

Finding quantum controls efficiently

Alicia Magann^{1,2}, Tak-San Ho³, Mohan Sarovar², and Herschel Rabitz³

¹Department of Chemical and Biological Engineering, Princeton University

²Extreme-Scale Data Science & Analytics, Sandia National Laboratories

³Department of Chemistry, Princeton University

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525

Finding quantum controls efficiently

Finding quantum controls efficiently

Quantum control theory: control theory applied to quantum systems

- Spins, atoms, molecules, etc

Why control quantum systems?

- Chemical reaction control, development of quantum computers, sensors, simulators, etc

How can we do it?

- Need external controls that can interact with quantum systems on their native length/time scales
 - Tailored laser fields

Finding quantum controls efficiently

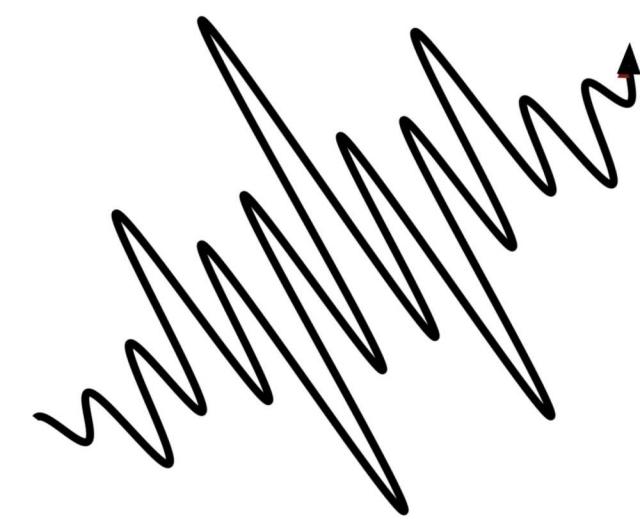
How can we find laser fields that achieve a desired control objective in a quantum system?

- Quantum optimal control (1980s)
 - Seek field that minimizes a control objective functional using iterative optimization
 - Promising experimental demonstrations starting late 1990s

Assion *et. al.*, Science **282** (1998).
Vogt *et. al.*, Phys. Rev. Lett. **94** (2005).

Why haven't optimally shaped laser fields become a widely used tool in chemistry (and chemical engineering)?

- A crucial issue is the lack of theoretical support
 - Simulations often prohibitively expensive due to:
 1. **Iterative field optimization procedure**
 2. **Exponential cost of simulating quantum systems**



Finding quantum controls efficiently

How can we find laser fields that achieve a desired control objective in a quantum system?

- Quantum optimal control (1980s)
 - Seek field that minimizes a control objective functional
 - Promising experimental demonstrations starting late 1990s

Why haven't optimally shaped laser fields become a widely used tool in chemical engineering?

- A crucial issue is the lack of theoretical support
 - Simulations often prohibitively expensive due to:
 1. **Iterative field optimization procedure**
 2. **Exponential cost of simulating quantum systems**

Part I:

- Review quantum tracking control, an iteration-free approach for quantum control simulations
- Illustrate its utility for identifying fields to control the orientation of molecules

Part II:

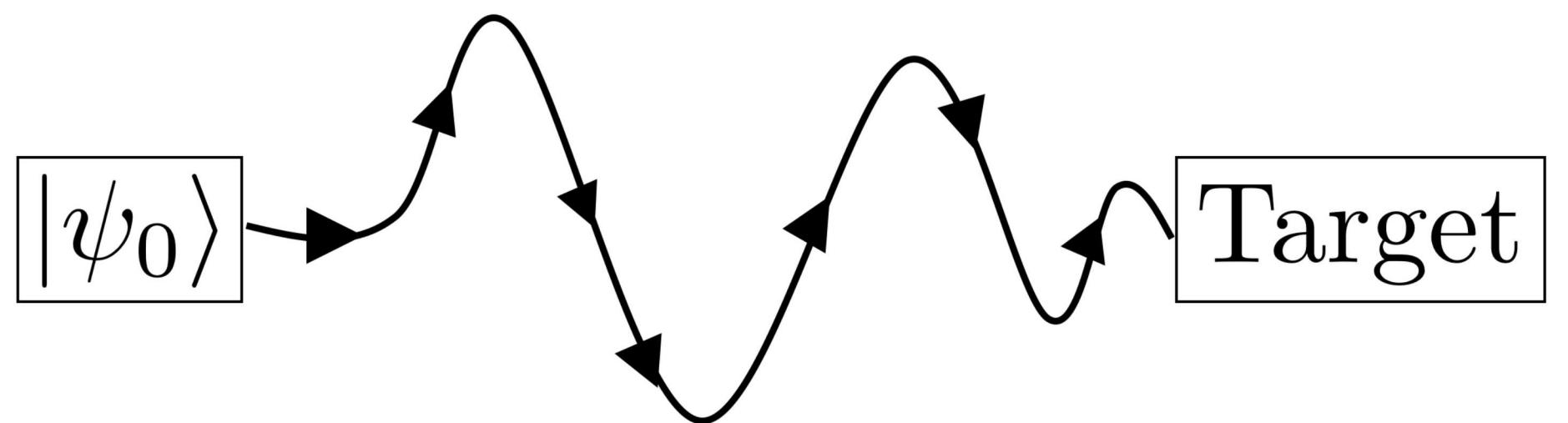
- Introduce digital quantum simulation as a polynomial-time approach for simulating controlled quantum systems

Part I: Quantum tracking control of molecular orientation

Tracking control concept

Goal of tracking control:

- Specify a path in time for the observable
- Find field that drives system along this path



Approach:

- Invert observable dynamical equation to obtain expression for field $\varepsilon(t)$
- Plug in desired path for observable

$$\frac{d\langle O \rangle(t)}{dt} = i \langle [H_0 - \mu \varepsilon(t), O] \rangle(t) \rightarrow \varepsilon(t) = \frac{i \frac{d\langle O \rangle_d(t)}{dt} + \langle [H_0, O] \rangle(t)}{\langle [\mu, O] \rangle(t)}$$

Advantages:

