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UQ & Optimization: DOE/DOD Mission Deployment
Sandia
National
Laboratories

Stewardship (NNSAASC) Energy (ASCR, EERE, NE) Climate (SciDAC, CSSEF, ACME)
Safety in abnormal environments Wind turbines, nuclear reactors

Addtnl. Office of Science: 
(SciDAC, EFRC) 

Comp. Matls: waste forms /
hazardous matls (WastePD, CHWM)
MHD: Tokamak disruption (TDS)
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Common theme across these applications:

• High-fidelity simulation models: push forward SOA in computational M&S w/ HPC
4 Severe simulation budget constraints (e.g., a handful of runs)
4 Significant dimensionality, driven by model complexity (multi-physics, multiscale)



Research Thrusts for UQ

• Focus: Compute dominant uncertainty effects despite key challenges

• Emphasize scalability through exploitation of special structure

• Adaptivity: p- and h- refinement of stochastic expansions

• Adjoints: gradient enhancement for PCE / SC / GP

• Sparsity: compressed sensing

• Low Rank: tensor / function train (w/ UMich)

• Dimension reduction: active subspaces (w/ CU Boulder),
adapted basis PCE (w/ USC)
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• Compound efficiencies

• Multilevel-Multifidelity with sampling & CS/FT surrogates (new: ROM, NN

• Active subspaces: subspace quadrature, enhance MF control variates

• Address complexity w/ component-based approach

• Emulator-based Bayesian inference, Mixed aleatory-epistemic UQ,
Optimization under uncertainty (new: Optimal experimental design)

• Position UQ for next generation architectures

• Current (imperative): multilevel parallelism (MPI + local async)

• Future (declarative): exploit DAG + AMT for ensemble workflows (w/ Stanford)
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Multiple Model Forms in UQ & Opt
Discrete model choices for simulation of same physics

A clear hierarchy of fidelity (from low to high)
• Exploit less expensive models to render HF practical

• Multifidelity Opt, UQ, inference
• Support general case of  discrete model forms

• Discrepancy does not go to 0 under refinement

An ensemble of peer models lacking clear preference
structure / cost separation: e.g., SGS models
• With data: model selection, inadequacy characterizatior

• Criteria: predictivity, discrepancy complexity
• Without (adequate) data: epistemic model

form uncertainty propagation
• Intrusive, nonintrusive

• Within MF context: CV correlation

Discretization levels / resolution controls
• Exploit special structure: discrepancy 4 0

at order of spatial/temporal convergence

Combinations for multiphysics, multiscale
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Research & Development in Multifidelity Methods
Sandia
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Laboratories

Recurring R&D theme: couple scalable algorithms with exploiting a (multi-dimensional) model hierarchy
>• address scale and expense for high fidelity M&S applications in defense, energy, and climate
>. render UQ / optimization / OUU tractable for cases where only a handful of HF runs are possible

A2e wake dynamics

Emerging mission areas: abnormal thermal, Z-pinch MagLIF, quantum chemistry

Monte Carlo UQ Methods

• Production: optimal
resource allocation for

lity,
combined (DARPA x 2,
Wind, Cardiovascular)

• Emerging: active
d •

LDRD), generalized
fmwk for approx
control variates
(ASC V&V Methods)

• On the horizon: control
of time avg; learning
latent var relationships
(CIS LDRD); model
tuning / selection
(CIS LDRD, DOE BES)

Surrogate UQ Methods (PCE, SC)

• Production (v6.10):
ML PCE w/ projection &
regression; ML SC w/
nodal/hierarchical interp;
greedy ML adaptation
(DARPA SEQUOIA)

• Emerging: multi-index
stochastic collocation,
multilevel function train
(ASC V&V Methods)

• On the horizon: new
surrogates (ROM, deep
NN) with error mgmt
('19 EE LDRD, DOE BES);
unification of surrogate
+ sampling approaches
(CIS LDRD)

10,

SECURE Gc

Optimization Under Uncertainty

• Production: manage simulation
and/or stochastic fidelity

• Emerging:
Derivative-based methods (DARPA SEQUOIA)
• Multigrid optimization (MG/Opt)
• Recursive trust-region model mgmt.:

extend TRMM to deep hierarchies
Derivative-free methods (DARPA ScramjetUQ)
• SNOWPAC (w/ MIT, TUM) w/

MLMC error estimates

Robust _A

• On the horizon: Gaussian process-based
approaches: multifidelity EGO (FASTMath OUU);
Optimal experimental design (OED) (A2e)



Simple demonstration of key ML-MF concepts
Monte Carlo Sampling: MSE for mean estimator
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Problem statement: We are interested in the expected value of Qm = g(Xm) where

■ M is (related to) the number of spatial degrees of freedom

■ E [Qm] M---*cc> [Q] for some RV Q: Q R

Monte Carlo:

(WC clef

M 'N - KT

two sources of error:

■ Sampling error: replacing the expected value by a (finite) sample average

■ Spatial discretization: finite resolution implies QM

Looking at the Mean Square Error:

E [(e47N E [Q])2] = N-1Var (QM) + [Qm — Q])2

Accurate estimation Large number of samples at high (spatial) resolution



Simple demonstration of key ML-MF concepts
Multilevel MC: decomposition of estimator variance

Multilevel MC: Sampling from several approximations Qm of Q (Multigrid. )

ingredients:

■ {_Alf : f = 0, . . . ,L} with Mo
< < < m-L def m

■ Estimation of IE [Qm] by means of correction w.r.t. the next lower level

def linearity
1 ---+ 7,fQm] = E [Qm-0]+>:E [QiviR Chh_i IE [Ye]

t=i e=o

D.- Multilevel Monte Carlo estimator

emi, clef E MC
t,N

t=0

■ The Mean Square Error is

[Q112] =
=0

n(i)
'u4 — 1 )

/V1Var (Ye) ( [Qm QD2

Note If Qm Q (in a mean square sense), then Var (Ye) 
00

0
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Simple demonstration of key ML-MF concepts
Multilevel MC: optimal resource allocation

Let us consider the numerical cost of the estimator

Determining the ideal number of samples per level (i.e. minimum cost at fixed
variance)

CCOYIL)=1 .eCt
f=0

L

Lagrange multiplier

L.Arf-lVar (Ye) = e2/2
E=0

V
Balance ML estimator variance
(stochastic error) and residual

bias (deterministic error)
4 don't over-resolve one at
the expense of the other
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2
V =

E2
(Var ck )1/21 var (Ye) 

Level Level
independent dependent

f

Optimal sample profile

M. Giles, "Multilevel Monte Carlo path simulation," 2008.



Deployment Vignettes: ML, MF, MLMF Monte Carlo Sandia
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Hultiscale-multiphysics application of
Large Eddy Simulation (LES)

HDCR

Model forms:
• 2D, 3D

Discretizations:
• d/{8,16,32,64}

State of
the Art LES
("02" Case)

PO,InEaft PO,r111S,Meall Mmeon TICEmean knean

P1
d/8
d/16

4.02554e-03
4.03350e-07

1.90524e-06
7.77838e-08

1.99236e-02
6.68974e-05

3.34905e-07
1.74847e-08

4.24520e-03
4.40048e-05

P1 updated
d/8
d/16

4.05795e-03
2.85017e-04

1.90612e-06
7.36978e-07

1.60029e-02 11.335 3e-07 9.41403e-04
2.07638e-03 F2 9974-1e 07 2.57399e-02

Variance for the five QoIs of the P 1 unit problem.

