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31 Constitutive Modeling

"A constitutive equation demonstrates
a relation between two physical
quantities that is specific to a material
or substance and does not follow
directly from physical laws" (J. Fish,
2014, Practical Multiscaling, Wiley)

• Essential for the solution of structural
boundary value problems

0 Provide mathematical closure

° Introduce material physics

[K] {u} _ {Af}

"Global" Solver

1 {Af}
Elements

"Local" Constitutive

Model



4 1 Constitutive Modeling Utilization
p,:cm

Tresca (1864)

St. Vincent (1870)

Levy (1870)

Mises (1913)

Carnot (1824)

Joule (1843)
O

Helmholtz (1847)

Clausius (1850)

Prandtl (1924) Kelvin (1851)
Taylor (1934) ta El

lk 
Henry (1926)

IR 
Gibbs (1873)

Orowan (1938) Hill (1950) Maxwell (1875)7 Onsager (1931)

X Westergaard (1952) Eckart (1940)

Hall-Petch 11
(1950)

Garafalo (1963)

Kooks (1970)

Materials
Science

Damage

Composites

Structure
Property
Relations

Design
Optimization

--1—am......_
Chaboche (1974) Bammann 1 m(1976) Chaboche (1977)

,..... (1987)
Kracjinovic (1981)

Perzyna (1968) Kraner (1960)

Kestin-RiceColeman -Gurtin (1967)
(1970)
Nita Halphen-Nguyen (1975) Maxwell (1865)

Rice (1971)
Cyclic

Mandel (1971) Had Plasticity

Germain (1983)4r

Dowellc (1983)
Lemaitre (1985)

Follansbee (1985)
MMINI

Talreja (1990) Voyiadjis Freed (1988)
(1992)

Bammann-Chiesa
— Johnson (1995)

Olsen (2000)
McDowell (2000)

Solanki, Chen,
Mistree, McDowell

(2008)

Boyce (1995)

Schapery (1999)

Kelvin (1880)

Multiscale
Modeling

Ortiz-Tadmor (1996)

Anand (2003) Horstemeyer (2001)

Olsen-Liu (2004)

ISV
History

Bazant (1998, 2002, 2005)

Solanki, Steele,
Horstemeyer (2007)

• Structural analyses require vastly
different responses
• Large range of deformation
mechanisms

• Dynamic and quasistatic

• Addressing needs requires
• Flexible descriptions
• Appropriate implementations

"Library of Advanced Materials for
Engineering" (LAME)

Constitutive modeling library

Used w/ Sierra/SolidMechanics FE
code

Horstmeyer and Bammann, 2010, Int. Jrnl. Plas., 26: 1310--1334
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5  Sandia Fracture Challenges
• Integration of constitutive and structural responses seen in Sandia
Fracture Challenges (SFC)
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• Various challenges asked for blind predictions of response with
different complexities, e.g.:

Complex geometries; loading conditions

Material response characteristics (i.e. rate-dependence in SFC2)



6 1 Sandia Fracture Challenges

1st Sandia Fracture Challenge
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Results highlighted many important characteristics
Constitutive response through loading needed to predict failure

Some results (SFC2) highlighted importance of complex material responses (e.g.
anisotropy, rate-dependent)

1



7 I Objectives and Outline

Improved constitutive capabilities represent enabling
possibility for structural analysis

Create Development of new, refined material models

Code: Enhanced implementation and verification

Calibrate Methods to efficiently fit/determine parameters

Focus on topics related to two model classes
Plasticity
Code: Trust-region based RIVIAs and verification

Create: Distortional hardening models

Glass-Ceramics
Create: Development of new material model

• Concluding thoughts and future perspectives



Plasticity — Implementation and
Verification



91 Plasticity Modeling

Extensive (>century) of work has developed wealth of
plasticity models
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10 1 Numerical Implementation

• Robust numerical methods needed to solve various forms and
complex load histories

"Textbook" implementations use the Newton-Raphson method

May fail to converge in variety of cases

C
o
n
v
e
r
g
e
n
c
e
 I
te

ra
ti

on
s 



Return Mapping Problem

Elastic predictor/inelastic corrector; Fully implicit RMA-CPP

Solution to non-linear problem {r}(n+1) ({x}) {0}
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1,1 Existing Solution Approaches

• Newton-Raphson (NR)

a (0 = 1 V k

tp1NR
(k)

[J]  

d{x}}
r 

[j]-1 {r}(k)

Line-search augmented NR (LS-NR): As before but

a 
(k) 

M01,110 ({r(k) (a)1) , a c (0, 1]

