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Finding quantum controls efficiently

Quantum control theory: control theory applied to quantum systems
• Spins, atoms, molecules, etc

Why control quantum systems?
• Chemical reaction control, development of quantum computers, sensors,

simulators, etc

How can we do it?
• Need external controls that can interact with quantum systems on their native

length/time scales
• Tailored laser fields
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Finding quantum controls efficiently

How can we find laser fields that achieve a desired control objective in a quantum system?
• Quantum optimal control (1980s)
• Seek field that minimizes a control objective functional using iterative optimization
• Promising experimental demonstrations starting late 1990s Assion et. al., Science 282 (1998).

Vogt et. al., Phys. Rev. Lett. 94 (2005).

Why haven't optimally shaped laser fields become a widely used tool in chemistry (and
chemical engineering)?
• A crucial issue is the lack of theoretical support
• Simulations often prohibitively expensive due to:

1. Iterative field optimization procedure
2. Exponential cost of simulating quantum

systems
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Finding quantum controls efficiently

How can we find laser fields that achieve a eltftsirPd control objective in a quantum system?
• Quantum optimal control (1980s)
• Seek field that minimizes a control objective functional
• Promising experimental demonstrations starting late 19

Why haven't optimally shaped laser fields become a widely us
chemical engineering)?
• A crucial issue is the lack of theoretical support
• Simulations often prohibitively expensive due to:

1. Iterative field optimization procedure
2. Exponential cost of simulating quantum

systems

Part I:
Review quantum tracking control, an

iteration-free approach for quantum control
simulations

Illustrate its utility for identifying fields to
control the orientation of molecules

Part II:
ml Introduce digital quantum simulation as a

polynomial-time approach for simulating
controlled quantum systems
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Part I:
Quantum tracking control of

molecular orientation
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Tracking control concept

Goal of tracking control:
- Specify a path in time for the observable
- Find field that drives system along this path

Approach:
- Invert observable dynamical equation to obtain expression for field e(t)
- Plug in desired path for observable

cl(0)(t)
i ([H0 — ple(t), 0])(t) e(t)

dt

.

± ( [Ho, 0])(t)

([,41 o])(t)

Target

Advantages:
computationally attractive

(no iterative optimization)
entire time trajectory can be specified

Disadvantages:
control fields can contain singularities
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A. Magann, T.-S. Ho, and H. Rabitz, Phys. Rev. A 98, 043429 (2018).

Application: molecular orientation
. .

ex(t)
Goal:

Control the x and y
orientations of a polar
linear molecule rotating

in a plane,

k I x cos Ply sin
•

•

We first write coupled dynamical equations for (frix)(t)
and (kty)(t) in form A(t)E(t) = b(t), where

E(t) (ex(t), ey(t)) T

We then solve for the two fields: E(t) = A(t)-1b(t)

ielcis free of singularities if det(A(t)) nonzero Vt.

In our case, we have

det (A(t)) ((sin2 q)(t))) ((cos2 co(t))) ((sin co cos o(t))) 2 > 0

Cauchy- Schwar Z, (al a) (b I b) > l (alb) 12

Quantum tracking control of molecular
orientation = singularity-free
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Observable track

Numerical
illustration
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Part II:

Digital quantum simulation of
quantum control
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Concept Problem
definition

J[T, fEil]

♦

Qubit encoding

Input state

MO))

0 Classical 0 Quantum

Quantum circuit

Parameter
updates

(k) {E. i}(k+1)

Qubit readout

( T))

Output results
{Ei 
} 
(k)
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Application:

Control of selective dissociation
in triatomic molecule
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F Problem
r definition
1
J[T, {Ei}]

Qubit encoding

)

-/-\,- i -

+
Input state

I ttP(°))

0 Classical 0 Quantum

Isi

1
(o)

Quantum circuit

Parameter
updates

il(k) _> {Ei}(k+1)

Output results

{Et} (k)
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pru Problem
ri- definition

J[17 ) {E i}]

Goal: identify field to selectively dissociate bond 1.

tEi
(0)

This is posed as the search for the control parameters {ei} that
minimize an obj ective functional AT , { eil]

J[T, { eil] chosen to seek bond 1 in a target stretch with positive
(outgoing) momentum

ut

))

Output results

{Et } (k)
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Perform qubit encoding in harmonic oscillator
eigenbasis truncated to d eigenfunctions

S. McArdle et, al., arXiv:1811.04069 (2018)

R. Somma et. al., arXiv:0304063 (2003).

Encode sth vibrational eigenstate as:

1 1 0)0 1 0)1••• 1 0),, 1 1 Os 1 0)s-Fi 1 o)s+2••• 1 0)d l

Encode operators as:
d 2

Qubit readout

itP(T))

Output results

{Et }
(k)
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Qubit readout

itp(T))

117- Problem

1 r definition

-
J[T, {Ei}]

-

Qubit encoding

)

Input state

I ttP(°))

tEilo)

Quantum circuit

• This is taken as the product state 1 0)1 1 0)2 whose encoding is given by

( 1 1)010)1 10)2•••10)d 210)d 1) ( 1 1)010)110)2***10)d 210)d 1)
1 2

Eil(k)]

rged?

Yes

t results
711(k)
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117- Problem

1 r definition
Qubit encoding

)

Input state

Goal: quantum circuit to find 1 yi(T)) = MO) 1 lif(0))

fi1i.1 e-il 1 j(kAt)T

n times

Quantum circuil

= e—igX1X2Y3Y4 E(IcAt) T

e-dil_ i (kAor
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117- Problem

1 r definition

F1[17) {Ei}]
♦

Qubit encoding

)

Input state

1(0))

Quantum circuit

t
The value of the control objective functional J[T, f eil] at the terminal
time T can be calculated by performing measurements on the qubits cA

0' r

-- E i

Yes

Output results

{67,}(k)
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FE Problem
• . •

• Check if control objective functional has converged, if so, output control
field amplitudes f eil

• If not, update control field amplitudes based on measurement information

• Send updated control field amplitudes to quantum simulator for use in
next iteration

Parameter
updates

Yes

Output results

{Et} (k)
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