

Material Design Tools for MHK Composite Structures

WC0101000/(CPS) 25536

Marine and Hydrokinetics Program

October 8, 2019

Bernadette A Hernandez-Sanchez
Sandia National Laboratories

Project Overview

Project Summary		Project Information
<ul style="list-style-type: none">Problem: MHK technologies manufactured with composites are promising to increase efficiency and improve LCOE metrics; however, composites in marine energy applications are largely untested.Goal: is to reduce risk/uncertainty in using composite designs by demonstrating their potential advantages.		<p>Project Principal Investigator(s)</p> <p>Bernadette A. Hernandez-Sanchez (PI) SNL</p>
		<p>WPTO Lead</p> <p>Lauren Moraski</p>
Project Objective & Impact		<p>Project Partners/Subs</p> <p>Budi Gunawan, SNL George Bonheyo, PNNL Scott Hughes, NREL David Miller, MSU Francisco Presuel-Moreno, FAU</p>
<ul style="list-style-type: none">Objective: (1) assess coupons supplied by industry, (2) identify relevant substructures for fabrication/testing with industry, and (3) provide a descriptive resource of materials properties and solutions to address priority needs (2015 Workshop).Impact: reduce materials risk and overcome engineering challenges, inform supply chain industry about scale-up of suitable materials, accelerate manufacture, and assess performance/reliability.		<p>Project Duration</p> <ul style="list-style-type: none">• Project Start Date: FY2017• Project End Date: FY20/Q2

Marine and Hydrokinetics (MHK) Program Strategic Approaches

Data Sharing and Analysis

Foundational
and
Crosscutting
R&D

Technology-
Specific
Design and
Validation

Reducing
Barriers to
Testing

Alignment with the MHK Program

Foundational and Crosscutting R&D

- Drive innovation in components, controls, manufacturing, materials and systems with early-stage R&D specific to MHK applications
- Develop, improve, and validate numerical and experimental tools and methodologies needed to improve understanding of important fluid-structure interactions
- Improve MHK resource assessments and characterizations needed to optimize devices and arrays, and understand extreme conditions
- Collaboratively develop and apply quantitative metrics to identify and advance technologies with high ultimate techno-economic potential for their market applications

- Understand MHK environmental/load effects on composite materials to provide industry guidance for future materials selection, manufacture, and design.
- Experimental design with MHK conditions were used to evaluate marine industry coatings.
- Produced new standardized biofouling characterization methods.
- Evaluated composite performance under seawater/simulated saltwater conditions for corrosion, biofouling, and load (IEC Technical Specification/Wave Energy Scotland).

Alignment with the MHK Program

Data Sharing and Analysis

- Provide original research to assess and communicate potential MHK market opportunities, including those relevant for other maritime markets
- Aggregate and analyze data on MHK performance and technology advances, and maintain information sharing platforms to enable dissemination
- Support the early incorporation of manufacturing considerations/information into design processes
- Leverage expertise, technology, data, methods, and lessons from the international MHK community and other offshore scientific and industrial sectors

- Delivered U.S. DOE MHK Materials & Structures Database with metrics similar to the DOE Wind Materials & Structures Database (*open resource*)
<http://energy.sandia.gov/energy/renewable-energy/water-power/technology-development/advanced-materials/mhk-materials-database/>
- Team engaged industry & stakeholders to identify needs.
- Provided outreach to share results and progress from experiments to gain feedback on approach/methods.

Project Budget

Lab	FY17	FY18	FY19 (Q1 & Q2 Only)	Total Project Budget FY17–FY19 Q1 & Q2 (October 2016 – March 2019)	
	Costed	Costed	Costed	Total Costed	Total Authorized
SNL	\$255K	\$319K	\$149K	\$629K	\$886K
PNNL	\$134K	\$203K	\$135K	\$472K	\$639K
NREL	\$18K	\$42K	\$33K	\$93K	\$341K
TOTAL	\$407K	\$564K	\$317K	\$1,194K	\$1,866K

- FY17 & 18 devoted budget to coupon testing (SNL, PNNL, MSU (\$100K), FAU (\$75K)) & industry surveys (NREL, Team) to identify subcomponents.
- FY19 delay in budget execution for subcontracts to MSU caused delay in subcomponent fabrication.
- To mitigate, a no cost extension was approved to finalize work through FY20/Q2.

