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The magnetic-Rayleigh—Taylor (MRT) instability is ubiquitous
2 in Z-pinch implosions.

In Z-pinch implosions, the J x B force is used to

compress matter.

Applications of Z-pinch implosions include fusion

schemes in which the Z pinch compresses fuel to

fusion-relevant conditions.

As in the classical Rayleigh—Taylor (RT) instability, the

driving magnetic pressure plays the role of a light fluid

pushing on the liner, which acts as a heavy fluid.

Target performance is highly dependent on the

integrity of the liner, which can be broken up by the

MRT instability.
Schematic of the MagLIF fusion concept.1

1
I

Magnetization Laser heating Compression 1

I

I

[1] M. R. Gomez, et al., Phys. Rev. Lett. 113, 155003 (2014).



Due to its importance, the MRT instability has been thoroughly
3 studied both experimentally and computationally at Sandia.
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[2] D. B. Sinars, et al., Phys. Rev. Lett. 105, 51 (2010).
[3] R. D. McBride, et al., Phys. Plasmas 20, 056309 (2013).
[4] T. J. Awe, et al., Phys. Rev. Lett. 111, 956 (2013).

[5] M. R. Douglas, C. Deeney, and N. F. Roderick, Phys. Plasmas 5, 4183
(1998).
[6] S. A. Slutz, et al., Phys. Plasmas 17, 056303 (2010).



4 From the theoretical standpoint, much work is left to be done.

Due to effects coming from the magnetic-field tension, the MRT instability is

rich in complexity compared to the classical RT instability.

On the theoretical side, most works have focused on the linear phase of MRT

while adding a variety of effects; e.g.,

slab and cylindrical geometry,7,8,9

Magnetization effects,8

Magnetic-shear effects,1° and

Bell—Plesset effects."

There are a lot of pending questions regarding the nonlinear stages of MRT: 1 2

What is the saturation amplitude for MRT?

Can we describe the nonlinear MRT observed in our experiments in Z with a simple model?

How will MRT scale for currents envisioned in a next-generation machine?

[7] E. G. Harris, Phys. Fluids 5, 1057 (1962).
[8] M. R. Weis, et al., Phys. Plasmas 21, 122708 (2014).
[9] M. R. Weis, et al., Phys. Plasmas 22, 032706 (2015).

In this talk, I will report on some

recent advances on understanding

nonlinear MRT.

[10] P. Zhang, et al., Phys. Plasmas 19, 022703 (2012).
[11] A. L. Velikovich and P. F. Schmit, Phys. Plasmas 22, 122711 (2015).
[12] D. D. Ryutov and M. A. Dorf, Phys. Plasmas 21, 112704 (2014).



5 Program of today's talk

Main motivation

Introduction to the problem considered

Hamiltonian theory of the weakly-MRT instability

Comparison of weakly nonlinear theory to experiment

Current work: Regularizing of the weakly nonlinear MRT theory

Conclusions and future work



1

2. Introduction to the problem considered



7 To begin, let's consider the single-surface MRT problem.

For this talk, I focus on a semi-infinite planar fluid slab

under some gravitational field.13,14

We assume that the fluid is

incompressible,

irrotational,

unmagnetized,

immiscible, and

perfectly conducting.

The fluid slab interacts with a magnetic field B situated in

the vacuum region.

z

_....--"

v(t, x, z) -

--'_ )'- .__• 1/4 _,.,_
B(t, x. z) = Bo +Vitp

Schematic of the problem considered in this talk.

[13] Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, (Oxford University Press, London, 1961).
[14] M. Kruskal and M. Schwarzchild, Proc. R. Soc. London Ser. A 223, 348 (1954).



8 I The governing equations of the single-surface MRT are well known.

The fluid is irrotational and incompressible.

Vxv=0 > v —VO

V • v = 0 [
x—/ 2 /
v 9 CT]

The magnetic field B = Bo + B1 is in vacuum and in contact

with a perfectly-conducting surface.

V x B1 = 0 B1 = VV)

V • B1 = 0
V(z — = 01

The fluid—vacuum interface is self-consistently advected.

[aK+ vo vr(z — z -

The fluid is immiscible and obeys the force-balance equation.

