most if there is any error
• If error checking fails, puts are ignored and the error is reported using an output

promise

Sandia
National
Laboratories

28

ABFT Tasks

Detected

ABFT

Sandia
National
Laboratories

abft::async_await_check (lambda, hclib::promise<int>
out, std::function<int(void*)> error_check_fn, void *
params, hclib future t *fl, .. , hclib future t *f4,
ABFT lambda);

■ Executes the task and checks for error using the error checking function

■ error check fn(params) returns true if there is no error

■ If there is error then ABFT lambda is executed and checked for error again at its
end

■ If error checking fails, puts are ignored and the error is reported using an output promise

29

Resilience Overhead in the absence of
failure

• Replay is less expensive
• 7%-9%

• In the 1D cases,
replication doubles the
execution time. (+101%)

• In the 3D cases, the
replication penalty is
about 45%.
• More L3 cache hits are

observed

W
a
l
l
t
i
m
e
 (
s
)

Sandia
National
Laboratories

Overhead of resilience in the absence of failures

120 -

100 -

80 -

60

40 -

20 -

0

- No resilience, checksums

Replay, checksums

ma No resilience, no checksums

Replication, no checksums

3D 1D Case A 1D Case B
Application type

30

Resilience with synthetic failure
injection

■ Test a range of task failure rate (0.01%4%)

■ Failure is detected as checksum error (replay) or different
results from the first two tasks (replication)

■ We applied mixed mode so that the last X% of iterations are
replicated, and replay is applied to the first (100-X)% of
iterations.

■ The performance numbers from replay-enabled code with
no-failure are fed to our resilient-AMT simulator to predict
the execution time with different task failure rate.

■ Overhead of replay and replication are based on the cost task.

Sandia
National
Laboratories

31

Resilience with synthetic failure injection
(1D Stencil, 128 tiles of 16000 doubles)

cl) Resilience

u 100

80 -
cc

0
60 -

-oa)
N

E
40 -

8

20
-0
(113a)_c
CD
O

Overhead with Respect to Failure Rate, 1D Case A

- Replication Only

—•— 30% Replication

- 20% Replication

—a— 10% Replication

- Replay Only

♦

•

 •

-A

•

10-4 10-3

Failure Rate

10 -2

• Slight increase in the wall time with the increase of task-
failure rate.

Sandia
National
Laboratories

32

Explicit PDE Solver for Unstructured
Mesh

■ Repetition of Task based
SPMV

■ Evaluated crankseg_1 matrix

from SuiteSparse web site at
Texas A&M.

■ Tried 32 and 128 tile cases

■ No overdecomposition

■ Overdecomposition by the

factor of 8

■ 500 hundred iterations

Sandia
National
Laboratories

GHS_pcdef@crankseg_1. 52804 nodes, 5280703 edges.

33

Irregular distribution of task
dependencies

crankseg_1, 32 tiles

30

25

2C

15

IC

5

0
0

dependencies

5 IC 15 20 25 30

tile index

80

60

40

20

0

Sandia
National
Laboratories

crankseg_1, 128 tiles

dependencies

0 20 40 60 80
tile index

100 120

34

Irregular distribution of nonzero
entries per task

crankseg_1, 32 tiles crankseg_l, 128 tiles

600000 -

500000 -

400000 -

300000 -

200000 -

100000 -

0

Non-zeros

0 5 10 15
tile index

20 25 30

160000

140000

120000

100000

80000

60000

40000

20000

0

Non-zeros

0 20 40 60 80 100 120
tile index

Sandia
National
Laboratories

35

Overhead of Resilience Techniques in tidoar es

the absence of Failures
Overhead of resilience in the absence of failures

10

0
No Resilience Replay Replication

Resilience Method

• Approximately 5% of overhead to enable replay.

• Replication doubles the execution time.

36

Execution Time under synthetic
failures

Resilience Overhead with Respect to Failure Rate, SPMV

10 -

8-

6 -

4-
—A— Replication Only

—•— Replay Only

2 -

0
10-3

Failure Rate
10-2

Resilience

u 100 -

c
a)

a 80 -
cc
c
o
z

60 -

a)
N

13 40 -
E
`6

20 -
-0
ra

Sandia
National
Laboratories

Overhead with Respect to Failure Rate, SPMV

a)
-C

0

O

—*— Replication Only

Replay Only

•

• Slight increase in the execution time.

• Tasking can hide the delay due to failures.

10 —3

Failure Rate

37

Ongoing Work: Resilier Kokkos
r

Kokkos

Parallel Eifecution Runtime (PthreadappenMP, CUDA etc.)