Nalu V1.0 mit
SAN02010-11367111

Open Sou rce: BSD license has been granted--
Weak scaling demonstrated to 510,000 core motel 10 billion unstructured bex mesh
Generalised unstructured ICKENI and EBVC supported)

Redoes. lamtaavi
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No variance
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turbulence
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Non-
predictive
LF stress

prior to
reformulation

LF
correlation Variance reduction [%]

LF (updated)
correlation Variance reduction [%]

Thrust 0.997 91.42 0.996 94.2
Mechanical Stress 2.31e-5 2.12e-3 0.944 89.2
Thermal Stress 0.391 12.81 0.987 93.4

Correlations and variance reduction for E2 = 0.001.

Open FAST
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Equivalent HF simulations

Thrust

Wind

MC
MLMC -e-
MLMF - •-

MLMC-21
MLMF 21 a -

10000 10 100 1000

Equivalent HP simulations

10000

Nalu LES for QO is too coarse with limited predictive value
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Effective Cost No. 3D

(3D Simulations) Simulations

No. 1D

Simulatiom

No. OD

Simulations

MC 9 885 9885
I 

MFB MLB

cv
LF, LF I 1D I MFB 39 36

305 212 41 990

154 8801001
CV

13D1
HF 130 1 MLB

1001 LFa MLC

156 150

165 156 1 324

342 060

351 940
MLMF 165 156 1 249 362 590

LF I OD OD has greater predictive value,
(a) Multtlidelity (CV) (b) Multdovel (c) MultileveLMultIfidehty

for which MF outperforms ML



Multilevel Multifidelity Challenges
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Key Challenge: existing ML/MF/MI performance is compelling on (elliptic) model problems, but
significant generalization required for engineering apps. with non-trivial model relationships

• How well do we know the predictive value of each model a priori?

• Are the dependency relationships clear from the modeling source?

• Are they known to be highly correlated such that, e.g., control weights are not required?

• Conversely, can there be a penalty in greater generality with more weights to estimate,
indicating the need for graph discovery?

Research directions.-

• Generalize: start from a fully-connected, weighted structure

• Compute correlations across full model ensemble

• Optimize: learn latent relationships for an optimized graph representation

• Estimate reduced weight set from finite simulation instances



Multilevel Multifidelity Sampling Methods
Generalized framework for approx. control variates

For M approximate models, look beyond
(recursive) model pairings

AI

QCV = Q Qi )

=1

farg min var [Ocv(o/)] 1=>
a

Va
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C leixm covariance matrix among Qi

c E Rm vector of covariances between Q

=

Simple Monomial Example: Q=w5, Qi = (05-i 
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A. Gorodetsky, G. Geraci, E. , J. Jakeman "A generalized approxima e con ro vana e ramework for multifidelity uncertainty quantification," arxiv.org/abs/1811.04988v3



Multilevel Multifidelity Sampling Methods
Generalized framework for approx. control variates

For M approximate models, look beyond
(recursive) model pairings

cv=(2+
i=i

f
C c Rmxm

c E

covariance matrix among Qi

 Rm vecarg min yar [Ocv (o/)] C>. tor of covariances between Q and each Qi

= C-1c

Va
ri

an
ce

 r
ed
uc
ti
on
 r
at
io
 y
 

—0— MLMC

—0— Opt-MLMC

—0— MFMC

Simple Monomial Example: Q=w5, C); = (05-i 

10°, MC

10-4-  OCV-3 

10-5
0 10 20 30

x, so that ri = 2i+x (assumed sample ratio)

10-4

Sandia
National
Laboratories

I 1 1 11  1 1 1111 1 

111
11
11

MN 1111
1111

•I
11

 1111
 1111

 IIII 111
111
...

EE
NMI

ME

Ens
.111
1111

MEE
-EN

—4— MFMC

MLMC

Opt-MLMC

ACV-MF

ACV-KL

MI

101 102 103
Target Cost

104 105

A. Gorodetsky, G. Geraci, E., J. Jakeman "A generalized approxima e con ro vana e ramework for multifidelity uncertainty quantification," arxiv.org/abs/1811.04988v3



Generalized framework for approx. control variates tiasaiiites

Tunable model problem

Q = A (cos x5 + sin y5), Qi = (cos Oi x3 + sin Oiy3) , Q2 = A2 (Ws 02 X + sin 02y)

A = 11, A1 = and A2 =

1.0 
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0.8-
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49= n12, 02 = /r/6 and 02 <191 < O.
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Exploiting the OCV vs. OCV-1 gap for different cost ratios
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Perfomance of ACV-KL is robust to reduced model predictivity

A. Gorodetsky, G. Geraci, E., J. Jakeman "A generalized approximate control variate framework for multifidelity uncertainty quantification," arxiv.org/abs/1811.04988v3



Research & Development in Multifidelity Methods
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Laboratories

Recurring R&D theme: couple scalable algorithms with exploiting a (multi-dimensional) model hierarchy
>• address scale and expense for high fidelity M&S applications in defense, energy, and climate
>. render UQ / optimization / OUU tractable for cases where only a handful of HF runs are possible

Emerging mission areas: abnormal thermal, Z-pinch MagLIF, quantum chemistry

Monte Carlo UQ Methods

• Production: optimal
resource allocation for
multilevel, multifidelity,
combined (DARPA
SEQUOIA/ScramjetUQ)

• Emerging: active
dimensions ('18 EE
LDRD), generalized
fmwk for approx
control variates
(ASC V&V Methods)

• On the horizon: control
of time avg; learning
latent var relationships
(CIS LDRD); model
tuning / selection
(CIS LDRD, DOE BES)

Surrogate UQ Methods (PCE, SC)

• Production (v6.10):
ML PCE w/ projection &
regression; ML SC w/
nodal/hierarchical interp;
greedy ML adaptation
ARPA SEQUOIA

Emerging: multi-index
tochastic collocatio
multileve unction train
(ASC V&V Methods)

• On the horizon: new
surrogates (ROM, deep
NN) with error mgmt
('19 EE LDRD, DOE BES);
unification of surrogate
+ sampling approaches
(CIS LDRD)

xr•
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Optimization Under Uncertainty