(0 ({r}) = 
1 
{r}

T 
[D]

T
 [D] frl

(See Scherzinger, 2017, CiVIA/VII--, 317, 526-553)



13

vrolile41/4)tmstil2theifnfaiiii4) fp-} ± - {/31
kStep 3: a cu ate impr vk0:0-ient1,1 11- ? Oven trial increment

rt/) ({40(0!)-(4f, II('14))± {P},q),l(k)  . . 
P 3 5 i / 1 

00,
ifi-i,h6) 3.0 (!9 '/-51(k)'9%,

Step 4: Upaate vari.25 bles:\ „oo
If p(k) > tol .t, :  

• 2

----- 2.0

Acilft}ri,i1 soldtio {x}(k x}(k) + [D2] {15}(
Keep/increase A6 +1) :pending ii- inapr9y5112cut - -

If p(k) < tol lo , hA0

riaVslitiy {x} (k+i)   {x}(k)[D 2ilejtecrease +14 r next ite tion00 _
00 05 10

I Trust-Region Based Solver
Step 1: Construct a scaled model problem, m(k) ({15})

Ste 2: With a(k) = 1 , find{/5}(kTnifaimiz
T 

{PI

1.5 2.5 3.0 3.5

B

1.5
4 0

2.0 2.5

l/ar°,

3.0 3.5 4 0

(Lester and Scherzinger, 2017, 111\TMh, 112, 257-282)



141 Convergence Maps

Determine number of correction iterations needed for TR
algorithm at (ajj) < 3O6y°

a 8 a = 100

• Proposed algorithm converges in <40 iterations in almost
every case
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151 Return Trajectory Comparison (A)
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ml Cumulative Convergence Distributions
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1,1 Verification

• Robust implementations enable a variety of descriptions
Different yield surfaces
Various rate and temperature dependencies

Utilization/adoption require appropriate, flexible
verification approaches

Combinatorics of different feature combinations
- Variety of different loading conditions
Preferably leveraging analytical solutions

Solution can be found assuming plastic deformation,
constant equivalent plastic strain rate

P P't u (t) it W, t)



181 Verification

100's of analytical, automated tests
Done regularly to ensure consistent, correct responses

Solutions available for different loadings — e.g. uniaxial, pure shear, biaxial

Uniaxial — Barlat (Y1d2004-18p)
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Plasticity — Distortional
Hardening



Plastic Hardening

Capturing multiaxial, history dependent response requires
description of anisotropic yield and hardening

Ilsotro p [

8 3 81



2,1 Distortional Hardening

To expand capabilities, want to develop capabilities for distortional
hardening to capture additional anisotropy
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22 1 Free Energy
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ni Yield Function Definition

Introduce a new "Evolving Effective Stress" (EES)

Weighted sum of different definitions for desired features
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24 Evolution Equations

Evolution equations found by trying to maximize dissipation

Flow rules correspond to Karush-Kuhn-Tucker conditions
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„I Anisotropic Evolution

a Want to look at effect of evolving anisotropy
Consider case of von Mises evolving to anisotropic Hill (`48)
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261 Evolving Effective Stress
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„I Constitutive Behavior - Hill
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291 Tensile Cylinder

Consider loading of a uniaxial tensile bar with the classic
Hi11'48 yield surface
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Glass-Ceramics



31 Glass-Ceramic Materials

Glass-ceramics are produced by inducing a ceramic phase(s)
in an inorganic base glass

° Variety of industrial applications

Hermetic glass-ceramic to metal seals (GcTMS)
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3, Glass-Ceramic Characteristics

Glass-ceramics are microstructurally heterogeneous

Multiple inelastic phases
Residual glass producing viscoelastic responses

Silica polymorphs (cristobalite and/or quartz) undergoing phase transformations
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„ I Glass-Ceramic Model

6 Need model capable of describing coupled phase transformation and
viscoelasticity

o Thermoviscoelastic theory for response of glassy phase
- Utilize shape memory alloy (SMA) theory as basis (Lagoudas model) for phase
transformations
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„I Constitutive Model

Assume independent contributions of mechanisms
Use an integral based representation of viscoelasticity*

WLF shift factor
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3 5 1 Transformation Function

• For transformation behavior use J2 — 1-1 description
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o Associative form of evolution equations

o Combines parts of Qidwai & Lagoudas (2000) and Lagoudas et al. (2012)
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361 Validation
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38 1 Conclusion and Summary

Discussed development and implementation of two model
classes:

