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The magnetic-Rayleigh—Taylor (MRT) instability is ubiquitous
2 I in Z-pinch implosions.

* In Z-pinch implosions, the J x B force is used to

compress matter.

« Applications of Z-pinch implosions include fusion
schemes in which the Z pinch compresses fuel to

fusion-relevant conditions.

* As in the classical Rayleigh—Taylor (RT) instability, the

driving magnetic pressure plays the role of a light fluid

pushing on the liner, which acts as a heavy fluid.

* Target performance is highly dependent on the Maénetization Laser heating Compression |

integrity of the liner, which can be broken up by the
MRT instability.

Schematic of the MagLIF fusion concept.’

[1] M. R. Gomez, et al., Phys. Rev. Lett. 113, 155003 (2014).



Due to its importance, the MRT instability has been thoroughly |
3 I studied both experimentally and computationally at Sandia.
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Interaction between several MRT modes?

[2] D. B. Sinars, et al., Phys. Rev. Lett. 105, 51 (2010).
[3] R. D. McBride, et al., Phys. Plasmas 20, 056309 (2013).
[4] T. J. Awe, et al., Phys. Rev. Lett. 111, 956 (2013).

[5] M. R. Douglas, C. Deeney, and N. F. Roderick, Phys. Plasmas 5, 4183

(1998).

[6] S. A. Slutz, et al., Phys. Plasmas 17, 056303 (2010).



4 I From the theoretical standpoint, much work is left to be done.

* Due to effects coming from the magnetic-field tension, the MRT instability is

rich in complexity compared to the classical RT instability.

* On the theoretical side, most works have focused on the linear phase of MRT

while adding a variety of effects; e.g.,

> slab and cylindrical geometry,”.8.?
In this talk, | will report on some
> Magnetization effects,?
recent advances on understanding
> Magnetic-shear effects,'? and
nonlinear MRT.

- Bell—Plesset effects.

- There are a lot of pending questions regarding the nonlinear stages of MRT: 2
> What is the saturation amplitude for MRT?
> Can we describe the nonlinear MRT observed in our experiments in Z with a simple model?

> How will MRT scale for currents envisioned in a next-generation machine?

[7] E. G. Harris, Phys. Fluids 5, 1057 (1962). [10] P. Zhang, et al., Phys. Plasmas 19, 022703 (2012).
[8] M. R. Weis, et al., Phys. Plasmas 21, 122708 (2014). [11] A. L. Velikovich and P. F. Schmit, Phys. Plasmas 22, 122711 (2015).
[9] M. R. Weis, et al., Phys. Plasmas 22, 032706 (2015). [12] D. D. Ryutov and M. A. Dorf, Phys. Plasmas 21, 112704 (2014).
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Program of today’s talk

1.

Main motivation

Introduction to the problem considered

Hamiltonian theory of the weakly-MRT instability

Comparison of weakly nonlinear theory to experiment

Current work: Regularizing of the weakly nonlinear MRT theory

Conclusions and future work



2. Introduction to the problem considered




7 1 To begin, let’s consider the single-surface MRT problem.

« For this talk, | focus on a semi-infinite planar fluid slab

under some gravitational field.13.14

«  We assume that the fluid is ; v(t,x,z) = =V
> incompressible,
> irrotational,
° unmagnetized,
> immiscible, and i W o W e W S W W
- perfectly conducting. B(t,x,2) = By +V7

« The fluid slab interacts with a magnetic field B situated in T Ty I

the vacuum region. |

[13] Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, (Oxford University Press, London, 1961).
[14] M. Kruskal and M. Schwarzchild, Proc. R. Soc. London Ser. A 223, 348 (1954).



g8 I The governing equations of the single-surface MRT are well known.

The fluid is irrotational and incompressible.
VXxv=0

V-v=0

= v=—-Vo¢
= V=0

The magnetic field B = By + B; is in vacuum and in contact

with a perfectly-conducting surface.

VXB1=O
V-B; =0

=
=

B, =V

V21,/J=O B|Z:§-V(Z—€):O

The fluid—vacuum interface is self-consistently advected.