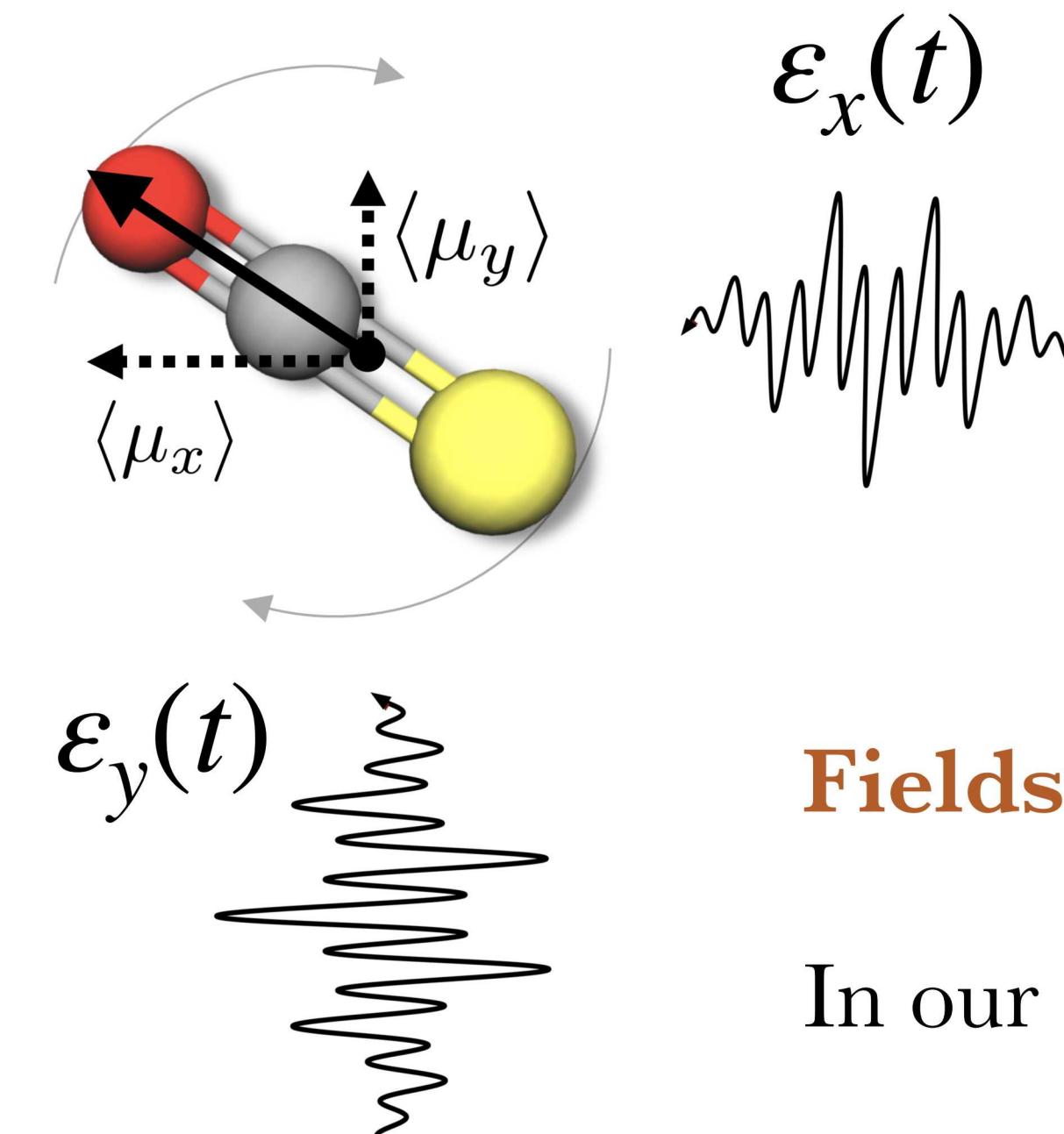
computationally attractive
(no iterative optimization)
entire time trajectory can be specified

Disadvantages:

control fields can contain singularities

Application: molecular orientation

Goal:
Control the x and y orientations of a polar linear molecule rotating in a plane,
 $\mu_x = \cos \varphi$ $\mu_y = \sin \varphi$



We first write coupled dynamical equations for $\langle \mu_x \rangle(t)$ and $\langle \mu_y \rangle(t)$ in form $\mathbf{A}(t)\mathbf{E}(t) = \mathbf{b}(t)$, where
 $\mathbf{E}(t) = (\varepsilon_x(t), \varepsilon_y(t))^T$

We then solve for the two fields: $\mathbf{E}(t) = \mathbf{A}(t)^{-1}\mathbf{b}(t)$

Fields free of singularities if $\det(\mathbf{A}(t))$ nonzero $\forall t$.

