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X-ray scattering experiments




Response to an electric field
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Linear Response

* If Gexeis weak, then prg ~ Gex

Hooke’s Law:
X~F
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* The response, x (r,

8
time: t
pim:'l(r: IL) — / dr’ df!X (I‘, t: IJ: IJ) '@ﬂ:@{t(r!: IJ)

f oy

r',¢), can be non-local in space and



Dielectric Function

o ¢(k,w), the dielectric function, is related to the response
function. In frequency space:
1
1+ Ve(k)x(k,w)

e(k,w) =

The dielectric function tells us how the electrons
respond to an external potential



Random Phase Approximation

o c(k,w) |s (currently) too difficult to determine
 RPA is a type of mean field approximation
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RPA Dielectric function

ER‘PA(k, w) = €1 + 19

2 (0e)
€1 = Re{e} =1+ ﬁjo dpp f(p) [loglkz

Johnson et al.,

PRE 2012
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Re{eps}

Numerically calculating €.

Ak = 10 (eV); kT = 20 (eV); p= -0.56 (eV)
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Stopping power
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Stopping power
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Electron loss function (ELF)

fELF = Im{ — }=1m{g}
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ELF maximum

 Approximate function for max. position: w__ (k, T, n )
eedges=w__ +Y(T, b, X)k

k=1.00 au; T=0.0367 au; ne =1.0e+23 e/cc; mu = 0.279 au k=10.00 au; T=0.0367 au; ne =1.0e+23 e/cc; mu = 0.279 au k=409.00 au; T=0.0367 au; ne =1.0e+23 efcc; mu = 0.279 au
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ELF maximum

k=0.60 au: T=0.0367 au: ne =1.0e+23 efcc: mu = 0.279 au
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mall k iIssues

k=0.50 au; T=0.04 au; ne =1.0e+23 e/cc; mu = 0.279 au
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There should be a-peak

here!

Small k Issues

k=0.50 au; T=0.04 au; ne =1.0e+23 e/cc; mu = 0.279 au
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Sum rule

k=40.00 au; T=0.04 au: ne =1.0e+23 efcc: mu = 0.279 au
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Stopping Power
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Stopping Power
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Stopping Power
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Stopping Power
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Stopping Power
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Stopping Power
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Stopping Power
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Stopping Power
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Future Directions

* Still working on the stopping power ...
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Future Directions

* Going beyond the RPA - include more information of interactions
* Using the Mermin dielectric function

(w+iv)elk,w+iv)—1]
w+ielk,w+iv)—1]/[e(k,0)-1]

E‘M(k,w) =1+

* v - collision frequency
e Attila’s code can handle this



Attila’s Code with v(w) = —°—
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Translational invariance

N
b Translate

{1 3

 Let f(x1, x2) depend on the positions of the two particles.
* Translational invariance: f(1y, 1) = f(3, 1) — f = f(Ar)