[ [0+ V- V(z—€)], =0 ]

The fluid is immiscible and obeys the force-balance equation.

pov + p(v - V)v

Periodic

lim v=0
Z—+00

I I i W e N W e W
B(t,x,z) = By + V1

/\\Jﬁ\*/\j’—\\_’/—*\

lim B; =0

2—7>—0C

Magnetic pressure

0
—-pge. —VP = [ p [§¢ - %(VW — gz

2=

1 P
— 8_7T]B0 + VY|, J

Periodic



9 | What has been the traditional approach to study weakly NL RT?!>-18

The Fourier representation is used to care of the constraints and the boundary conditions:

E(t,x) = Z " gn(t) cos(nk - x)

nez+ nez+

¢(t, X, Z) — Z Enq/gn(t) COS(nk ) X)e_nkz

Yt x,2) = Z 6"1%(75) sin(nk - x)e”k‘z

ncZt

The small parameter € « 1 serves as an asymptotic parameter for the perturbation series.

For MRT, the boundary condition for the fluid—vacuum interface provides an equation for wn(t).

Bl VE-8=0 | = 0,(t) = [6)

Once the magnetic pressure is obtained, we obtain the dynamical equations for &(t) and &n(t) .

[ G+ V- V(z=8)],_ =0 }

1
— EEF‘I30‘+"7Q9

2=

2
o=t

0 1
[ p |50~ 5(90F - g2

SN

AT
bnlt) = -
o ~
L ont) = ...

Y Y,

The resulting equations
are then solved...

[15] J. W. Jacobs and I. Catton, J. Fluid Mech. 187, 329 (1988).
[16] R. L. Ingraham, Proc. Phys. Soc. B 67, 748 (2002).

[17] H.-Y. Guo, et al., Chinese Phys. Lett. 34, 045201 (2017).

[18] L.-F. Wang, et al., Phys. Plasmas 21, 122710 (2014).



Variational principles can provide an alternative procedure to study
1 ¥ nonlinear MRT. |

* The traditional approach can lead to some problems.
- Approximating equations without care can break certain invariants of the system, e.g., energy conservation.

> When lots of equations are obtained, it has hard to physically interpret the terms appearing in the equations.

* One can gain insights to the problem by using variational principles.'®

- All information about the physical system is contained in a single object: the Lagrangian.

The two approaches can
- Lagrangians have other good benefits: simpler calculations, good integrators,... sometimes lead to
different equations!
Traditional approach Exact equations of motion [ > Approximate equations I
Procedure based on .
variational principles Exact Lagrangian E="") Approximate Lagrangian == Lagrangian egs. |

[19] D. E. Ruiz, A Geometric Theory of Waves and Its Applications to Plasma Physics, Princeton University, 2017.



3. Hamiltonian theory for the weakly-nonlinear

MRT instability



2|

The MRT instability is a Hamiltonian system ! |
Based on a well-known variational principle (VP) in quantum hydrodynamics, | found
a VP for the fully nonlinear single-surface MRT problem. ‘
to
A= [ Lig o L= Loualé, 6] + Lolé, o]
" t,x,2) = -V

The Lagrangian is separated into a fluid and a magnetic component.

Lguia = / / [—¢ - —(Wb)) — @z]] @bai2x¢) dz d2x

1

kg = e |EBW&7IM%@%8— 2)dz d’x

TN N T N
B(t,x,2) = Bg + V4

T e > \—y/y\_/’\\_/'/—‘\

perturbation £(t,x) appearing in the integration boundaries. This is unique to MRT.

The coupling between the fluid and the magnetic field comes from the surface |



3% This variational principle leads to the correct equations. |

« Varying the action with respect to the flow potential leads to

:>[ [0k + V- V(z—-¢)],_ =0 ] ‘

:> V¢ =0 | Inside the fluid

1 (7

56 9O(z—€) — V-[VéO(z — )] = 0

« Varying the action with respect to the magnetic potential gives
=) Bl V(-9-=

:> V2¢ — (0 | Invacuum |

* Finally varying the action with respect to the surface perturbation gives

. B > 0 1 1 2 ., 0 1 1 2
5610 = —/_OO {p [aqﬁ—;vqb)?—g% + 5 Bo+ VY| }5(5 2)dz |:> { p [aqb— §(V¢5)2 — gz » - g’BOJFVMz:s }I

where we used )O(z — &) = —i(z — €)0€ . |

|
0 V- [(Bo+Vy)B(—2)=0

All the information of the system is encapsulated inside the Lagrangian.



4|

We can rewrite the problem as a Hamiltonian system.