Patv p(v • V)v = -pgez - VP

lim v =
z-koo

v (t, x, = —VO

B(t, x, = Bo +`Vrb

[lim B1 = 0
z—>-00

Magnetic pressure

1

atP 2— 0)2 g z]
87rz=

, 1 2
BO + V1PL—



9 I What has been the traditional approach to study weakly NL RT?"-18

• The Fourier representation is used to care of the constraints and the boundary conditions:

x) = cn cos(nk • x) ¢(t, x, z) = cos(nk • x)e-nkz V)(t, x, z) = €11:7,(t) sin(nk • x)enkz
neZ+ neZ+ nEZ+

The small parameter c << 1 serves as an asymptotic parameter for the perturbation series.

For MRT, the boundary condition for the fluid—vacuum interface provides an equation for 107-1(t).

• V(z — = 0 1 ,t&(t) _ II)n[n(t)]
Once the magnetic pressure is obtained, we obtain the dynamical equations for (t) and

[aK vo v(z — = 0

p [0 1
—Ot -2(V0)2 —

1
87r
Bo + VIP

-,2
r a

at _

atOn(t) _

The resulting equations
are then solved...

[15] J. W. Jacobs and I. Catton, J. Fluid Mech. 187, 329 (1988). [17] H.-Y. Guo, et al., Chinese Phys. Lett. 34, 045201 (2017).
[16] R. L. Ingraham, Proc. Phys. Soc. B 67, 748 (2002). [18] L.-F. Wang, et al., Phys. Plasmas 21, 122710 (2014).



Variational principles can provide an alternative procedure to study
10 nonlinear M RT.

The traditional approach can lead to some problems.

Approximating equations without care can break certain invariants of the system, e.g., energy conservation.

When lots of equations are obtained, it has hard to physically interpret the terms appearing in the equations.

One can gain insights to the problem by using variational principles.19

All information about the physical system is contained in a single object: the Lagrangian.

Lagrangians have other good benefits: simpler calculations, good integrators,...

Traditional approach

Procedure based on
variational principles

Exact equations of motion

Exact Lagrangian Approximate Lagrangian

The two approaches can
sometimes lead to
different equations!

Approximate equations

Lagrangian eqs.

[19] D. E. Ruiz, A Geometric Theory of Waves and Its Applications to Plasma Physics, Princeton University, 2017.



Hamiltonian theory for the weakly-nonlinear

MRT instability



12 
I The MRT instability is a Hamiltonian system !

• Based on a well-known variational principle (VP) in quantum hydrodynamics, I found

a VP for the fully nonlinear single-surface MRT problem.

= f
t2

L[e, dt Lfluid[, 0] + LB IP] z
v(t, x, z) = —VO

The Lagrangian is separated into a fluid and a magnetic component.

+Do

Lifind
[a 1 2
P —at —2MO gqz ek,a1) dz d2x

-14313 Eiath- 7VINE194 - z) dz d2x
1 rtzt _up

B(t, Z) = BO +

The coupling between the fluid and the magnetic field comes from the surface

perturbation -(t, x) appearing in the integration boundaries. This is unique to MRT.



13 I This variational principle leads to the correct equations.

Varying the action with respect to the flow potential leads to

60 : ate (z — e) — v . [Vr 0 8 (z — 01 = 0 C::::,

• Varying the action with respect to the magnetic potential gives

(SitP : V • [(Bo + V 0) 0 (. — z)] = 0

Inside the fluid

B z=.'cr(z -e) = 0
../

Finally varying the action with respect to the surface perturbation gives

f" 0 1 1
k: 0 = — j {P [—at

0 — 2 
(V02 — g z] + 87 1B 0 + VO 2 } (5( - z)dz

where we used (50(z — 0 = —(5(z — 0,(5 - .

,
C

•N

In vacuum
 i

a 1
p [0 - (V02—

at 
-2  — =

1

87
Bo +vol2z

All the information of the system is encapsulated inside the Lagrangian.



14 1 We can rewrite the problem as a Hamiltonian system.

We integrate by parts the OtO term in the action. We can rewrite the VP as a Hamiltonian system:19-21

L = f p ol) ate d2x — H

where (I)(t, x) 0(t, x, z = e (t, x)) and

Total Hamiltonian H Hkin + Hg + Hs,

Kinetic Hamiltonian

Gravitational Hamiltonian

Magnetic Hamiltonian

1 0.0
Hkin = fp f cx)(V" 0)20(z — 0 dz d2x,

Hg = f f gz e(z — e) dz d2x,
D —co

co

HB — 1 /1 1B0 + v012 e(e — z) dz d2x.
87p D 0,0

In classical mechanics, the phase-
space Lagrangian for a point-particle is

L = P • k — H(t, X, P).

Question 1: Can we draw analogies
between point particles and MRT?