Management and Technical Approach

Materials & Loads

Washington State
University

Biofouling

NATIONAL RENEWABLE ENERGY LABORATORY

Subcomponent &
Full-scale Testing

Composite
Performance

Corrosion

FY17

Salt Water Effects on
Composite Performance
Testing

Biofouling &

Environmental Effects on
Composites

Coupons
provided by:

Composites
Engineering
Research
Laboratory

Composites
Technology
Development
Inc.

Hygrateck

Janicki
Industries

Ocean
Renewable
Power
Company

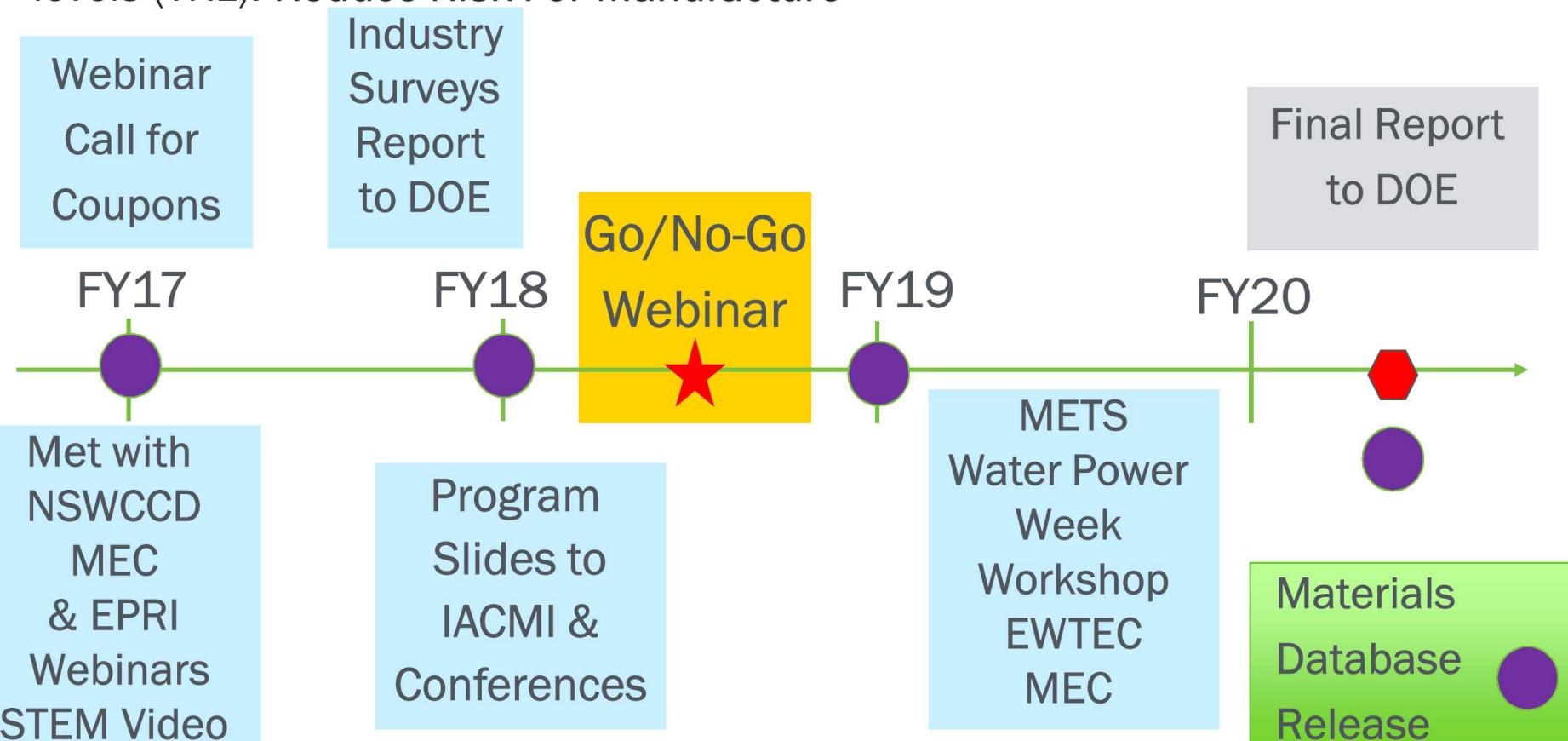
Polyone

Verdant
Power

FY18

Metal – Carbon Fiber
Composite Interconnects
in Seawater

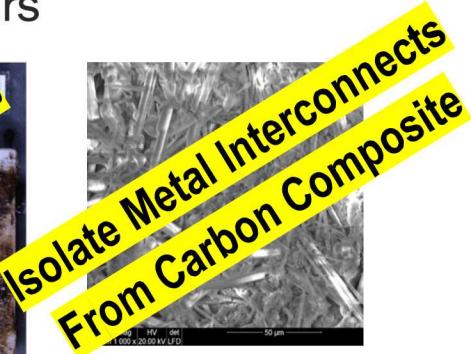