• Production: manage simulation
and/or stochastic fidelity

• Emerging:
Derivative-based methods (DARPA SEQUOIA)
• Multigrid optimization (MG/Opt)
• Recursive trust-region model mgmt.:

extend TRMM to deep hierarchies
Derivative-free methods (DARPA ScramjetUQ)
• SNOWPAC (w/ MIT, TUM) w/

MLMC error estimates

Robust

• On the horizon: Gaussian process-based
approaches: multifidelity EGO (FASTMath OUU)



Stochastic Expansions: Polynomial Chaos & Stochastic Collocation

Polynomial chaos: spectral projection using orthogonal polynomial basis fns

R = a .7 using
j=o
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— *1(6) tPo (C2) = 1 Distribution Density function Polynomial Weight function Support range

411(t) = 01(6 ) (6) = 6 Nonnal
rrre

Hermite H e.„(x) e÷ [-cm, co]

W3(t)

— 1Po (6 ) th (C2) = C2
1

Uniform 1 Legendre P„(x) 1 [-1, 1]

Beta (1-4"(1-+W Jacobi PrJ3)(x) (1 - x)a(1+ xy, [-1, 1]
2,=-F0+.B(a+1,/3-1-1)

= 02(6) 00(6) = - Exponential Laguerre (x) [0, oo]

*4(C) = 01(6) 01(6) = 66 Gamma Generalized Lagueffe Ll?)(x) [0, oo]1•(21-1)

W5(C) = 00(6) 02(6) = S2 - 1

Estimate ai using regression or numerical integration:
sampling, tensor quadrature, sparse grids, or cubature

Stochastic collocation: instead of estimating coefficients for
known basis functions, form interpolants for known coefficients

• Global: Lagrange (values) or Hermite (values+derivatives)

• Local: linear (values) or cubic (values+gradients) splines

• Nodal or Hierarchical interpolants

Li
I I I

H  — 4 
—

k=1
kOj

• Tailor expansion form:

>
m ?,

.11=1 ,in=1

(R, j) 1
a - =
3 (411) NI)

  R g(t)

-(e1 en) (Ljiljn 

Sparse interpolants formed using E of tensor interpolants

— p-refinement: anisotropic tensor/sparse, generalized sparse

— h-refinement: local bases with dimension & local refinement

• Method selection: requirements for fault tolerance, decay, sparsity, error estimation
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Formulations for Multilevel PCE / SC
Starting point (2012): prescribed ML/MF resolutions w/ adaptivity
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1. Optimal resource allocation: parameterize estimator variance 4 optimal N,

Global icand y> 0

V ar[171]
Var[Yi] =   =

-y T
.2, K-Vilar [Y9] Cqtz
e

+1 ar[Yi]

Ci

aa

E., G. Geraci, J.D. Jakeman, "Multilevel Monte Carlo Hybrids Exploiting Multidelity
Modeling and Sparse Polynomial Chaos Estimation," SIAM UQ 2016, Lausanne.

Main challenge: abrupt transitions in sparse / low rank recovery

Park I bnCeon GOO Low -fidelrty degree

10 0 10
10.001000105

Arb,„ = 600. degree=4

2. Restricted Isometry Property (RIP) for sparse recovery (BLUE for OLS, FTT NI scaling w/ rank)

> tog3(si) Li log(C1)

Main challenge: compressible fns
4 increasing s
4 feedback not well controlled

>, 3. Greedy Multilevel refinement
a) ML competition with multiple level candidate generators
0 Main challenges: scalable refinement schemes, loss of precision

Jakeman, Narayan, and Zhou, 2016
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Surrogate approaches: Greedy multilevel refinement

OL. ̂  00 - for Ai = (.21— Q1-I
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Compete refinement candidates across model levels: max induced change / cost
• 1 or more refinement candidates per model level
• Measure impact on final Qol statistics (roll up multilevel estimates)

• norm of change in response covariance (default)
• norm of change in level mappings (goal-oriented: z/p/p/p*)

normalized by relative cost of level increment (# new points * cost / point)

• Greedy selection of best candidate, which then generates new candidates for this model level

Level candidate generators: 
• Uniform refinement: 1 exp order / grid level candidate per model level

• Tensor / sparse grids: projection PCE, nodal/hierarchical SC
• Regression PCE: least squares / compressed sensing

• Anisotropic refinement: 1 exp order / grid level candidate per model level
• Tensor / sparse grids

• Index-set refinement: many candidates per level
• Generalized sparse grids: projection PCE, nodal/hierarch SC
• Regression PCE

• Adapted candidate basis: -3 frontier advancements per model level
• Regression PCE (Jakeman, E., Sargsyan, "Enhancing t1-minimization estimates of

polynomial chaos expansions using basis selection," J. Comp. Phys., Vol. 289, May 2015.)

3 active
LF se s

5

4

1
0

4 active
discrepancy sets

0 1 2 3 4 0 1 _ 3 4
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Multilevel / Multi-index PCE: greedy competition across models

Steady state diffusion

[a(x,C 2 (x,0] = 10, (x,) c (0,1) x

u(0, = 0, u(1, = O.

Advection diffusion
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du du du

dt 
t, Z)+ a—

dx 
t, Z)-

dx
(x1, t, Zd = t, Z)

u(O, t, Z)= 0 u(1, t, Z)= 0 u(xl, 0, = 0,

Z) E (0,1)x I-

Greedy ML PCE: compressed sensing Greedy ML PCE: sparse grids with

10

10 3

0-LI]

❑

10

10 7

with uniform candidate refinement

—8— PCE CS single level

• -A- MF PCE CS 2 level p = 10
• V- ML PCE CS 5 level x= 1
• -A- ML PCE CS 5 level x = 1.5
• 4:a- ML PCE CS 5 level = 2
• -4- ML PCE CS 5 level K = 3
• -0- Greedy ML PCE CS 5 level

10' 101 10'
Equivalent HF Simulations

1 0-3

10

10-s

10 s

10 0

10 lz

10 11

10-11
101 10' 100 101

Equivalent HF Simulations

uniform / generalized refinement

—8— PCE UniSG single level
- HSC UnISG single level
- PCE GenSG single level

HSC GenSG single level
• -0- Greedy ML PCE UniSG 5 level
• -0- Greedy ML HSC UniSG 5 level
• -0- Greedy ML PCE GenSG 5 level

• -0- Greedy ML HSC GenSG 5 level

Conv Tol N1 N2 N3 N4 N5

Le-1 198 9 9 9 9

Le-2 644 198 9 9 9

Le-3 1802 644 9 9 9

Le-4 4505 1802 50 9 9

101

Conv Tol N1 N2 N3 N4 N5

Le-2 43 23 19 19 19
1.e-4 211 83 19 19 19
1.e-6 391 271 156 19 19
1.e-8 1359 743 327 59 19