Question 2: Do Rayleightons exist?

• Remember: only cKt, x) and (t,x) are dynamical variables. ip(t,x) is only a constraint.

1
1
I

1

[19] V. E. Zakharov, Sov. Phys. JETP 9, 86 (1968). [21] M. Berning and A. M. Rubenchik, Phys. Fluids 10, 1564 (1998).
[20] E. A. Kuznetsov and P. M. Lushnikov, JETP 81, 332 (1995).



To obtain a VP for weakly NL MRT, we write the fields in the Fourier
15 representation and insert them into the Lagrangian.

Taking into account the required boundary conditions, we write the fields in terms of Fourier components:

e(t, x) cos(nk • x),
nEZ+

0(t, X, z) = n n(t) cos(nk • x)e-nkz
nEz+

(1)(t, X) En (13'n (t) cos(nk • x),
nEZ+

'0(t, X, z) = eri n(t) sin(nk • x)e"kz.
nEZ+

When inserting these into the Lagrangian and integrating, only the non-oscillating terms survive. Easy!

The general expression that one obtains is

neZ+

den€2n (Dn

dt
H(t,471,4;77).

The Fourier components (1)n) act as phase-space coordinates of the Rayleighton.

For weakly NL MRT, it all boils down to the order of accuracy in which one can calculate the Hamiltonian.



16 I Single-harmonic linear MRT theory

To obtain the linear theory, one needs to calculate the Hamiltonian up to OW). The result is the following.

Llinear — C ̀ Y1 
dt 

C li [S1, vY1] H[Z, (1)1] = —2 (Di —2 g 
(k • vA)2) -2,_

k 
1

2j; C14-1 2 T_TF'e ,T,' i k 2 1

Here vA = Bo/N/47u) is the Alfvén velocity.

The equations of motion are simply Hamilton's equations.

d —
Ai : — 1_ = at

dt

d -4 1 -3. (g (k • v A)2  ) --i_
6 -i :

clt k

* [ d2 -dt2 
[g k — (k • VA)2] 2

_, 
 i = 0

Well-known equation
for linear MRT

-17 ( t , X

yi
Kinetic term

p 2

2rn

Potential energy

V (t, X)

Unstable MRT Stable MRT

g k > (k . v }1)2 g k < (k • v A)2



The sign of the potential determines whether the motion is stable
17 or unstable.The topology of the phase-space plots changes.

As a reminder, the linear Hamiltonian is H[ 1,ii.1]= —k4;2 1 - (k • vA)2 .
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The sign of the potential determines whether the motion is
18 stable or unstable.
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19 I Double-harmonic weakly nonlinear MRT theory

To account for two harmonics, one needs to calculate the Hamiltonian up to OW). The end result is22

2
2n i$n d

dt 
H(t, q'2),

n=

2 

11

H 62n nk -(11 2 r k 22 k 3 (1) e'f E k 2 2
21 64 

k 
k • VA 1 2

2 2nk 8 2 
2 

2 
k • VA 

8
11=1

The resulting equations of motion are

d 
k3

dt 
= k(Di - €2 ) E k 2 2,-T-;

4

d
d 
t
(I)  • 

PY1((t)'-'e  k3i_ 1 _ 7, 
)2k 1- 6

2 
7C1 Ì'l 1- 6

2 
IK VAI2 2 + 6 

2k 
V(

- (k • VA) e12_
d d )731((t) k2 - 1 

2= 2k(13'2, —
dt

(1)2 =  
2k 2 2

[22] D. E. Ruiz, "On a variational formulation of the weakly nonlinear magnetic Rayleigh—Taylor instability," in preparation.



20 One can learn a lot about the temporal dynamics by simply looking at
the Hamiltonian.

To account for two harmonics, one needs to calculate the Hamiltonian up to 0(0).

N. • /----N e.
I I I % e

2  I II
I ,2 b3 1 1 , k2 ,_ , 1 64 IH II.: 

E
 nk 4;2 ink '2i- I 4'

2 n C I— E ,T 
0+164 (1.21

I— — k • VA eg211— € — k • 17,42 1
2 -1 4 k

2nk n 1 2 2 1 8
n1  i 

I 1
, ...   I • — — _ _ •  il

•  I

Linear dynamics Nonlinear Nonlinear Nonlinear Nonlinear
self-coupling of minetic magnetic coupling self-coupling of the

1st harmonic coupling

The equations of motion are

d k3-

dt 
- = k(1)1 - €2 

4
—(131 

J
E2k2-(iii -e;7

d

dt - =
•

d

dt 1 +E 4 ei(Di
L.3
2'

d (-1;2 72k(t)~2 k2-4;

dt 2k 2 1

1st harmonic

€21k •.17,412 1-e;

- (k • vA)2e.