Intel Multicore

DRAM

Inter Xeon• Processor

Intel Acclerator NVIDIA GPU AMD Multicore/APU ARM

CAU1UNI

THUNDERX

-4tiO)Adding Resilience Support

Kokkos::View< Data Type Execution Space, Memory Space, >

i ,GPU Device
emory

Checkpoint
System

Sandia
National
Laboratories

38

Applications

SNL NALU
Wind Turbine CFD

ORNL Summit
IBM Power9 / NVIDIA Volta LANL/SNL Trinity

Intel Haswell / Intel KNL

SNL LAMMPS
Molecular Dynamics

Libraries

UT Uintah
Combustion

Sandia
National
Laboratories

Frameworks

ORNL Raptor
Large Eddy Sim

SNL Astra
ANL Aurora ARM Architecture
Intel Xeon CPUs + Intel Xe Accelerators

Courtesy of Christian Trott
39

Kokkos Ecosystem

Kokkos
Tools

Debugging

Profiling

Tuning

cience and Engineering Applicatio

Kokkos EcoSystem

Kokkos Kernels

Lincar Algcbra Kcrncls Graph Kcrncls

Kokkos Core
Parallel

Execution

Parallel l)ata
Structures

Kokkos
Support

Documentation

Tutorials

Bootc am ps

App support

Kokkos Remote Spaces

PGAS 10

4=p misiod

maw
IR

Ti TijimaIN •

Mutti-Core Many-Core APU CPU + GPU

Sandia
National
Laboratories

Courtesy of Christian Trott 40

1 Parallel Programming using Kokkos

CL
2
c
0o_
0

w
0

0

for (size t i = 0; i < N; ++i)
{

/* loop body */

}

#pragma omp parallel for

for (size_t i = 0; i < N; ++i)

{
/* loop body

}

L

* /

1
I Kokkos::View<double *> myarray("Name",100);

Kokkos::parallel_for ((N, [=], (const size_t i)

{
/* loop body */

1);

Kokkos information courtesy of Carter Edwards

• Provide parallel loop operations using C++ language features

• Conceptually, the usage is no more difficult than OpenMP. The
annotations just go in different places. 41

Kokkos Core Abstractions

Data Structures

Memory Spaces ("Where")

- HBM, DDR, Non-VolatHe, Scratch

- Row/Column-Major, Tiled, Strided

Memory Traits ("How

- Streaming, Atomic, Restrict

Sandia
National
Laboratories

Courtesy of Christian Trott

Parallel Execution

Execution Spaces ("Where")

- CPU, GPU, Executor Mechanism

- parallel for/reduce/scan, task-spawn

Execution Policies ("How")

- Range, Team, Task-Graph

Resilience/redundancy in both abstractions

• Resilient Kokkos provides "resilient" data and execution spaces to enable
resilience/fault tolerance without major modification in application program source.

42

Productive Resilience Support using Kokkos

VeloC

Kokkos

Sandia
National
Laboratories

VELOC Mem_protect(0, &i, 1, sizeof(int));)); // Bind every single memory allocation

VELOC Mem_protect(1, h, M * nbLines, sizeof(double

VELOC Mem_protect(2, g, M * nbLines, sizeof(double));

int v = VELOC_Restart_test("heatdis", 0);

if (v > 0) {

VELOC_Restart_test is returning

assert(VELOC_Restart("heatdis", v) == VELOC SUCCESS);

1 else

i = 0;

while (i < n) {

// iteratively compute the heat distribution

// (5): checkpoint every K iterations

if (i % K == 0)

assert(VELOC_Checkpoint("heatdis", i) ==

VELOC_SUCCESS);

// increment the number of iterations

i++;

1

Kokkos::View<double *, Kokkos::resilience> m data(1000);

for (i = 0; i < n; i++) {

KokkosResilience::checkpoint(*resilience_context, "final", n, [=] 0 mutable

f // Automatically checkpoint all active Kokkos::Views

Kokkos::parallel_for(rp,KOKKOS_LAMBDA(const int i)

{

m data(i)=i; // It's Kokkos::View. No need to bind to checkpoint storage

})

}, KokkosResilience::filter::nth iteration filter< 10 >{});

1

■

Resilient Kokkos enables resilient
data parallel computation

I Kokkos::View <double *

A(1000);
paralleljor (Rangepolicy<>(0

KOKKOS LAMBDA (const int i)

{
A(i) = ... ;

});

.., •••) ResilientSpac

i AA \

Replication

=

kokkos::View <double *, _, ResilientSpace > A(1000); 1

parallel_for ("loop_1", Rangepolicy<>(0, 100),
KOKKOS_LAMBDA (const int i)

{

}) ;

711paral e .frljor (Rangepolicy<>(0, 100),
KOKKOS_LAMBDA (const int i)

});

Automatic Checkpointing

;

Checkpoint
"loop_l ,A"

Sandia
National
Laboratories

44

CONCLUSION

Sandia
National
Laboratories

45

Conclusion

■ Discussed Resilient Programming Models for:
■ SPMD (MPI) Model

Online recovery

Fenix accommodates generalization of recovery using MPI-ULFM
capability

■ Localized Recovery (Fenix-LR)

Exploit application's (stencil) communication pattern to enable
redundancy

Failure-Masking to hide the major recovery overhead

■ Asynchronous Many Task Programming Model

Resilience is embedded to the programming model itself.

Simple extension of tasking API to enable resilient computation patterns

■ Kokkos

Extend Memory and Execution Space concept to enable reslience in
application data and computation

Sandia
National
Laboratories

46

Acknowledgement
Sandia
National
Laboratories

■ Robert Clay, Hemanth Kolla, Michael Heroux, David Hollman,

Jackson Mayo, Jeff Miles, Nicole Slattengren, Christian Trott,

Matthew Whitlock (Sandia National Labs)

■ Shaohua Duan, Mark Gamell (Ab-Initio LLC), Pradeep Subedi
and Manish Parashar (Rutgers U.)

■ George Bosilca, Aurélien Bouteiller and Thomas Herault (U of

Tennessee)

■ Seonmyeon Bak, Sri Raj Paul, Akihiro Hayashi, and Vivek

Sarkar (Georgia Tech and Rice U.)

■ Hartmut Kaiser and Adrian Serio (Louisiana State U.)

Q&A
Sandia
National
Laboratories

48