1.e-10 3535 2311 1039 391 19
1.e-12 10319 5783 2783 1343 43
1.e-14 26655 14991 8063 3703 1535

ICP

5.2
101

100

Greedy multi-index PCE: sparse
grids with generalized refinement

1

(131.121)
([0, 1, 2, 3],[0, 1, 2])

([4],[2])

([0, 1, 2, 3, 4],[0, 1, 2])

([51.121)
([0, 1, 2, 3, 4, 5],[0, 1, 2])

r*•
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773

269

111
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345

127
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Jakeman, E., Geraci, Gorodetsky, "Adaptive Multi-index Collocation
- .1 . s. - -



Related ML-MF Topics (Time permitting)

Emulator-Based Bayesian inference

Trust-region Optimization / OUU
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(ML-MF) Emulator-based Bayesian inference Sandia
National
Laboratories

MCMC sampling performed on emulator, leveraging differentiable emulator structure
• Pre-solve for MAP (maximum a posteriori probability) point: full Newton min of —log(posterior)

• Accurate MCMC proposal: emulator derivatives 4 Hessian of misfit 4 MVN proposal covariance

• mitigates sample rejection in high D: for 10D Rosenbrock test, 98% rejection rate reduced to 30%

P(dP = exP [-- 
1

2
{f'(: ) —(1)Tr(il(f () —dd

—log [p(dP] = (./g) d)TFcli (f() d) = 11/()

im() = vtf(V ra 1 vie(4) +1.f() i [Fd 1 (,f()
!
Gauss-Newton approx. Hessian

Gaussian Likelihood

Negative Log Likelihood = Misfit

Hessian of Misfit

Rosenbrock Problem; Prior N(0,1)
(if only emulator grads) 3

2.5

Laplace approx.: MVN proposal covariance defined by
inverse Hessian of negative log posterior

2

1.5

— log lEd(t) = — lognog) 

• augmenting misfit: Hessian of negative log prior provides
regularization for priors w/ curvature (normal, beta, gamma)

• Posterior Hessian-based proposal balances likelihood and
prior, performing better than either alone

0.5 1.5 2
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0.1
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1

-1

- 2

Recursive Trust Region Model Management

Bi-fidelity opt. work in early 2000's Extend to deep model hierarchies

- 2

Algorithm 9 Recursive Trust Region Updating

procedure RECTR(r = 1 :LEN, 4,
for r = len to 1 (bottom up: low to high 11 coarse to fine) do

if State, = new candidate x: then
Test for new center. TR(4, 4„ fg.,!(x), fr„ff(x))

end if
if State, = new center 4 then

Compute f -1 (Xrd
Compute CORRECTION(xf., R, f r- I (4), f (4))
if Converged(4, (4), If- , 1.1"-I) then

= 4 (new candidate)
end if

end if
end for
for r = l to len (top down: high to low 11 fine to coarse) do

if State, = new center x". then
Recompute CORRECTION(xr,, R, fr- I (4), f(4))

end if
if parent corrected then

Recur updated corrections for fcror,.(4)
end if
Reset State,

end for
end procedure

3-level Recursive TRMM for Euler

Coarse evals Medium evals Fine evals C D CL

Reference NTACA 0012 0.10345 0.80118

Single-fidelity SQP 806 0.064904 0.80118
Single-fidelity SLP 1190 0.065024 0.80199
Single-fidelity NIP BFGS 2294 0.066894 0.80119
Three-level 1'-order TRMM 43630 4882 187 0.064968 0.80153
Three-level BFGS 2'd-order TRMM 17020 248 93 0.068695 0.81966

• Order of magnitude fewer HF runs
• More aggressive profile shaping than MG/Opt

Sandia
National
Laboratories

Transonic Airfoil Design

i nirnize
X

subject to

Imo

ultifidelity TRMM



Summary Remarks 
Sandia
National
Laboratories

The case for multilevel and multifidelity methods

• Push towards higher simulation fidelity can make propagation / inference / OUU untenable

• Multiple model fidelities / discretizations are often available that trade accuracy for cost

• Realistic deployments (nozzle, scramjet, cardio, wind) 4 rich model ensemble, challenging Qol

Towards multilevel-multifidelity UQ tailored for smoothness and dimensionality

• Generalized MC framework for approximate control variates

• Beyond assumed model relationships CV wts for fully connected graphs optimized LVN

• Leverage dissimilar models (with dissimilar parameterizations) discover shared physics

• Well suited for high dimensionality and/or low regularity

• Multilevel PCE/SC:

• Extend ML MC machinery with higher perf. estimators (sparsity, low rank, hierarchical
stats), while extending previous heuristics (-2012) to include optimal allocations
• Rate estimation: Recovery theory Greedy refinement

• Achieve more rapid convergence (sufficient regularity, moderate dimensionality)

• Enables emulator-based / derivative-enhanced approaches to inference, OUU, OED

Vision:

• Robustly span range of application scenarios / mission needs
— General framework with range of estimators, supporting different model features & analysis goals

— Automatic discovery and exploitation of model relationships



Extra
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Emphasis on Scalable Methods for High-fidelity UQ on HPC

Compounding effects:
• Mixed aleatory-epistemic uncertainties (segregation nested iteration)

• Requirement to evaluate probability of rare events (resolve PDF tails for Qol)

• Nonsmooth Qol (exp conv in spectral methods exploits smoothness)

Steward Scalable Algorithms within

Core (Forward) UQ Capabilities:

DAKOTA
Explore and predict with confidence

• Sampling methods: MC, LHS, QMC, et aI.

• Reliability methods: local (MV, AMV+, FORM, ...),
global (EGRA, GPAIS, POFDarts)

• Stochastic expansion methods: PCE, SC, fn train

• Epistemic methods: interval est., Dempster-Shafer evidence

CParametersModel

0.8

0.6

82

0.4

0.2

samples - 5

*

A

02 09 06 08

•

DAKOTA
Optimization
Uncertainty Quant.
Parameter Est.
Sensitivity Analysis

1

1.0

0.8

0.6

0.4

0.2
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(13lack box:
Sandia simulation codes
Commercial simulation codes

Library rnode (semi-intrusive):
ALEGRA (shock physics),
Xyce (circuits), Sage (CFD),
Albany/TriKota (Trilinos-based),
MATLAB, Python, ModelCenter,
SIERRA (multiphysics) 
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Initial Deployment of MLCV MC to UCAV Nozzle UQ

Low fidelity model: -1D
1.110.311am

Dy co & area

7 8 e

Medium fidelity model: -2D
0441max....a

e.s un xu) s.

malim &ma (UN

Estimator Variance (normalized)

0

rn

-
11)
CD

=

Cr,

4.3

a
m

0 ) Flex.