Examples of obtained dynamics using the double harmonic
21 weakly nonlinear MRT theory
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Surface perturbation (t,x)

O

rt

'

G
I
B
U
!
p
i
O
C
I
3
 U
O
M
S
O
d
 

,21

Lrl

CP

1.

O

P=1
O

Momentum coordinate

-fa
• • • , • •

/1/ / / \\,\\ \\\
- 8//11 ///7 '\\\ \\\r7//  \\\ \\

- 1/1/ it / I/ 
\\\

1/1 / I/ / //1--\\\\ ICC\ \

- 111/111 11/1(:,\\\001n1\

" 11;
0\°//t/ W

11- 40\ 
iit oi _

j iff I f

- °\\\ \\"/,1 "11""1
- \\\,4\ \\\\ the

\\\\\\..\\ 1)///////fr_ \\\,..\\\\,\ ////i/m _„
, 1 . 1 

Momentum coordinate ri2

0

- \ \ 41/4 \ hs:Ay \ .\ \ ,.,_ -..„............ ,._....._..../ / 
Iiiilairbill -

.t., ,,,,,

7////////// _ \ \ It\\%\\:\-\\-\,, ,.///////1//7/ili -
- I, \ .V1,61',...\\\ \-\ \ '1/4..• ,,.......7 „,...." /1/017/1" 100 ill ---_ *Rv ,\,--:::-/;////////////iiii =- \\\\\,\\\\\\:::-___,,-////////iiiiii i= \\\\\W\, „_. , //////a/iii _- '\\\\\\\\\--------////iiiiiiiii == '\\\\N\\\ --////'"li i -- ,\\\\\\\ \\N--- si/iiiiii iil -: \ \ \ \ \ \ \\\\\:-----',//1/11/ i i I/ I =- \ \ \ \ \ \ \ \\\ \ 1/ / 1 / 1 i / 1 i / i i
- "\\"\\\\ '---- 11////iiii -i \ \ \ \ \ \ \ \ \ \ ,,,/ / i i . . . i :
, 1 . . . . 1 . . . . 1 . . . . 1 . . 

p
l
a
y
 j
p
a
u
g
o
w
 L
o
w
 

•



Within the range of validity of the theory, we can learn about the
23

long-term behavior of the solutions.

• The governing equations are the following:

d 2k3— 2 ^

dt 
= k(Pi — 6

4
(Die
' 
+ 6 k243.12,

d

C2 = 2/(v2,
dt

d

dt 1
E
2k3 €2k VA 2 142+

d 7k(t)i k2 

1 

+ 

2 

—1 (k • VA)24)12•2dt 2k

k

€ 2
(k VA) c,1)

Key idea: At large times, the behavior of the solutions is dominated by the growth of the 1st harmonic.

(t) (N) CIO Okt E2 a2 e3'Ikt 
-2(t) boe27kt

Using this ansatz, we solve a system of algebraic equations. We obtain

First harmonic

Second harmonic

e;(t) 1,1in(t) 

[i 62 k(kg + -)712,)')/1 lin(t)]2]
16y)712,

-2(t) 42k [1,1in(t)12,

(02kt < e2tykt)

At sufficiently large times

—
1,1in(t) — 16(0)0kt

2

Asymptotically dominant term
of the linear solution

This is how the 2nd harmonic grows!



24 I The asymptotic solutions compare well to numerical solutions.

1.5

First harmonic

Second harmonic

1(t) 1,1in(t) 
[i c2 k(kg ry12,)'-qk lin(t)i2

16gq( L

2(t) 19k rel0lin( 2,

1.0-

0.0

—0.5.

—1.5

Z,asymptotic

E2,asymptotic
1,1in

(a)

a = 0.0

Timc t
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O

.2 —0.5

—1.0

0.0
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0- =  

gk

—1.5
0

-
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1,1111
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a = 0.2
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Time t

(k6
0.5

O

—0.5.

—1.0-

-1.5
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—
2 
ei(0)Okt
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linear solution

1.5

1.0

Z,asymptotic

E2,asymptotic
0.0

= 0.45

8
Time t

When a 0 v, 2k 0. Thus, the calculated terms for the second harmonic and the correction of the first

harmonic are no longer dominant. Hence, the asymptotic solutions are not valid in this regime.
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Another observation:The presence of a magnetic field can increase
25

the saturation amplitude of the linear-growth phase.