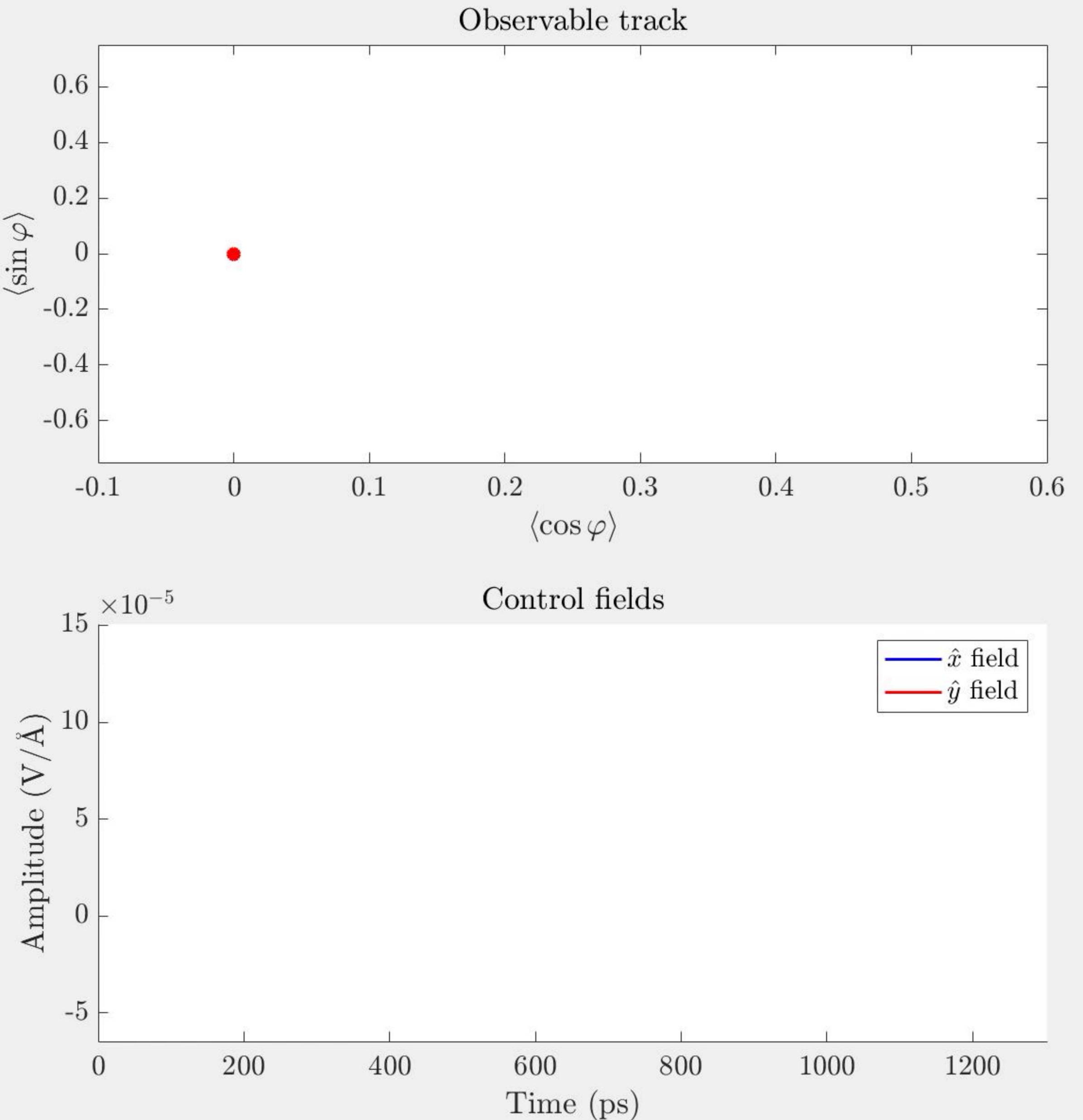
In our case, we have

$$\det(\mathbf{A}(t)) = (\langle \sin^2 \varphi(t) \rangle)(\langle \cos^2 \varphi(t) \rangle) - (\langle \sin \varphi \cos \varphi(t) \rangle)^2 \geq 0$$

Cauchy-Schwarz, $\langle a|a\rangle\langle b|b\rangle \geq |\langle a|b\rangle|^2$

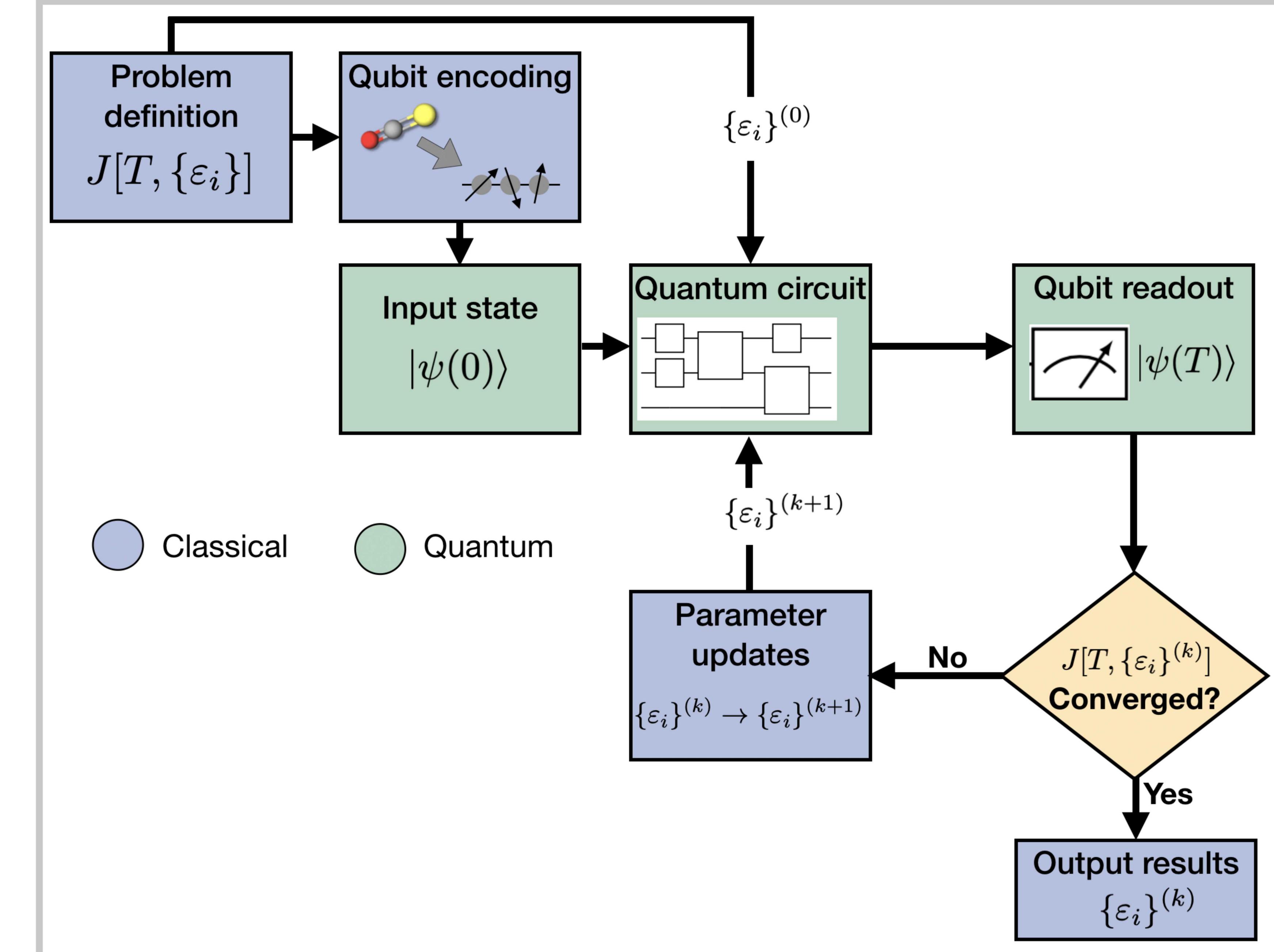
Quantum tracking control of molecular orientation = singularity-free