Anisotropic distortional hardening plasticity
o Glass-ceramic materials

Tried to emphasize continuing needs for model application
beyond development

- Implementation
o Verification

• Future work
o Continually expanding descriptions of material responses

Continuum descriptions of multiscale/multiphysics

Novel and efficient calibration procedures (full-field)
o Model form error/uncertainty



„I Model Form

• What is the impact of model error selection?
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Research and Application of
Mechanics of Structures (RAMS)

Institute
National Security Mission

Sandia National Laboratories delivers essential science and

technology to resolve the nation's most challenging security

issues. A strong science, technology, and engineering

foundation enables Sandia's mission through a capable

research staff working at the forefront of innovation,

collaborative research with universities and companies, and

mission directed research projects. We recruit the best and

the brightest, equip them with world-class research tools

and facilities, and provide opportunities to collaborate with

technical experts from many different scientific disciplines.

Institute Description

Sponsored by Sandia's Engineering Sciences Center, the

Research and Applications of Mechanics of Structures

(RAMS) Institute provides students an opportunity to work

with outstanding technical staff in providing engineering

solutions to national security mission deliverables. Institute

participants will research, develop, and apply

computational capabilities to define mechanical

environments and simulate response of complex structural

systems subjected to extreme loading conditions.

Students work in a collaborative environment and

participate in frequent technical and team building

activities throughout their internship, including career

discussions, tours, and speaker presentations.

Interns Needer!

Highly qualified graduate and undergraduate

engineering students with an interest in structural

mechanics research and applications, including

environments definitions, structural mechanics

simulation, material mechanics, and shock physics are

needed to support on-going programs during the

summer of 2020. Undergraduate students transitioning

from the Junior to Senior year and graduate students

having completed at least one year of studies toward an

MS or Ph.D. degree are preferred. Successful candidates

will be assigned a staff mentor and work as part of a

team of interns from across the United States. Students

will be challenged to conduct independent and group

work, and to actively engage in mission activities.

Applying

Minimum GPAs of 3.0 on a 4.0 scale are required at

Sandia for student internships. Preference will be given

to students that meet a more rigorous standard of 3.3

undergraduate and 3.7 graduate GPAs. Applicants must

be eligible to pursue a Department of Energy security

clearance. More information and applications are

available at the Sandia recruiting web site:

http://www.sandia.gov/careers. Search for specific

internship postings: #668783 (Graduate), #668808

(Undergraduate). Please direct any questions to Lisa

Zimmer Raver at Izimmer@sandia.gov.

I

1

1



41 1 Acknowledgements

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy's National Nuclear Security
Administration under contract DE-NA0003525. This paper
describes objective technical results and analysis. Any
subjective views or opinions do not necessarily represent the
views of the U.S. Department of Energy or the United States
Government.



Questions?



.1 Model Extension

EES introduces tractable description of anisotropic hardening

Still missing some experimentally observed characteristics (e.g.
kinematic hardening, directional dependence)

Can model be extended appropriately?
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Extended Evolving Effective Stress (E3S)

Next need to capture kinematic hardening and directional
dependence

Consider extended evolving effective stress (E3S)

f (aii, K, N) = (ajj, N) — ay° — K

f (ajj, K, N, Bii) = (Xii, N) — ay° — K — (o-ij „ Bii)

- Use effective stress tensor for
kinematic hardening

= crij — Bij

80 90 100
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k=1

Introduce perturbation term for
direction dependence
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Evolution Equations
Use Frederick-Armstrong non-linear kinematic hardening law

Requires use of non-associated, plastic potential, F

bi
F (aii K) N) Bii) = f (ajj, K, N , Bii) 
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„I Model Validation (Ongoing)
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Fit model using just tensile loading; predict pure torsion

Reasonable fit although some refinement ongoing
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47 I Strength-Differential Evolution
Want to look at effect of developing a strength-differential effect

Consider isotropic form of Cazacu et al. effective stress
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4$ 1 Constitutive Behavior
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49 1 Pressurized Cylinder
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50 1 Merit Function

• For optimization methods need to introduce a merit function
o Assess convergence

D 11 j

o Gauge improvement over an increment

L
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511 Trust-Region Return Trajectory



521 Method Comparison
Iter(TR) - iter(LS-NR)
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53 1 Weighting Function Definition

• For current cases consider a two effective stress definition

0 (6, N) ( (N)0(1) (0-23 ) + (1 - ( (N)) 0(2) (67,3)

00 0( ( ( ) _
aN ON

For weighting functions want:
Non-zero initial derivatives

O Satisfy positivity constraints

o Eventually saturate

o Continuous

( exp ( - kN) N (n) =
k, pmod Fitting constants

1 p rmod i2

2