«  We integrate by parts the 0;¢ term in the action. We can rewrite the VP as a Hamiltonian system: -2

Lﬁ/CI)@tﬁdzx—H
D

where ®(t,x) = ¢(t,x,z = {(£,x)) and

In classical mechanics, the phase-
space Lagrangian for a point-particle is

o0
Gravitational Hamiltonian Hy = / / gz 0(z — £) dz d?x,

Magnetic Hamiltonian = ~5— / / By + VY[ 0(¢ — ) dz d*x.
mp

Total Hamiltonian H = Hy, + Hg -+ ]—]B7 L=P- X — H(t, X, P).
L . .1 > 9 B 9 Question 1: Can we draw analogies
Kinetic Hamiltonian Hign = 2 /D / m(v¢) Bg=tldadx, between point particles and MRT?

Question 2: Do Rayleightons exist?

- Remember: only ®(t,x) and (¢, x) are dynamical variables. (t,x) is only a constraint.

[19] V. E. Zakharov, Sov. Phys. JETP 9, 86 (1968).
[20] E. A. Kuznetsov and P. M. Lushnikov, JETP 81, 332 (1995).

[21] M. Berning and A. M. Rubenchik, Phys. Fluids 10, 1564 (1998).



To obtain a VP for weakly NL MRT, we write the fields in the Fourier

" ¥ representation and insert them into the Lagrangian.

g(t7X) — Z Ené\n(t) Cos(nk . X), (I)(t, X) _ Z " (/Isn(t) COS(nk . X),
neZt nezt
o(t,x,2) Z € ¢n ) cos(nk - x)e"*?, Y(t,x, 2) Z € zpn ) sin(nk - x)e"*?.
BEL™ neZ"

When inserting these into the Lagrangian and integrating, only the non-oscillating terms survive. Easy!

The general expression that one obtains is

= o, % — H(t,&,®,).

neZt

The Fourier components (&, EI;n) act as phase-space coordinates of the Rayleighton.

For weakly NL MRT, it all boils down to the order of accuracy in which one can calculate the Hamiltonian.

Taking into account the required boundary conditions, we write the fields in terms of Fourier components:



16 I Single-harmonic linear MRT theory

- To obtain the linear theory, one needs to calculate the Hamiltonian up to 0(e?). The result is the following. ‘

2/\
Llinear = E (I)l

dé,

— —€

dt

QH[é\la 21\)1]

« Here va=DBy/\47mp is the Alfvén velocity.

P

H[é\lvq)l]

* The equations of motion are simply Hamilton’s equations.

D |

~ d ~ ~

(5(1912 E&:kq)l

~ d ~ k- 4%
5%, dtq)l<g_( ]:A)>§1
dz ~ 2NN
@51—{979—(1("’34)2} 51:0]

Y
Vo (1)

Well-known equation
for linear MRT

V(t,X)

k ~ 1 (k . VA)2 o)
— P2 g—
917 9 (9 2 &1
L\ J
| |
Kinetic term Potential energy
P2
- V(t,X)
2m
Unstable MRT ; Stable MRT
@) :
N |
'V (t.X) 0
g/<;>(k-VA)2 i gk < (k-VA)2



The sign of the potential determines whether the motion is stable
17 I or unstable.The topology of the phase-space plots changes.

. . . ~ o~k 1 (k-va)*\ 2
« As a reminder, the linear Hamiltonian is H &, ®4] = §<1>1 S \9T 3

115 L L A DA e ) T ERRTat T 2 - !_h-::_:__ — = P =

/]

/1]

/]l
il I.'

:

|

|

|

i

|

\

i f
'
/

/
J'
|
w.

\
II|
\
\
Y
l,“:'u

¥

a
o
~

i

W,

//
//)

;

l

\
®

b’
&
/,

Y
/
/|
/]
/
l
l
\
ﬁlll'l
\

///
g
/

k-vy)
oo keva)
gk

Unstable MRT

a
o ey
P 1 P 1

/
j
I|
L]
\
N\
\\\i
N
e

Momentum @,
(=]
'!\ -
N
N
N
e

Surface perturbation £(t,x)
I

1111 ’

/ "W/

11117

\
\
\
|
I
|
(

1
—
.
o

:
I

1
—
o

2 10 _5 0 5 10 -1.0 ~0.5 0.0 0.5 1.0
Position x Position ¢,




The sign of the potential determines whether the motion is

stable or unstable.
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19 | Double-harmonic weakly nonlinear MRT theory

- To account for two harmonics, one needs to calculate the Hamiltonian up to 0(¢%). The end result is2?