Sandia
National
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High fidelity model: -3D

LF MF

Coarse 0.016 0.053

Medium N/A 0.253

Fine N/A 1.0

Optimal sample allocations for MLMF

Target accuracy LF
Coarse Coarse

MF
Medium Fine

0.01 21143 1757 20 20
0.003 69580 5775 36 20
0.001 212828 17715 109 34



Updated Deployment of MLCV MC to UCAV Nozzle UQ
Sandia
National
I ahnratnripac

LF LF (updated)
correlation Variance reduction r] correlation Variance reduction [(X]

Thrust 0.997 91.42 0.996 94.2
Mechanical Stress 2.31e-5 2.12e-3 0.944 89.2
Thermal Stress 0.391 12.81 0.987 93.4

s ima or variance cnormaiize

rn

CD

O

-n

cn

O
O
O
O

O
O
O
O

2 /
i 2

Accuracy (EE6)
(=:. LF
Coarse

Medium
Coarse

Fidelity
Medium Fine

LF (updated)
Coarse

Medium
Coarse

Fidelity
Medium Fine

0.1

0.01

0.003

0.001

N/A
21,143

69,580

212,828

N/A
1,757

5,775

17,715

N/A
20

36

109

N/A
20

20

34

404
3,091

N/A
32,433

20

177

N/A
1,773

20

31

N/A
314

20

20

N/A
20



Initial Deployment of MLCV MC for Scramjet UQ
Multiscale-multiphysics application of

Large Eddy Simulation (LES)

HDCR

• Provided benchmark LES calculations of the
Hypersonic Intemational Flight Research Experiment
(HIFiRE) to support development of UQ

• Case of interest corresponds to the geometry and
conditions of ground based experiments performed
in the HIFiRE Direct Connect Rig (HDCR)

A hierarchy of unit cases (including high-fidelity LES
of the HDCR) has facilitated UQ tasks and provided
optimal workflow between team members

• Unit cases are designed to emulate key QoIs while
comprehensive parametric studies possible

State of
the Art LES
("P2" Case)

•••

1  
MC

MLMC
MLMF

0.1

0.01
10 100 1000 10000 100000 le+06

Flow _>.

mutation Pnrnary

dornain injectors

Secondary
injectors

..
15

P ...mks Le. ..n. Floary•Funr

Isolator
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Model forms:
• 2D, 3D

Discretizations:
• d/{8,16,32,64}

2D 3D
d/8 5E-4 0.11
d/16 0.014 1

TABLE: Computational cost.
252 244 255 355451 412 711nrn

400

T [KJ

600 800

'
279 887

3D, c1/32

.r 012_ 1P1‘

c1/16

111111111111:411"—__."-- AM-011P iop.

2D 3D
d/8 4,191 263
d/16 68 9

Optimal sample allocations for MLMF

(MSE target = .045 of pilot MSE)

3D, c1/8

Optimized allocation: achieve MSE target for 3D LES in 24D using only 9 HF sims. (50 equiv HF)



Updated Deployment of MLCV MC for Scramjet UQ

P1 updated: re-formulate inputs in order to obtain an higher level of turbulence and,
in turn, a more non-linear response of the system

Saida
National
Laboratories

PO,meari PO,rms.nwan Mllteari TKEm„n Xmean
P1

d78
d716

4.02554e-03
4.03350e-07

1.90524e-06
7.77838e-08

1.99236e-02
6.68974e-05

3.34905e-07
1.74847e-08

4.24520e-03
4.40048e-05

P1 updated
d78
(0.6

4.05795e-03
2.85017e-04

1.90612e-06
7.36978e-07

1.60029e-02 7.53353e-07 9.-1-1403e-04
2.07638e-03 2.99744e-07 2.57399e-02

Table 1 Variance for the five QoIs of the P1 unit problem.

Observations from pilot sample: decay in variance across discretizations (LF d/8 and
discrepancy d/16 — d/8) no longer observed for all Qol

• Need to engage additional refinement levels (i.e., d/32, d/64) to converge Qol statistics
tied to resolution of turbulence

• Need robust MLMF strategies that handle non-monotonicity while outperforming MC



29 1 Computational Approach
•Low Fidelity: OpenFAST-AeroDyn-Turbsim (https://github.com/OpenFAST)

• Turbsim generates turbulent atmospheric boundary layer flow field, semi-empirical

• AereoDyn models the aerodynamic forces on the rotor

• OpenFAST models the structural and controls response of the rotor (same for Nalu)

*High Fidelity: Nalu (https://github.com/NaluCFD)

• LES, Solves the Navier-Stokes equations in the low-Mach number
approximation with the one-equation, constant coefficient, TKE
model for SGS, unstructured massively parallel.

• Actuator Line model of the rotor

• Single, uniform mesh (no nesting)

• Cost estimates for Nalu and OpenFAST si

SAND2014-15367M

Nalu V1.0

Open SOUrCe: BSD license has been granted--
Weak scaling demonstrated to 524,000 core with 10 billion unstructured hex mesh

Generalized unstructured (CVFEM and EI3VC. supported)

••
•

. •
_
Backstop (vorticity)

2D/3D pedodic

MIMM

0 l:Ori Fes

•

Time: 60 OCCCOO

20/30 sliding mesh

Multiphysics CHT LES Jet

(cold and reacting)

Multiphysics Fluids/PMR

(_ ise Mesh size Simulation time

(seconds)

CPUs Cost

(CPU-hours)

Cost

(relative)

OpenFAST 500 1 0.42 1

Coarse 100x50x50 2000 80 240 576

Medium 200x100x100 2000 160 960 2304

Fine 400x200x200 2000 400 6860 16500

Reference 800x200x200 2000 400 38400 91400

Domino, S. "Sierra Low Mach Module: Nalu Theory Manual 1.0", SAND2015-3107W, Sandia National Laboratories Unclassified Unlimited
Release (UUR), 2015. https://github.com/NaIuCFD/NaluDoc
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1 Extrapolation
Es

ti
ma

to
rs

 S
t
D
e
v
 

• Given the statistical properties estimated for power and thrust,
we can extrapolate the behavior of several estimators:

MLMC-21: Multilevel Q1 + (Q2 — Q1)
• MLMF-21: MLMC-21 with CV for Q1

Thrust

100

10

0.1

• Standard MC estimator

• MLMC-3I: Multilevel Qo + (Q1 — Qo) + (Q2 — Q1)
• MLMF-3I: MLMC-Sliwith CV for Qo

MC
MLMC —e—
MLMF --*--

MLMC-2I
MLMF-21

10 100 1000

Equivalent HF simulations
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10

0.1
1 10 100 1000

Equivalent HF simulations

„
MC

MLMC —e— -
MLMF —

MLMC-2I  ❑
MLMF-21 — -

Level
0

NILMC
Nalu
161

Power
MLMF

Nalu OpenFAST
137 2040

Nalu
181

Thrust
MLMF

Nalu OpenFAST
136 2887

10000

Nalu LES for QO is too coarse will limited predictive value



Multilevel Multifidelity Sampling Methods
Cardiovascular flow

3D Model ID Model OD Model

Model relationships / graph topologies
MLA

HF 3D
M FA MLMF

MLC

CV HF 3D
3D 1D 1D 3DLF HF4111.