Industry directed full scale
subcomponent testing
(Simulated & Actual
Seawater)


Industry directed sub scale
elements & joined coupon
fabrication/testing
(Simulated & Actual
Seawater)

sion

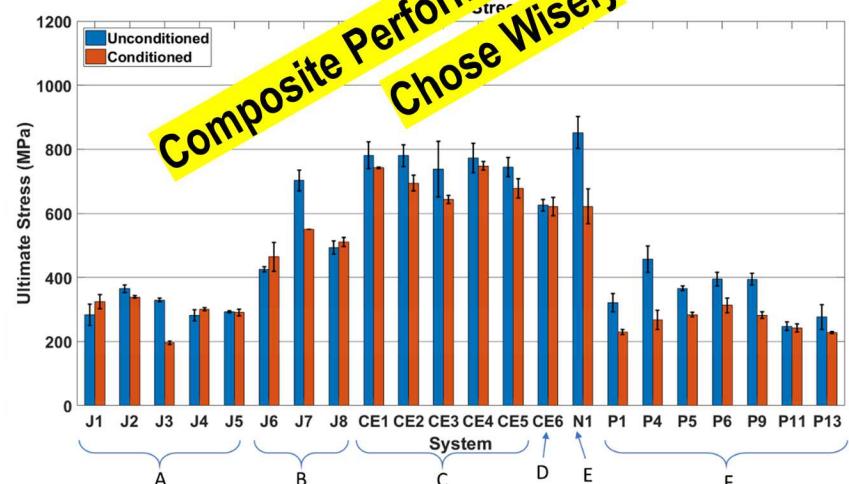
End-User Engagement and Dissemination Strategy

- Target Beneficiaries: MHK developers; composites stakeholders (e.g., supply chain, manufactures, Institute for Advanced Composites Manufacturing Innovation (IACMI)); WPTO to inform R&D strategy and Industry Integration Programs to advance technology performance levels (TPL)/technology readiness levels (TRL). Reduce Risk For Manufacture