Numerical illustration

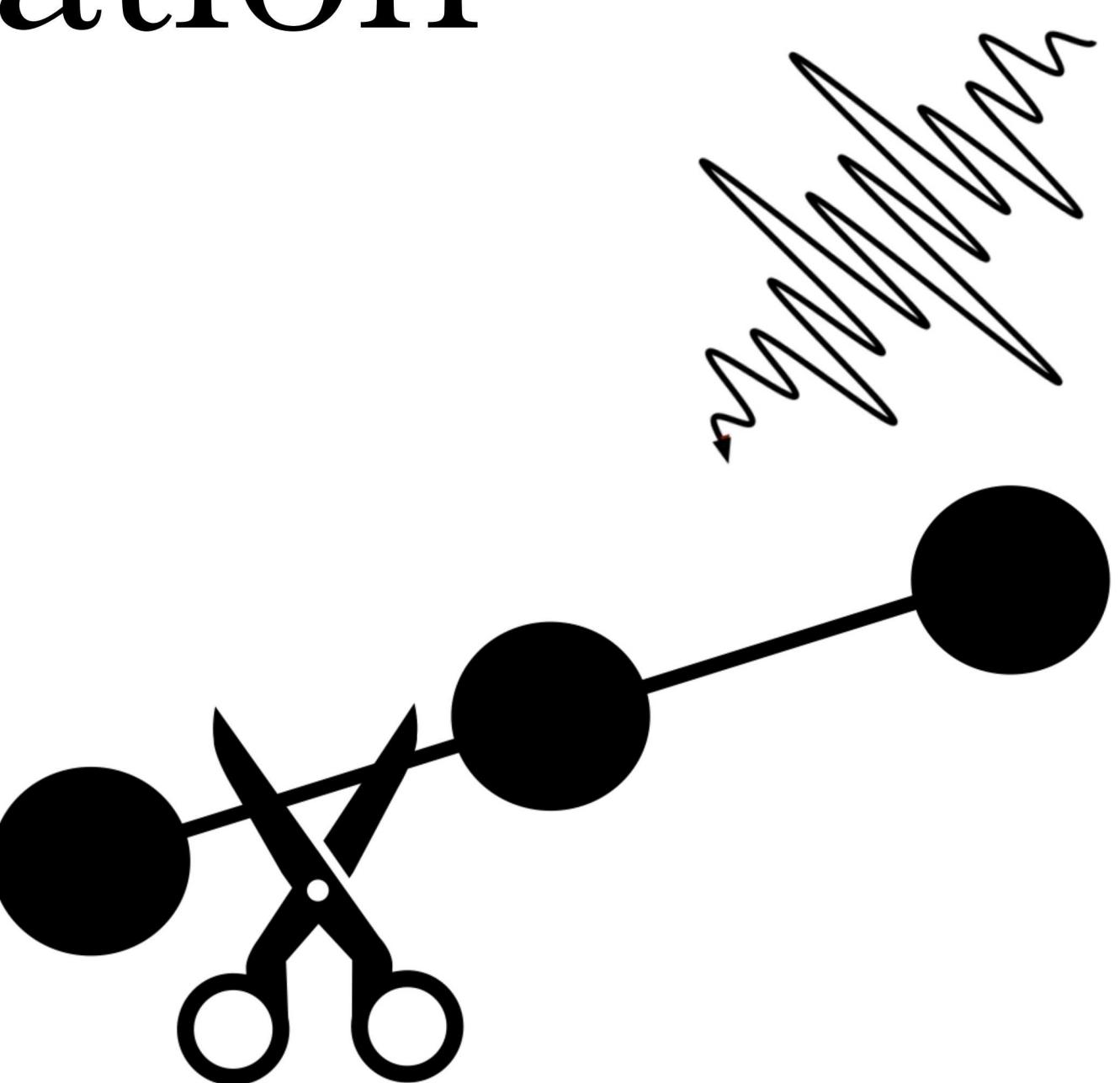


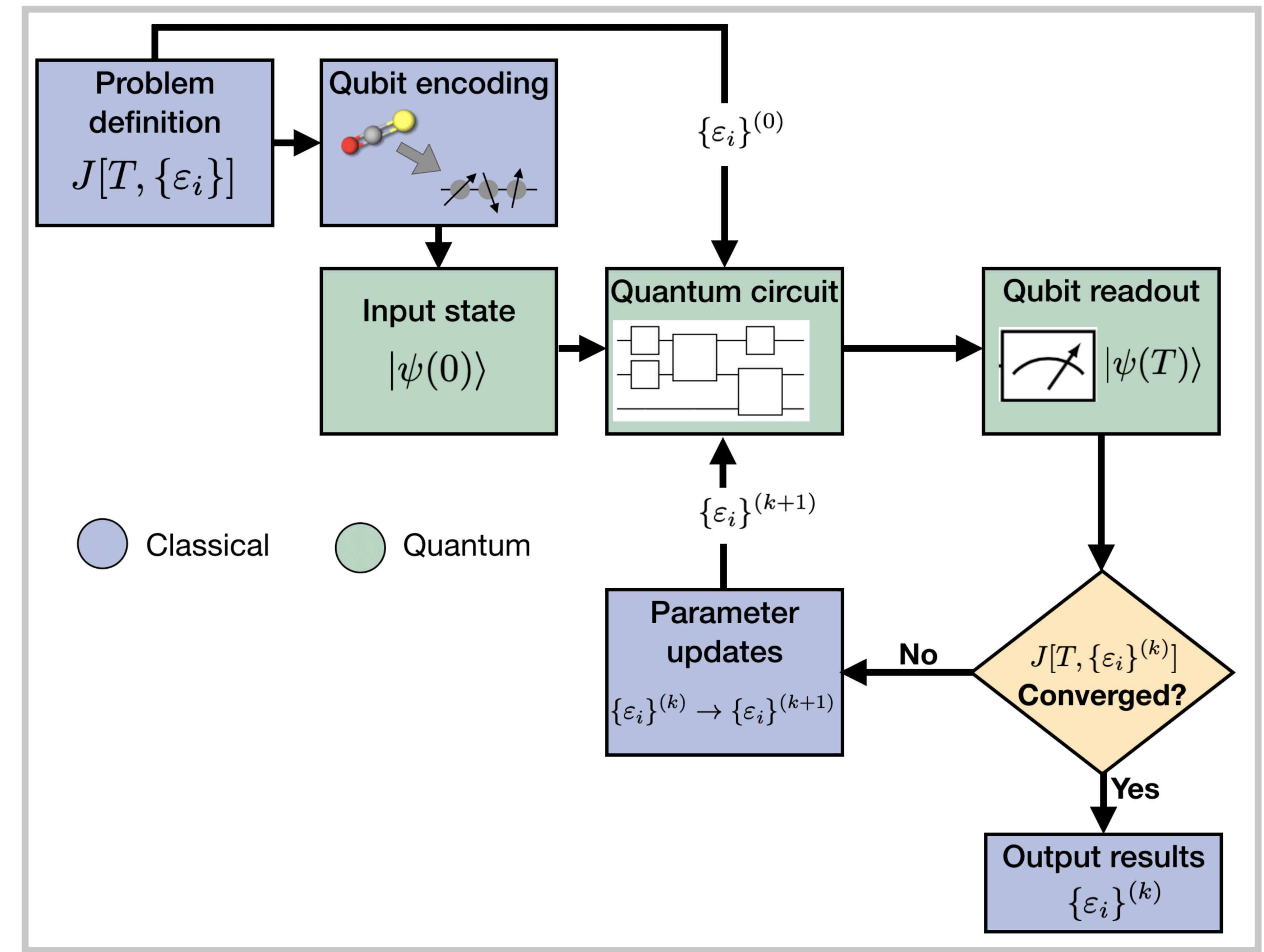
Part II: Digital quantum simulation of quantum control