MFB

HF

MLB
LF1 LF1D 1D

CV
OD

t 3D
3D

CV
OD

LF

LF,OD

OD

(a) Multifldelity (CV) (b) Multilevel (c) Multilevel-Multifidebty

Sandia
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• Laboratories

Solver
Cost

(1 simulation)
Effective Cost

(No. 3D Simulations)

3D
1D
OD

96 hr
11.67 min

)

1
2E-3

1.45E-5

Courtesy of C. Fleeter (Stanford), Prof. D. Schiavazzi
(Notre Dame), Prof. A. Marden (Stanford)

Costs to achieve prescribed error tolerance

Method
Effective Cost

(3D Simulations)
No. 3D

Simulations
No. 1 D

Simulations
No. UD

Simulations

MC 9 885 9 885
MFA 56 21 15 681
MFB 39 36 154 880
MLA 305 212 41 990
MLB 156 150 342 060
MLC 165 156 1 324 351 940
MLMF 165 156 1 249 362 590

1 D predictivity was insufficient and OD contribution required control weighting



Generalized framework for approx. control variates
Tunable model problem

•Q = A (cos 0 x5 + sin Oy5 
), Qi = A1(cosOi x3 4- sin Oi y3) , th = A2 (Cos 02 X + sin 02Y)

A = 11,A1 = and A2 =

rd • 0.4

• 0.2

0.0

rt

▪ 0.4

7, 0.2

0.0

. 7r/2, 02 = ir/6 and 02 < B1 < 0.

Exploiting the OCV vs. OCV-1 gap for different cost ratios

1.0

(a) w = 10

018 1.0
91

(d) w = 50

112 114

0.6

0.6

1 .0
el

(b) w = 15

1.0 1.2

(e) w = 100

1.4

0.8

0.6

0.4

0.2

0.0

0_6

OM

1.0
e,

(c) w = 20

1.0 1.2

(f) w = 1000

1.4

LO
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A. Gorodetsky, G. Geraci, E., J. Jakeman "A Generalized Framework for Approximate Control Variates," arxiv.org/abs/1811.04988v3
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Generalized framework for approx. control variates
Two dimensional elasticity in heterogeneous media

Elastic wave propagation in 2D
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(a) Trace of the stress tensor.
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(b) Velocity u component.

qt +Aqx+Bqy =O

Well correlated
discretization hierarchy
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Shear stress contours for 2 fidelities x 5 discretizations
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A. Gorodetsky, G. Geraci, E., J. Jakeman "A Generalized Framework for Approximate Control Variates," arxiv.org/abs/1811.04988v3
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Stochastic Polynomial Expansion Methods
• Projection, Regression, Interpolation
• Multilevel l Multifidelity expansions (heuristic)
• Multilevel i Multifidelity expansions (optimized)



MF UQ with Spectral Stochastic Discrepancy Models Sandia
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• High-fidelity simulations (e.g., RANS, LES) can be prohibitive for use in UQ

• Low fidelity "design" codes often exist that are predictive of basic trends

• Can we leverage LF codes w/i HF UQ in a rigorous manner? 4 global approxs. of model discrepancy

. ($) = f10(0-Lj
j=1

Nhz

j=1

Af ($3)- L

Rhigh = le-1105C2 cos - 
0.5e-0.02(c-5)2

discrepancy
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(a) Error in mean

Sparse grid bi-fidelity: target reduced complexity in model discrepancy

Compressed sensing bi-fidelity: target sparsity

(Functional) tensor train bi-fidelity: target low rank

(b) Error in standard deviation
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Equivalent Number of High-Fidelity Model Evaluations

E., Ng, Barone, Domino, "Multifidelity Uncertainty Quantification Using Spectral Stochastic Discrepancy Models7 Handbook of UQ, 201 .



ML PCE with rate estimation: Model Problem & UCAV Nozzle

— (Tx Px, C) crx(x, C)] = 10, (x, C) E (0,1) X 14, (22)

where x is the spatial coordinate, ¿ a vector of independent random input parameters and a(x,C) denotes
the (random) diffusivity field. The following Dirichlet boundary conditions are also assumed

u(0, = 0, u(1, = o. (23)

We are interested in quantifying the uncertainty in the solution u at specified spatial locations: a=
0.05, 0.5, 0.95.

We represent the random diffusivity field a using the following expansion

10-2

2 10

o
'671
<T,

6, 10▪ -5

1 o'

a(x, t) = 1 + cr  2 cos (2x kx)Ck
k=1

PCE CS single level

• MF PCE CS 2 level p = 10

• -0— ML PCE CS 5 level is = 1

• -0— ML PCE CS 5 level is = 1.5

• -0— ML PCE CS 5 level K = 2

-n ML PCE CS 5 level is = 3

SS Diffusion

• .

A

10' 102 103
Equivalent HF Simulations

102

(24)

Optimized resource allocation outperforms

previous heuristics: K> 1 is effective
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Optimal sample allocations based on

relative cost, variance distribution
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ML PCE shows more rapid convergence
using coarse/medium/fine discretizations:

Exploits smoothness in moderate dim.

Initial results were promising, but rate estimation impeded by abrupt transition in recovery



Algebraic Test Problems:
Numerical investigation of estimator variance relationships

• Currin et al. (1988) - Exponential function

1 )1 2300a + 1900a + 20926 + 60
f (t) = [1 - exp (- 

100e + 500a + 46 + 20

fi.(t) =  [f (6.4
+ 0.05,6+ 0.05)+ f (6 + 0.05, max (0, 6— 0.05)]

+ 4 [f (6 — 0.05,6+ 0.05)+ f (6 — 0.05, max (0, 6— 0.05)]

• Short Column (Eldred 2012 and Berchier 2016)

• Park (1991) - F1

• Park (1991) - F2

4M  
2

(
PC) = 1 - bh2Y hP17 

) 
) 

4P  

2
(

flow(C = l bh2Y brzY 
) 
) 

el
f (C) = —2 1 f 1 + (e2 + d) 

—4
] + (el + 36) exp (I. + sin (6))
a

how(t) = [1 + 
sin 
10 
(6)

I f (C) — 26 + d + d + 0.5

f(S) = 3 exp (6 + 6) - sin (6) + ta

how (t) = 1-2 f (t) — 1

Sandia
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Numerical Investigation of Estimator Variance:
ML MC, ML PCE CS, and ML FT
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Low ❑ Low