9 .
o~ dn A~ s s A
L:ZGQannd—i_H(taglaé-?aq)l?q)z)?
n=1

ke, W o gy kR mg ek .
H=) ¢ (7‘1’%— ﬁfn> —€4§ 1 & +€4§ 1 & — §|1<°VA|2 162 — €4§|k°VA|2€il-

n=1

* The resulting equations of motion are

d~ - k3~ ~ ~ d~ %)~ kS~ ~ ~ k ~
Eﬁl = k®y — Ezzq’lgf + k7P, a@l = kk &1+ GQZ&@% + ek val’&& + €2§(k va)’E,
d~ - Ao B)e Koy 1

92 _ord S H. — 2k M &2t 202

FRs e A 2= o @ gt keva)ig

[22] D. E. Ruiz, “On a variational formulation of the weakly nonlinear magnetic Rayleigh—Taylor instability,” in preparation.



One can learn a lot about the temporal dynamics by simply looking at
the Hamiltonian.

- To account for two harmonics, one needs to calculate the Hamiltonian up to 0(c%).

If _____________ N\ === W o T T T g BRSNS S S \ T T === \
12 nk 72 I k> : : k : l I
2 T2 k 2 AN 9D 4 2
H =i en(2 o2 ﬁfn)—e §CI>1§1H16 > £2|——|k Vil e 2:—6 glk-val“&
l n=1 l : l I II I
_____________ o i e e N e PR e e \__'__‘___..’
Linear dynamics Nonlinear Nonlinear Nonlinear Nonlinear
self-coupling of mme:?lc magnetic coupling self-coupling of the
15t harmonic coupling 15t harmonic

« The equations of motion are

d~ [%2)=] ~~

% (k- VA)Q?J

d Y e \
=&, = [2kd
dt£2 15"




Examples of obtained dynamics using the double harmonic
21 ¥ weakly nonlinear MRT theory
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Surface perturbation &(t,x)
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Within the range of validity of the theory, we can learn about the

z long-term behavior of the solutions.

* The governing equations are the following:
T d= (1)

]{33/\ ~ ~ o~
3 = R - S B+ ERNG, TR

5 S k3~ ~. ~ o~ k
&1+ Ezzflq)% + ek - valbé + 625(1{ : VA)2§i)’a

d ~ - d~ %)~ k=
—& = 2k®s, —p, — 12k\
s e a > 2%k

* Key idea: At large times, the behavior of the solutions is dominated by the growth of the 1st harmonic.

AN

gl(t) ~ CL0€7k75 + 62a2637k75 + ..., €2<t) ~ b0627k75 4o (672kt & 62’ykt)

At sufficiently large times
« Using this ansatz, we solve a system of algebraic equations. We obtain

= o k(kg + 22 ~ - 1 ~
First harmonic ~ €1(t) ~ &11in(?) [1 — ¢ (kg %5)%1( [fl,lin(t)F , E1tin(t) ~ = &1(0)e!
16g7; ’ 2
2 A .
o Yo 1 Asymptotically dominant term
Second harmonic  £3(t) ~ — 42k (€1 ())7, of the linear solution

/@ I This is how the 2"@ harmonic grows!
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When o = 0.5, y,x = 0. Thus, the calculated terms for the second harmonic and the correction of the first

harmonic are no longer dominant. Hence, the asymptotic solutions are not valid in this regime.
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Another observation: The presence of a magneti

c field can increase

the saturation amplitude of the linear-growth phase.

reduced by 10% in comparison of the linear solution.

No longer valid

0.30

él.sat//\
o
IC.;

E1in — &1

gl,lin

~

= 0.10

0.201

The saturation amplitude of the 1st harmonic can be defined as the amplitude when the fundamental mode is |

0.151

0.107
Using the obtained asymptotic solution of the first harmonic leads to

Saturation amplitude

=
<
o1

/

J
(1—-20)(1—0/2)

fl,sat .

A

M

1 /1
;\/%f(a)fve'.}f(a). f(o)

Saturation value
in classical RT

The saturation amplitude increases as
a function of the magnetic field.

In the limit of no magnetic fields, we recover the classical result for the RT instability.

0 0.1

0.2 0.3 0.4
o = (k- va)*/(kg)

The saturation amplitude increases as
a function of the magnetic field.