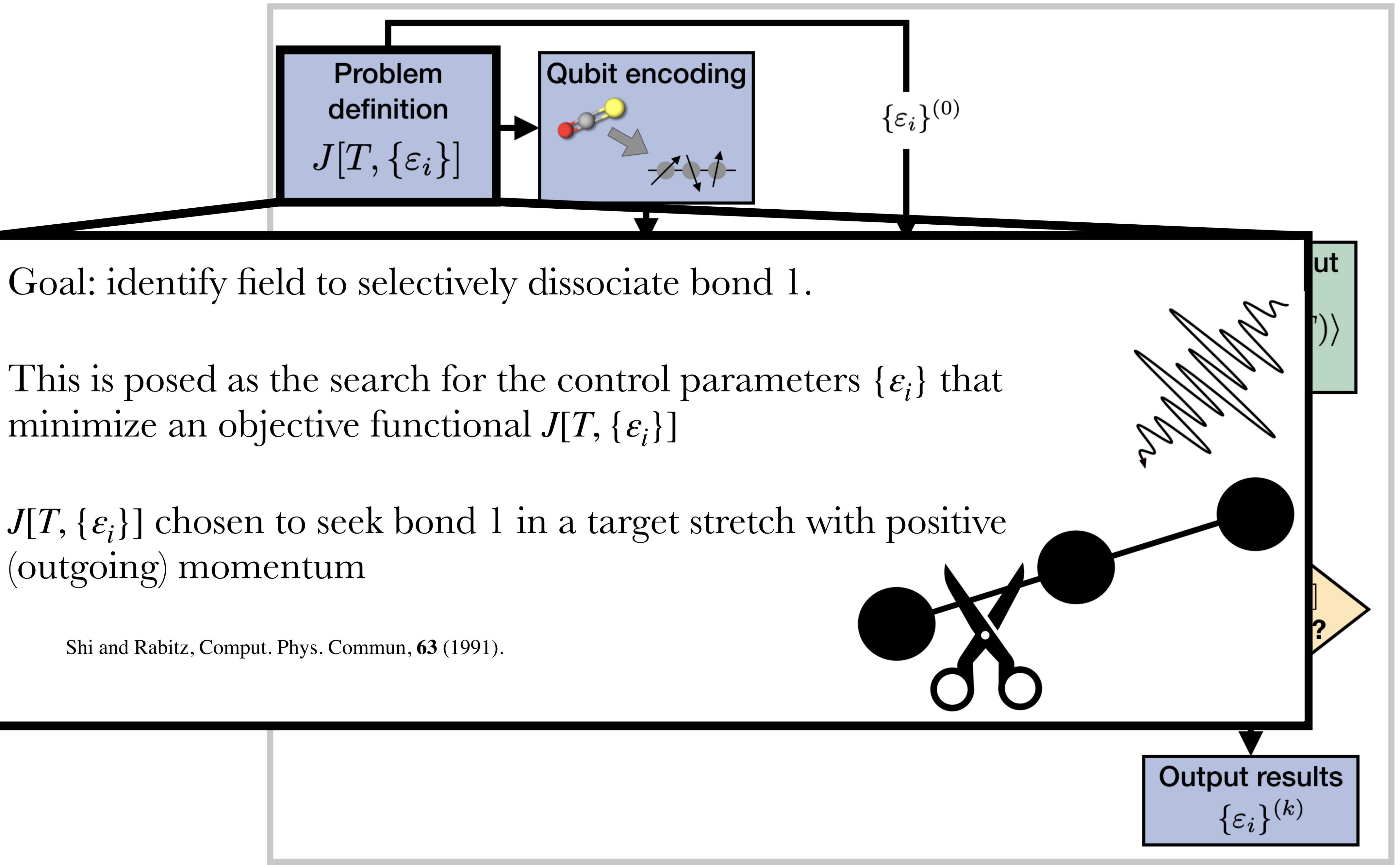
Concept

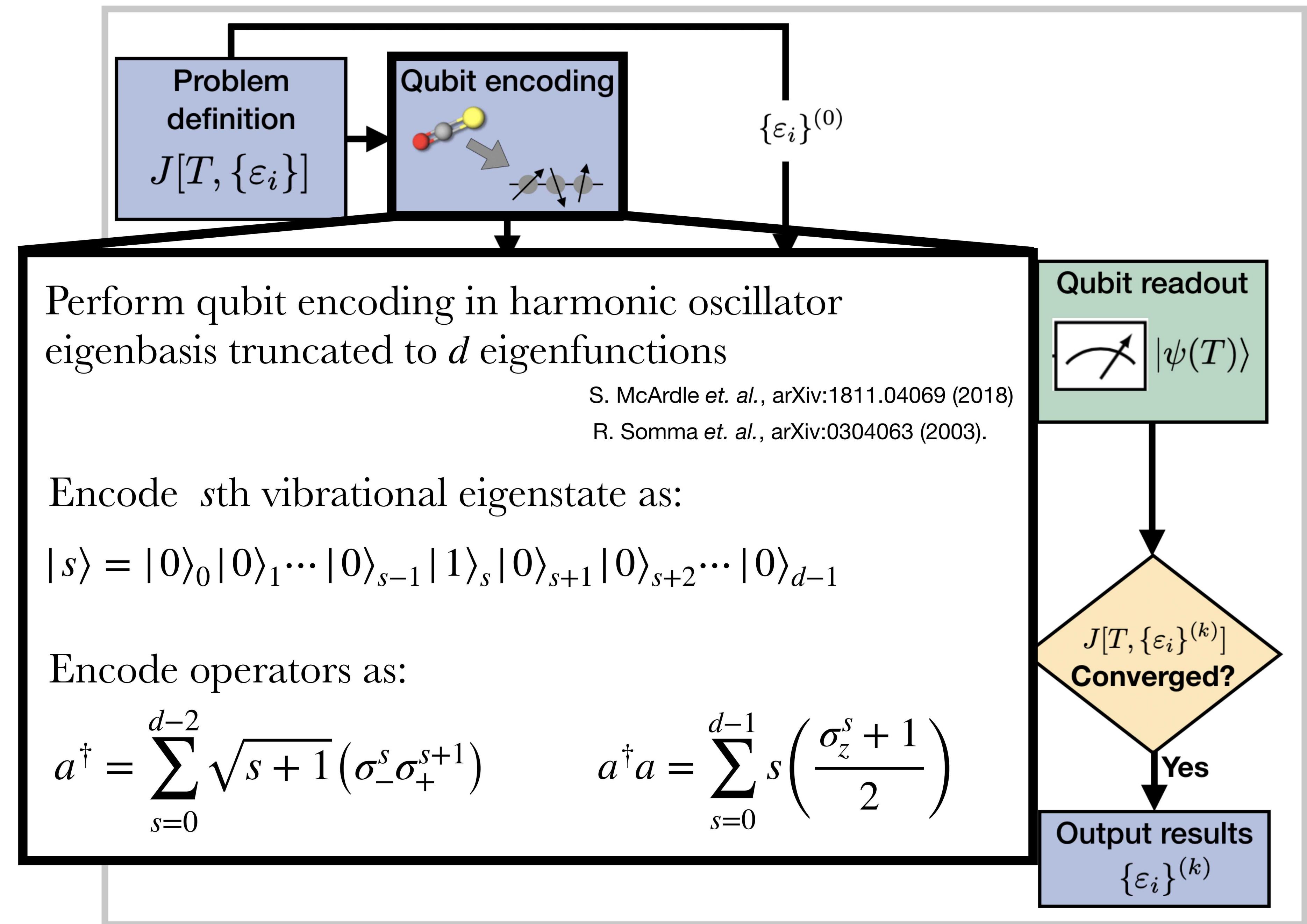


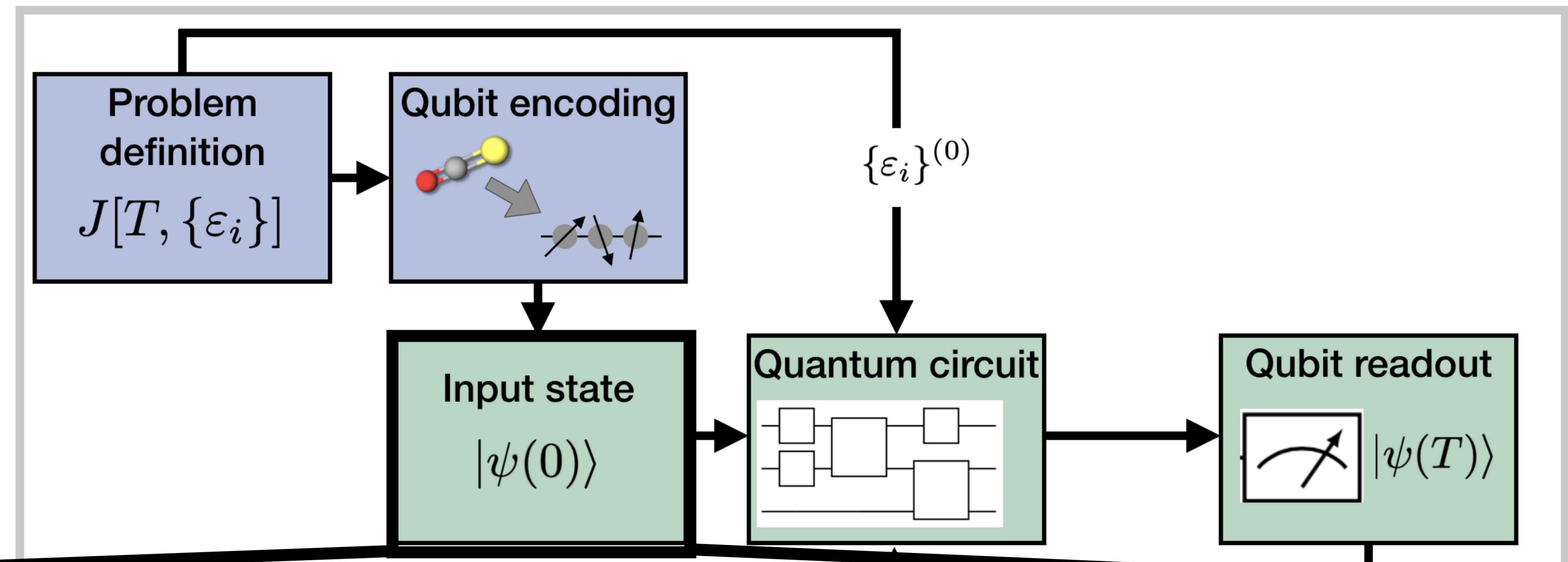