MC 0.997 8.47E - 01 1.005 1.03E + 00
FT 2.737 7.97E - 02 1.224 2.11E + 00
PC 34.040 L26E - 06 1.446 4.59E + 00
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SHORT COLUMN

to-4

104

10

Var (kf)

Variance - Short Column

rvidLow
FT Low -.-
PC (Low)
MC (Delta) - .• •
FT (Delta) - .• •
PC (Delta) - .• •

MLMC - - •
MLFT - - •
MLPC - - •

N.....---------- _

)11.
•it

- - - -

101 102
N

le

Low ❑ Low

MC 0.572 1.275 1.120 0.959
FT 33.024 97.752 0.848 0.759
PC 0_247 0_321 1.463 L538

Low Low

MC 1.13E+ 00 1.43E+ 00 9.7gg - 01 9.17E- 01
FT 3.61E+ 03 5.33E- 03 1.90E+ 00 4.44E+ 00
PC 5.82E+ 04 6.59E- 11 1.70E+ 00 8.65E+ 00

Kinks in estimated rate curves ?
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Numerical Investigation of Estimator Variance:
ML MC, ML PCE, and ML FT
Currin function -- Low-fidelity 600 -- degree 6
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Park 1 function -- Low-fidelity 600 -- degree 4 Park 2 function -- Low-fidelity 600 -- degree 4
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Abrupt threshold in CS / FFT: more important to ensure sufficient recovery than estimate smooth rate that follows



Multilevel-multifidelity expansion methods — beyond rate estimation
Algorithm 1: RIP sampling for multilevel sparse recovery
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Address/avoid abrupt transition by ensuring sufficient sample density for accurate recovery

Restricted isometry property (RIP) based on sparsity s, cardinality C, mutual coherence L:

Jakeman, Narayan, and Zhou, 2016> sl log3(si) Li log(Ci)

Basic Algorithm:
• Starting from a pilot sample, shape profile based on observed sparsity & iterate until convergence
• In practice, RIP sampling levels are quite conservative 4 enforce a constraint on the profile

0.12908

0.12906

0.12904

0.12902

0.129

0.12898
a)
M 0.12896

0.12894

0.12892

0.1289

0.12888

0.12886
10

< for some collocation ratio r
Mean

100

Eq. Number of HF

1000

0.0137

0.01365

0.0136

a)
❑
er.j. 0.01355

0.0135

Standard Deviation

100

Eq. Number of HF

1000

Challenge: feedback not well controlled for compressible fns 4 more samples allow accurate recovery of more terms



Multilevel-multifidelity expansion methods — beyond rate estimation
Algorithm 2. Greedy ML PCE with generalized sparse grids

GSG for a single level / fidelity:
1. lnitialization: Starting from reference grid

(often w = 0 grid), define active index sets using
admissible forward neighbors of all old index sets.

2. Trial set evaluation: For each trial index set,
evaluate tensor grid, form tensor expansion, update
combinatorial coefficients, and combine with
reference expansion. Perform necessary
bookkeeping to allow efficient restoration.

3. Trial set selection: Select trial index set that
induces largest change in statistical Q0l.

4. Update sets: If largest change > tolerance, then
promote selected trial set from active to old and
compute new admissible active sets; return to 2.
If tolerance is satisfied, advance to step 5.

5. Finalization: Promote all remaining active sets to
old set, update combinatorial coefficients, and
perform final combination of tensor expansions to
arrive at final result for statistical Q0l.

05

St 0

Smolyak sparse grid

-0.5 05 1 1_5
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Multilevel-multifidelity expansion methods:
Greedy ML PCE: CS + uniform basis refinement

o 3

10-6

—B— PCE CS single level

• MF PCE CS 2 level p = 10

7- ML PCE CS 5 level lc = 1
T&— ML PCE CS 5 level x = 1.5

ML PCE CS 5 level x = 2

• — ML PCE CS 5 level lc = 3

• -0— Greedy ML PCE CS 5 level

101 102 103
Equivalent HF Simulations
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PCE CS single level

• -A- MF PCE CS 2 level p = 10
• ML PCE CS 5 level x=1

• ML PCE CS 5 level x= 1.5

• ML PCE CS 5 level x= 2

41 - ML PCE CS 5 level lc = 3
' -0— Greedy ML PCE CS 5 level

•

104 101

Final sample profiles
102 a
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PCE CS single level

• MF PCE CS 2 level p = 10

MI A Li_ PP CC EE CC Ss 55 leveleel elf :1.5

' *.ML PCE CS 5 level c= 2

• PCE CS 5 level x= 3

• .0— Greedy ML PCE CS 5 level

*b. %1

S!,.4

0 —41

Equivalent HF Simulations





Emulator-based MCMC
• Emulators eliminate direct interface of MCMC with expensive HF models
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• Polynomial chaos expansion (PCE), Stochastic collocation (SC), Gaussian process (GP)

Polynomial chaos: spectral projection w/ orthogonal poly basis GPs/GEK: pivoted Cholesky

R
•

(R,W j) 1
a = 

( 
) 

R 
j gi()

Stochastic collocation: form interpolants for known coeffs

• Global / local, nodal / hierarchical, value-based / deriv-enhanced

R,()
j=1

k

Candidate basis terms (P)

f(x(1 ))- 1 (1). ( (1)) (1)2(x(1)) icap(x( ))- co
E1

0 f(X(2)) 1 ( (2)) (1)2(x(2)) (1)p(x(2))
Cl

E2
.+7
ra

I
C2

•

_0
f(X(N)) 1 (1)1(x(N)) (1)2(x(N)) (bp(x(N)) cp -N

0
Over-determined (LS), under-determined (CS), Orthog. least interp.

Kriging & GEK predictions of Herbie from a nested LHS design

Sample Design Kriging: lerrorl GEK: lerrorl lerrorl

• For this milestone, we employ the ML PCE emulator from the forward UQ study



Exploit structure provided by emulator
Form accurate proposal density using Hessian data

• Analytic derivatives of PCE/SC/GP 4 Hessian of misfit 4 proposal covariance

Gaussian Likelihood

Negative Log Likelihood = Misfit

Gradient of Misfit

Hessian of Misfit

p(dP = exp [— () (1)TFcT1(f() — (I)]

—log [p(dP] = (fg) — Cf()— d) =

VtM(4) = VVL (f (4) d

klagoniaal
Laboratories

vp/() = vtf(Vrcil f(4) + () • [F(11 () — (1)]

Gauss-Newton approximate Hessian (if only emulator grads)

Use MVN proposal with covariance defined by inverse Hessian (Laplace approx) of:

• Negative log posterior, augmenting misfit with log prior

—logltd() = — nog)

• Hessian of negative log prior results in a regularization with many priors: normal, beta, gamma

• No effect in other cases: uniform, exponential, triangular, histogram
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Multilevel emulator-based Bayesian inference:
Model Problem (Rosenbrock)
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Greedy ML PCE expansion from forward UQ 4 efficient MCMC for data assimilation