2
oo (k-va)
gk

0.5 I



26 I Triple-harmonic weakly nonlinear MRT theory

- One can extend the results to account for three harmonics. The resulting 0(®) Hamiltonian is23

2n nk ~ n k3 = k 2 6 k s
H = Z 50 Som) R e R RE v 86 - v
2nk 8 2 8
+ 260K2630, By + EGZ (%‘I’% + §&DT — 46,61 D, ) < 1P,y ng > @51‘1’2
~~ k ~ k‘ 7/€
— 26 (k- va) 6l + (k- va)? (8% — 388) + S vaPRE + %“‘ va)’El
P 1

=
on

_ﬂ'l I & & &7 &7 [ T = e B ol F o =F oF of 0 % & % % g+ 3

i
(=

d;{ ey [E
= 0.5 1«0
s | E
-E D.D; i g — &,4(t)
5 E- 0.0 =
5 -0.5 ] 6 i — &5()
o o r
3 g | | — &
Q = L 4 3
e 1 8 -05 :
0N L. | 4

-1.5¢ i 1

_2.n |- _1.0- i N N i 1 § A X X 1 . . i i 1 3 § § G 1 2 i i i i ¥ ¥ g i 1 § g

10 0 1 2 3 4 5 6
Position x Time t

[23] Calculation done with Mathematica. S. Wolfram, The Mathematica Book (Wolfram Media/Cambridge University Press, Cambridge, United
Kingdom, 2003), 5th ed.



27 | The theory can be easily extended to a finite-width planar slab.

* For a finite-width slab, the corresponding VP is given by

1 §
L:// p[ggb—l(ng)Z—gz] dzd2x+i// 1By + V| dz d*x.
D J¢ (975 2 87T D J—c0

* One can repeat the same procedure to obtain the governing weakly nonlinear equations.
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4. Comparison of weakly nonlinear theory to experiment




29 IExperiments at Sandia have prowded valuable data on nonlinear MRT.2
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[2] D. B. Sinars, et al., Phys. Rev. Lett. 105, 51 (2010).
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The theory breaks down at a mid-time during the implosion. |
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The first harmonic begins to grow at t = 20 ns when the liner begins to move.
The second and third harmonic begin to grow at t ~ 50 ns and at t = 60 ns, respectively.
The peak-to-valley amplitude observed by experiment is reproduced by the linear and weakly-nonlinear theories.

The theory breaks down at t = 65 ns.
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The theory breaks down before the data shows a strong
nonlinear structure.
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5. Current work: Regularizing the weakly nonlinear

MRT theory




Weakly nonlinear theory can be fixed by regularizing the Hamiltonian.

1 ~ ~ k3 ~ k2 . ~
H=3 (62]@% 1 264]@3) _ g <e2? i e@) _ e4§ P22 4 645 2 ¢, Classical RT Hamiltonian

The Padé approximant has been used before to regularize solutions for the Richtmyer—Meshkov instability.24.2>

What if we regularize the Hamiltonian by representing it as a Padé approximant?

H:1(62k$2+2e4kq>2 3((5 3T TNLS Y- TLE VI N

v ) T el SR T g e s
5 1 /2
1,sat E 5

The Padé-approximated Hamiltonian leads to similar behavior at small amplitudes.

Question: Can it lead to better behavior at large amplitudes?

[24] A. L. Velikovich and G. Dimonte, Phys. Rev. Lett. 76, 3112 (1996);
[25] A. L. Velikovich, M. Hermann, and S. I. Abarzhi, J. Fluid. Mech. 751, 432, (1994).

When perturbation amplitudes grow, some terms in the Hamiltonian become too large and lead to “bad” behavior.



The regularized theory leads to ballistic behavior for the Fourier
35 I component
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Phase-space plots of renormalized theory show good behavior.
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6. Conclusions and future work
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Conclusions

A variational principle was found for the MRT instability. It was used to construct an asymptotic theory

for the weakly-nonlinear MRT instability.

In Fourier space, the MRT instability can be interpreted as the temporal dynamics of a particle

(Rayleighton) in phase space. Much insights about the dynamics can be learned in this manner.

The resulting theory captures harmonic generation and gives the saturation amplitude for MRT.

When compared to experiments at Sandia, the theory breaks down relatively early during the implosion.
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Future work

1. More work needs to be done to fully scope out the potential of Hamiltonian methods for

understanding the MRT instability.

- Can we regularize the Hamiltonian and “fix” the dynamics for large amplitudes? Can the Padé approximation do the trick?

2. The weakly nonlinear theory needs to be modified to cylindrical geometry.

- Weakly nonlinear, cylindrical MRT
> Weakly nonlinear MRT with Bell—Plesset effects and “ponderomotive” effects

> Weakly nonlinear sausage and kink instabilities.

3. The current theory or any extensions to it need to be further scrutinized and compared to

numerical simulations and experiments.