Technical Accomplishments

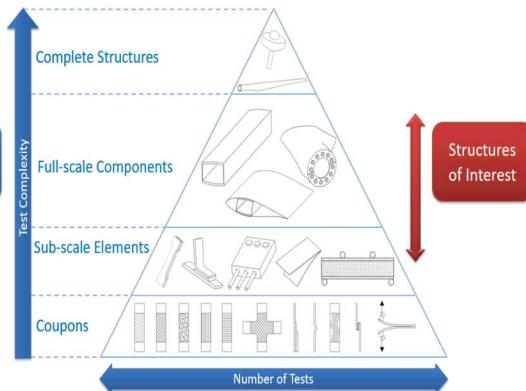
- Performances testing on over 1000 Coupons
 - Submitted by MHK Industry & Stakeholders on materials of interest
- Biofouling Testing at PNNL
 - Unfiltered Seawater (MHK Conditions)
- Corrosion Studies at FAU
 - Carbon composite-metal (Interconnects)
- Delivered annual DOE Materials Database on properties for designers


Biofouling study on commercial & research grade coatings & composites

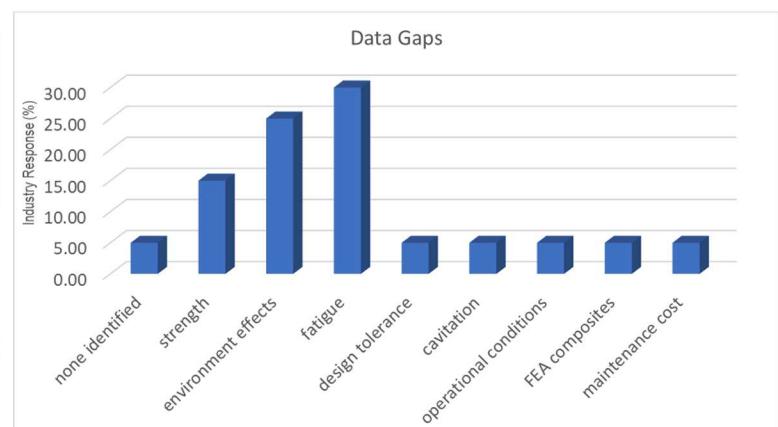
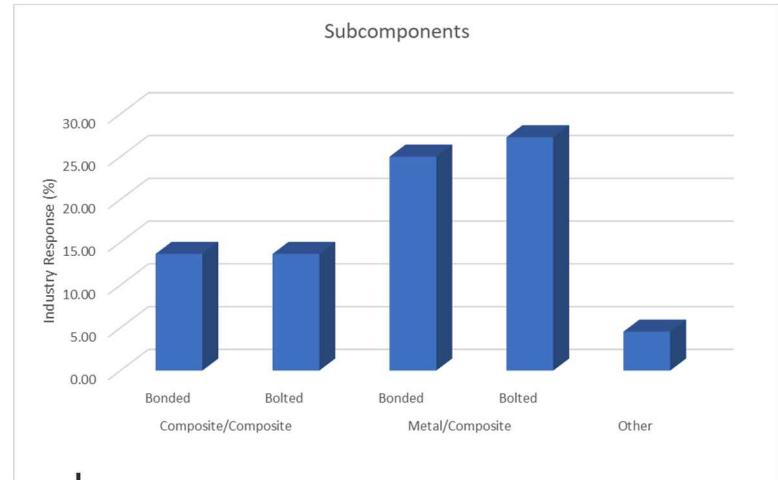
Calcareous deposit from corrosion study
CF/VE8084 + anode

Composite Performance

MSU Material	Layup	Average V _f for static tests %	% Moisture	Longitudinal Direction			Transverse Direction		
				E, GPa	UTS, MPa	% strain	E, GPa	UTS, MPa	% strain
CE1	[0/45/-45/0]s	40.9	0	56.1	756	1.38	70.7	983	3.17
		12	56.3	757	1.36	8.54	683	1.81	
		35.8	0	51.8	773	1.40	9.92	83.3	3.26
		133	56.3	725	1.30	7.79	58.9	1.81	
		40.7	0	51.1	792	1.43	9.96	95.3	3.67
		11	52.1	691	1.31	8.62	78	1.92	
CE4	[0/45/-45/0]s	36.1	0	53.7	774	1.36	8.47	84.9	3.69
		12	53.1	712	1.38	1.29	53.7	1.82	
		36.4	0	56.5	738	1.37	77.8	3.54	
		0.34	57.9	695	1.35	66.6	2.05		
		0	29.2	100	120	109	2.52		
		0.36	28.7	136	166	126	2.36		
CE6	[0/45/-45/0]s	42.3	0	56.1	756	1.38	70.7	983	3.17