The saturation amplitude of the 1st harmonic can be defined as the amplitude when the fundamental mode is

reduced by 10% in comparison of the linear solution.
No longer valid!
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In the limit of no magnetic fields, we recover the classical result for the RT instability.
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26 I Triple-harmonic weakly nonlinear MRT theory
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One can extend the results to account for three harmonics. The resulting OW) Hamiltonian is23
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[23] Calculation done with Mathematica. S. Wolfram, The Mathematica Book (Wolfram Media/Cambridge University Press, Cambridge, United
Kingdom, 2003), 5th ed.



27 1 The theory can be easily extended to a finite-width planar slab.
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For a finite-width slab, the corresponding VP is given by
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One can repeat the same procedure to obtain the governing weakly nonlinear equations.
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Comparison of weakly nonlinear theory to experiment
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30 To compare to experiment, we used the weakly NL, semi-infinite slab mod

20

15

• Why can we do this? Initially, one has
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Feedthrough is negligible. Semi-infinite slab model is good.

Perturbation incisions are small. Planar is good.

To obtain a time history for the liner acceleration, we took the measured current traces and fed them to

a thin-shell model to obtain liner trajectory.
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31 I The theory breaks down at a mid-time during the implosion.
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The theory breaks down at t 65 ns.
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I The theory breaks down before the data shows a strong32 nonlinear structure.
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5. Current work: Regularizing the weakly nonlinear

MRT theory



34 Weakly nonlinear theory can be fixed by regularizing the Hamiltonian.

When perturbation amplitudes grow, some terms in the Hamiltonian become too large and lead to "bad" behavior.

1 ( 2 4 2) g 2 41 4 k3 4 k2H =— k(1)1+ 2€ Classical RT Hami(tonian
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e e2 E (1)1 + E — 4)1 e22 2 
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The Padé approximant has been used before to regularize solutions for the Richtmyer—Meshkov instability.24,25

What if we regularize the Hamiltonian by representing it as a Padé approximant?
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• The Padé-approximated Hamiltonian leads to similar behavior at small amplitudes.

Question: Can it lead to better behavior at large amplitudes?

2

5

[24] A. L. Velikovich and G. Dimonte, Phys. Rev. Lett. 76, 3112 (1996);
[25] A. L. Velikovich, M. Hermann, and S. I. Abarzhi, J. Fluid. Mech. 751, 432, (1994).



The regularized theory leads to ballistic behavior for the Fourier
35 components at large times. This agrees with nonlinear RT theory.

1.5

1.0
-7(
e......... 0.5

Original
c
.2

Hamiltonian 4
0.0

=cp -0.5
0.

co
-1.5

-2.0 
-10

1.5

1.0
$71.
kr.,. 0.5
c

Padé approximated .2

Hamiltonian .4 
0.0

c
=O -0.5
c.

ca -1• 0t 
c
en
-1.5

-5

-5

0
Position x

0

Position x

5

10

10

'4.,

c
.4 KJ.

1.5

1.0

E
a) 0.5-
c
0

u- -0.5

-

C
0 KA

-1.0

1.5

1.0

Li' - 0 . 5

3

Time t

4 5 6

3

Time t



Phase-space plots of renormalized theory show good behavior.
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6. Conclusions and future work



I38 Conclusions

A variational principle was found for the MRT instability. It was used to construct an asymptotic theory

for the weakly-nonlinear MRT instability.

In Fourier space, the MRT instability can be interpreted as the temporal dynamics of a particle

(Rayleighton) in phase space. Much insights about the dynamics can be learned in this manner.

The resulting theory captures harmonic generation and gives the saturation amplitude for MRT.

. When compared to experiments at Sandia, the theory breaks down relatively early during the implosion.



39 Future work

More work needs to be done to fully scope out the potential of Hamiltonian methods for

understanding the MRT instability.

Can we regularize the Hamiltonian and "fix" the dynamics for large amplitudes? Can the Padé approximation do the trick?

The weakly nonlinear theory needs to be modified to cylindrical geometry.

Weakly nonlinear, cylindrical MRT

Weakly nonlinear MRT with Bell—Plesset effects and "ponderomotive" effects

Weakly nonlinear sausage and kink instabilities.

The current theory or any extensions to it need to be further scrutinized and compared to

numerical simulations and experiments.