Application: Control of selective dissociation in triatomic molecule



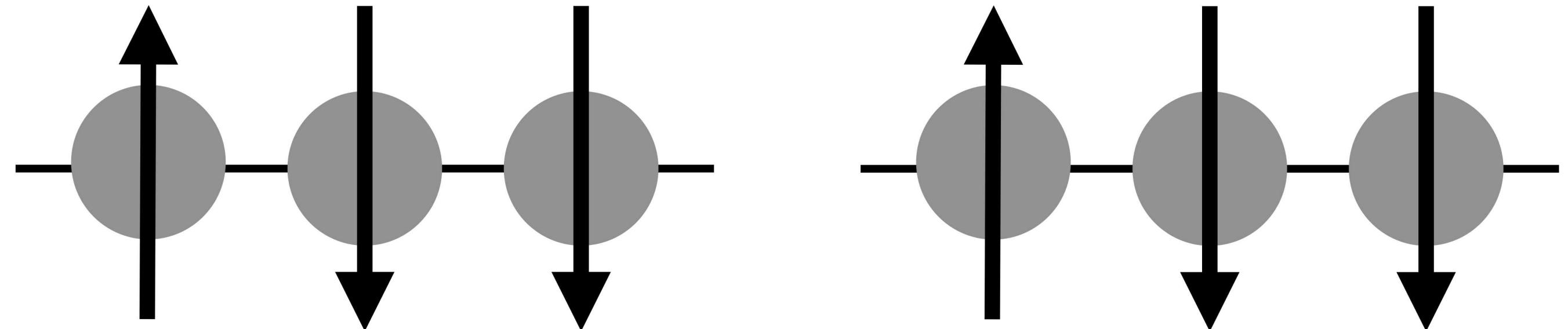
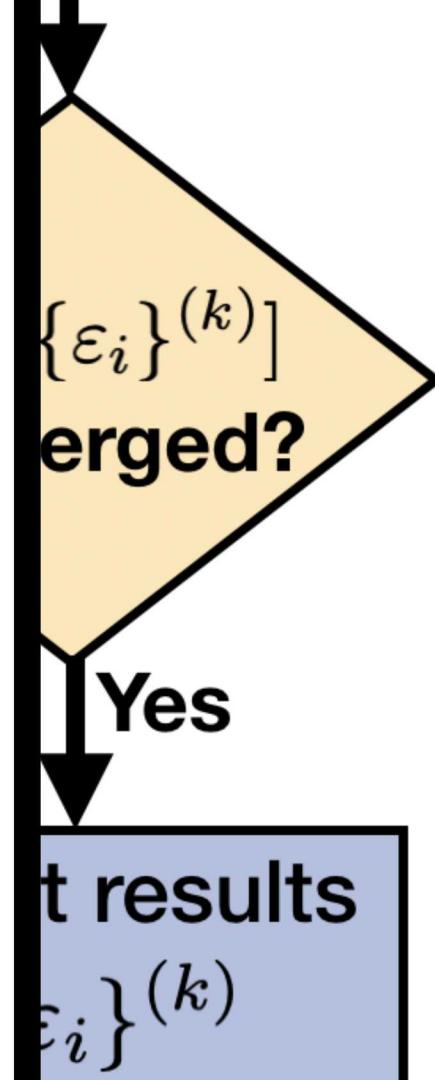