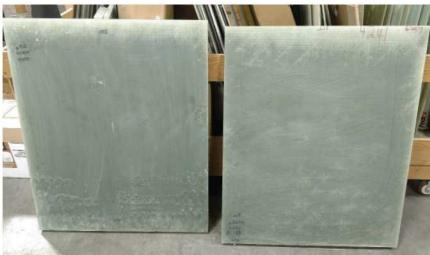

Group	Fiber	Matrix	Layup Type
A	Glass	Thermoset	Quasi-Isotropic
B	Carbon	Thermoset	Quasi-Isotropic
C	Hybrid	Thermoset	[45/-45/0]s

Group	Fiber	Matrix Type	Layup Type
D	Glass	Vinyl ester	[0/45/-45/0]
E	Glass	Elium	[0b]s
F	Glass	Thermoplastic	[0/90]n



Technical Accomplishments (Cont.)

Public Results from Industry Surveys

- Questionnaire for industry input
- Phone interviews
- Identify:
 - What materials are being used?
 - Gaps in existing data
 - Design and manufacturing challenges
 - Components where composites may be used
- Results informed the development of subcomponent types

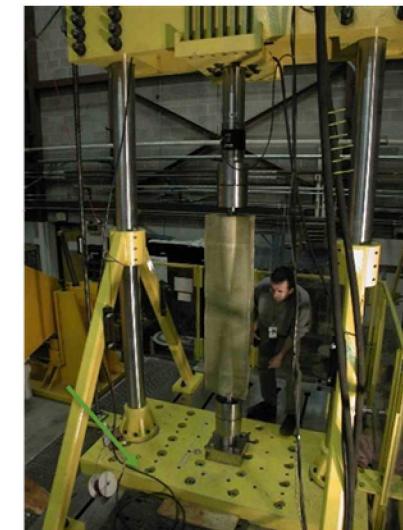
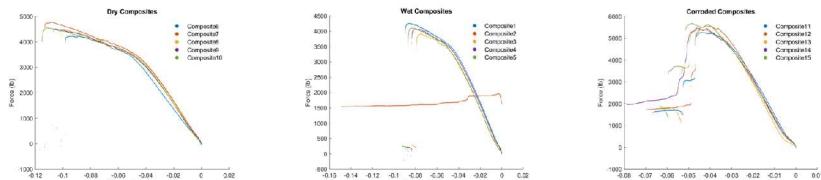



**(Internal Report)
DOE WPTO:
Industry
Assessment on
Composite
Structures**

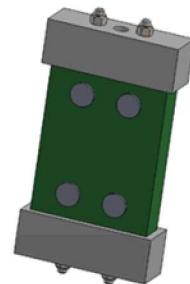
Progress Since Project Summary Submittal

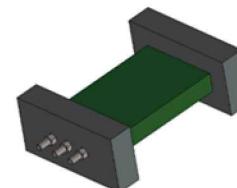
Subcomponent Fabrication

Adhesively shear specimens

Metal Insert


Corrosion Studies on Connections


Joined Material Load Behavior

T-bolt connections

Compression Relaxation specimens

Future Work

- FY20 Q1–Q2
- No Cost Extension
 - Seawater conditioning subcomponents at PNNL and FAU.
 - Testing pre-/post-conditioned samples with FBG sensors in Q1.
 - Project will be finalized by testing at NREL in FY20 Q2.
- Results will demonstrate how subcomponents perform under load after exposure to seawater.
- Reduce risk: “What are the benefits of using composites?”