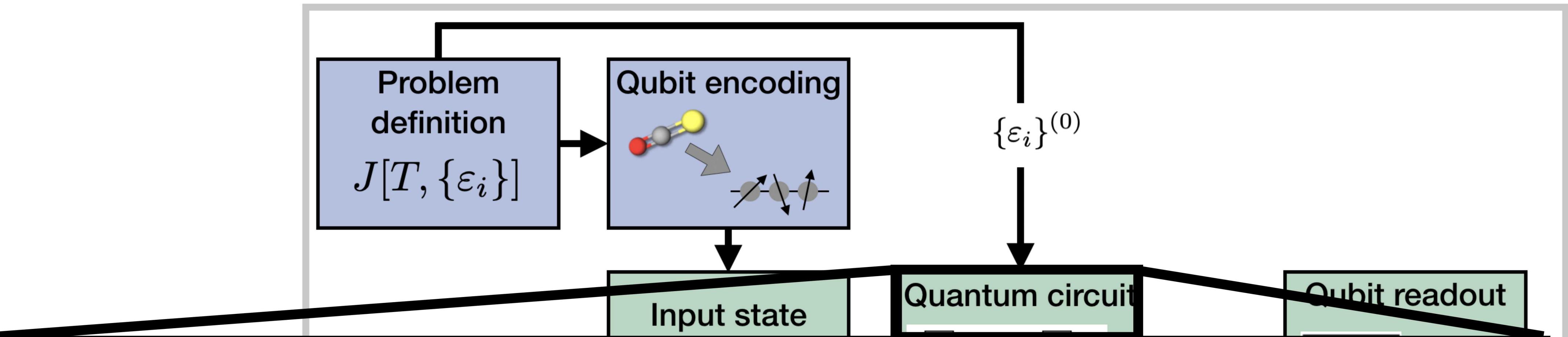




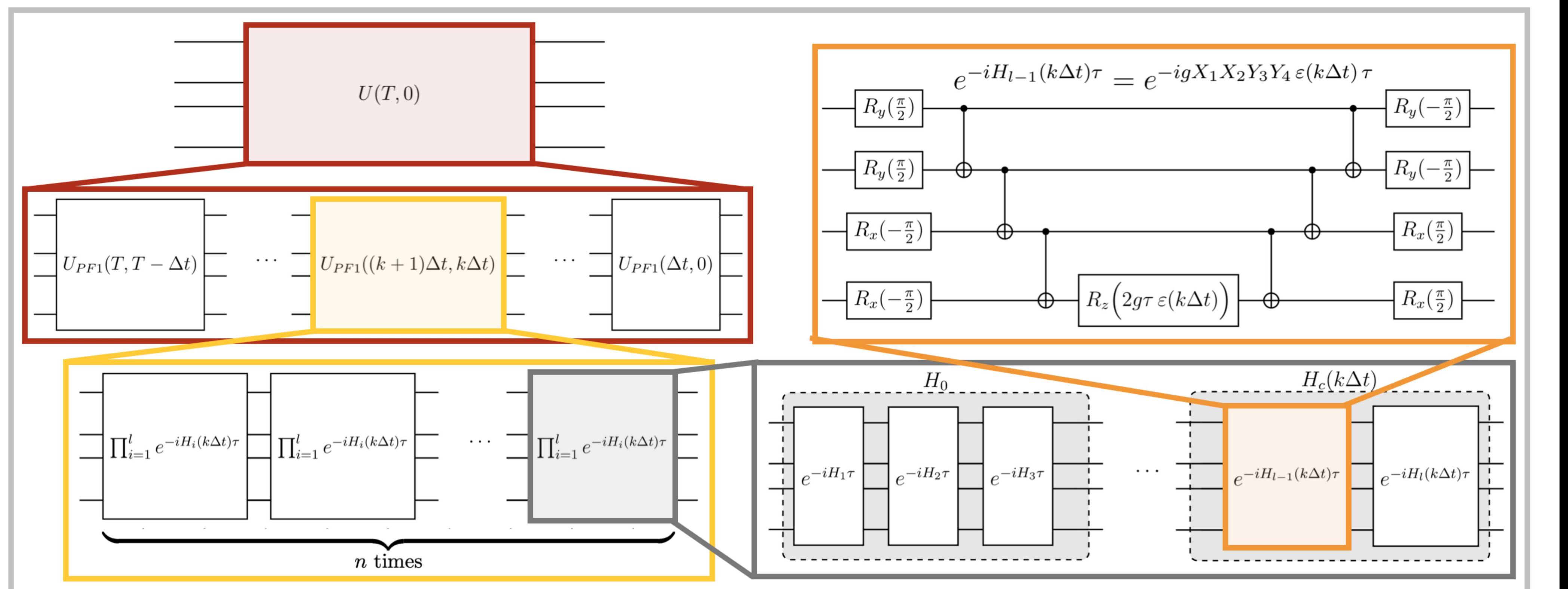


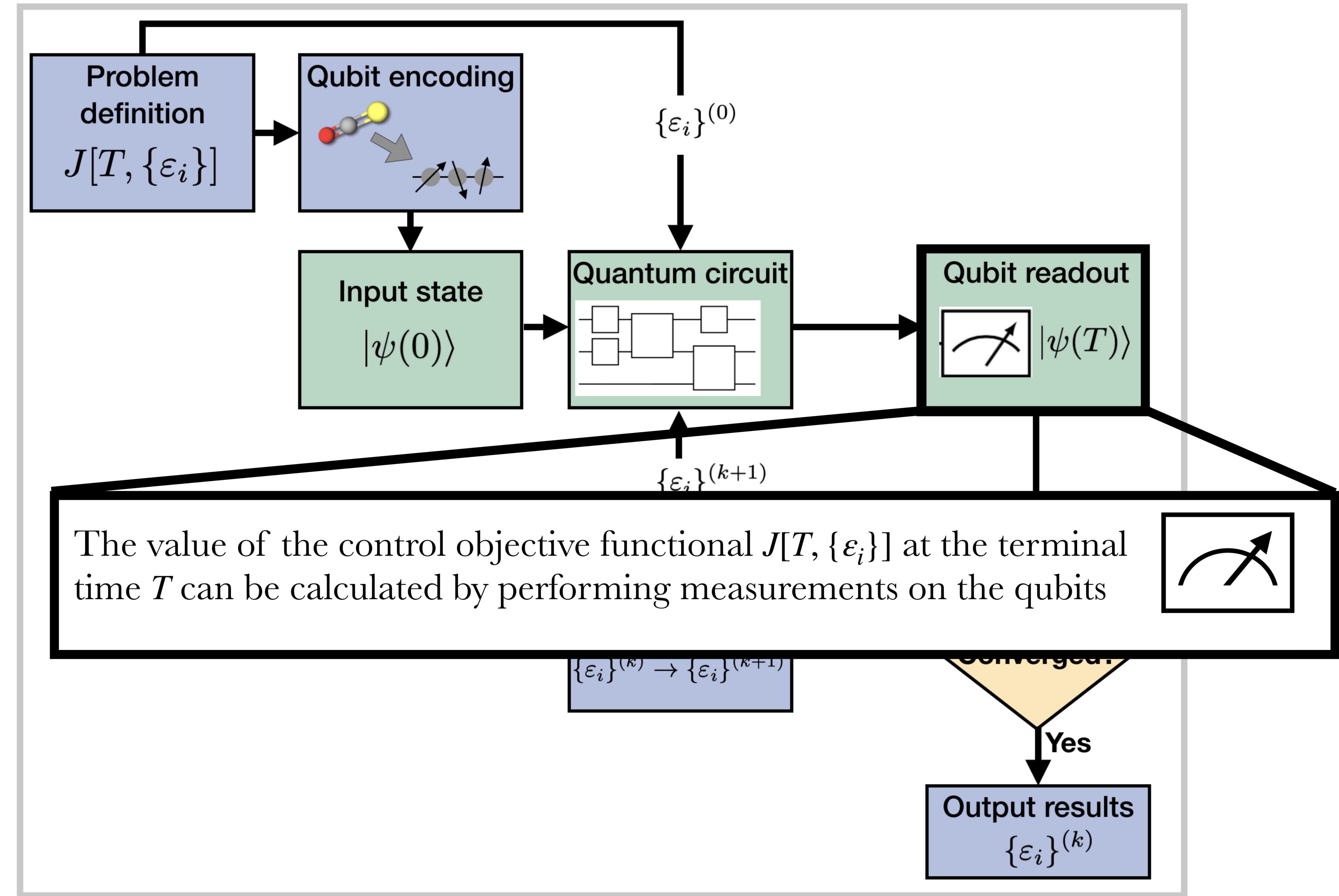
- Qubits initialized in encoded $|\psi(0)\rangle$ state
- This is taken as the product state $|0\rangle_1|0\rangle_2$ whose encoding is given by $\left(|1\rangle_0|0\rangle_1|0\rangle_2\cdots|0\rangle_{d-2}|0\rangle_{d-1}\right)_1\left(|1\rangle_0|0\rangle_1|0\rangle_2\cdots|0\rangle_{d-2}|0\rangle_{d-1}\right)_2$



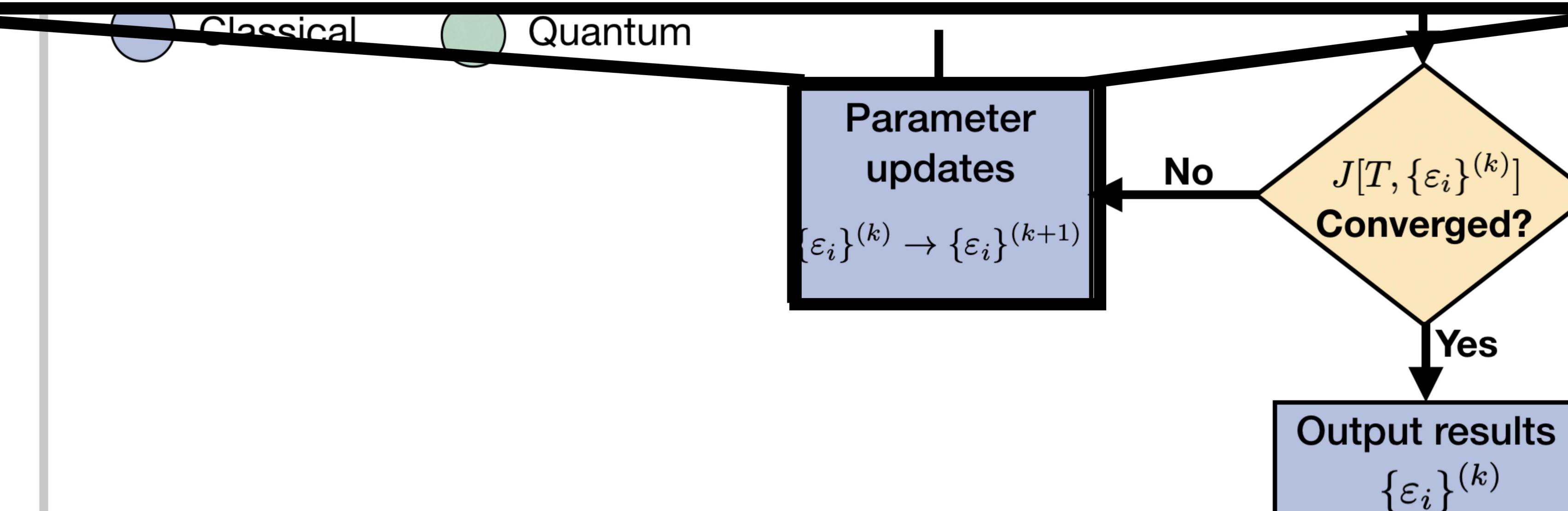


Goal: quantum circuit to find $|\psi(T)\rangle = U(T,0)|\psi(0)\rangle$

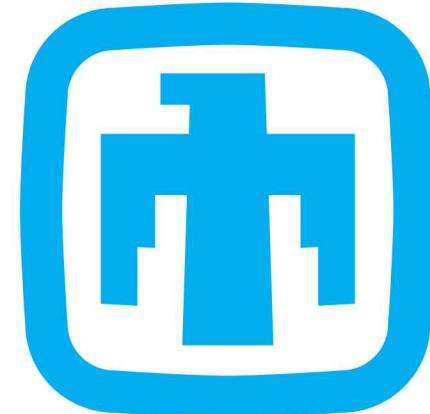




- Check if control objective functional has converged, if so, output control field amplitudes $\{\varepsilon_i\}$
- If not, update control field amplitudes based on measurement information
- Send updated control field amplitudes to quantum simulator for use in next iteration



PRINCETON
UNIVERSITY



Sandia
National
Laboratories

Thank you