• Define simulation-to-experiment or simulation-to-reference-simulation misfit function

• Markov Chain Monte Carlo (MCMC) performed on emulator, leveraging emulator structure
• Pre-solve for MAP (maximum a posteriori probability) point: full Newton min of —log(posterior)

• Accurate MCMC proposal mitigates sample rejection in high D

• In 10D, 98% rejection rate reduced to 30%

• Posterior Hessian-based proposal balances likelihood and prior, performing better than either alone

Weak prior N(0,1)

Hessian of —log(7d) is
likelihood-dominated

-1.5 -1 -0.5 0 0.5 1.5 2

0.2

0.1

Medium prior N(0,.25)

Hessian of —log(7d): L and 70
contributions are balanced

3
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Strong prior N(0,.1)

Hessian of —log(7d) is
prior-dominated
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MCMC posterior samples in , Hessian updates in , insets plot rejection rate vs. Hessian-preconditioned MCMC cycle for 3 proposals
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Multigrid optimization
(MG/Opt)

As in multilevel Monte Carlo, exploit
discretization hierarchy within optimization/OUU:
• Apply multigrid V cycle to hierarchy of optimal solns

• Distinct from applying multigrid to KKT system
• Distinct from successive refinement of optimal solns

(employs bi-directional prolongation / restriction)

Recursively uses coarse resolution
problems to generate search directions
for finer-resolution solves
• Line search used to compute fine-resolution

iterate from coarse-resolution search direction
• Globalization enables provable convergence

Special case of / component within
generalized model management framework
• Requires effective subproblem solver to

generate a new iterate at a particular level
• Leverages 1st and (quasi, finite diff.) 2nd-

order additive & combined corrections

Dive

MODEL PR.OBLEMS FOR. THE MULTIGRID OPTINIIZATION OF
SYSTEMS GOVERNED BY DIFFERENTIAL EQUATIONS*

ROBERT MICHAEL LEWISf AND STEPHEN G. NASH t

NMI ILEVEW C) 2009 Soo.), for Inclustnal and Applied Maffieoutos
VoL SI. No. O. pp. 361-395

Multigrid Methods for PDE

Optimization*

Alfio Borzit
Volker Schulzt

Algorithrn 1 Multigrid Optimization

1: procedure MGOPT(k, 4k), f(k)(x), v(k))
2: if k 0 then
3: xl.k) arg minx f(k)(x) [v(k)] T x

(k)4: return xi
5: else
6: r Partially solve: xi" = arg minx f(k)(x) - [tr(k 1 T

= R[x(1.1

v(k_ 1) = f (k_l) (xlk— 1)) R [vt-(0(x40)1

9: L )4k-1) = MGOPT(k - 1, xlk I) f(k-l)(x), v{k-1})

10: e = P [x.(k-j - xfk-ni

X211: (Fr) = (JO Return
12: return 4k)
13: end if
14: end procedure



10'
inner Optimization -- Quasi-Newton w/ BFGS

MG/Opt for Multilevel

• Coarse and fine discretizations (50, 100 pts)

for LF model form

• Adjoint design gradients

• Prolongation/restriction via Lagrange interp.

• MATLAB Optimization Solvers (2)

• Grid scalings (1D and 2D diffusion)

• Solver cost scalings (linear, quadratic, cubic)

to'

to'

10 6

to'

Inner Optimization -- Quasi-Newton w/ BFGS

le
o

 1 Level -- Actual fine-grid evaluations

2 Level -- Actual fine-grid evaluations

- 2 Level -- Equivalent fine-grid evaluations (linear)
- - 2 Level -- Equivalent fine-grid evaluations (quadratic) -

• - - - 2 Level -- Equivalent fine-grid evaluations (cubic)

2D diffusion

50 100 150 200

Fine-grid function evaluations

250 300

10.

10-4,==-;

47—

to'

10-6

to'

10°

to'

to'

10 8

to'

10'
0

1 Level -- Actual fine-grid evaluations
- 2 Level -- Actual fine-grid evaluations
 2 Level -- Equivalent fine-grid evaluations (linear)

2 Level -- Equivalent fine-grid evaluations (quadratic) E

- - - 2 Level -- Equivalent fine-grid evaluations (cubic)

1D diffusion

50 100 150 200 250 300

Fine-grid function evaluations

Inner Optimization -- Trust-Region Interior-Reflective Newton Method

350 400 450

1 Level -- Actual fine-grid evaluations
 2 Level -- Actual fine-grid evaluations

2 Level -- Equivalent fine-grid evaluations (linear) _

2 Level -- Equivalent fine-grid evaluations (quadratic)

- - - - 2 Level -- Equivalent fine-grid evaluations (cubic)

1D diffusion

t
I \

50 100 150 200

Fine-grid function evaluations

250 300



Recursive Trust Region Model Management

Algorithm 9 Recursive Trust Region Updating

procedure RECTR(r = 1 :LEN, 4, f (x))
for r = len to 1 (bottom up: low to high 11 coarse to fine) do

if Stater = new candidate 4 then
Test for new center. TR(4, .crAJoi, frcon.00)

end if
if Stater = new center 4. then

Compute Jr- 1 (4)
Compute CORRECTION(4,R, 1-1(4), f (4))
if Converged(xr„ , LF-1) then

xr.-1 = 4 (new candidate)
end if

end if
end for
for r = 1 to len (top down: high to low 11 fine to coarse) do

if Stater = new cenWr xr, then
Recompute CORRECTION(K.,R, .1' I (4), f (4))

end if
if parent corrected then

Recur updated corrections for jrcon.(4)
end if
Reset State,

end for
end procedure

Repeat until convergence on high-fidelity model

High-Fidelity:

Medium-Fidelity: l X

6 NIL

Low-Fidelity: l X l

Sandia
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Monschke and E., "Multilevel-Multifidelity Acceleration of PDE-Constrained Optimization," AIAA SciTech 2017.



SEQUOIA: DUU w/ Recursive Trust Region Model Management

Algorithm 9 Recursive Trust Region Updating

procedure RECTR(r = :LEN, Xr,, fc..(x))
for r = len to l (bottom up: low to high 11 coarse to fine) do

if State, = new candidate x: then
Test for new center. TR(4, x, f c:4(x),

end if
if State, = new center xr, then

Compute fr-i(xD
Compute CORRECTION(4, R, r. (JO, f(4))
if Converged(4, fij,„!(4), L t, fr-I) then

= (new candidate)
end if

end if
end for
for r = I to len (top down: high to low 11 fine to coarse) do

if State, = new center xr, then
Recompute CORRECTION(4, R, f t(4), f(4))

end if
if parent corrected then

Recur updated corrections for .g...(4)
end if
Reset State,

end for
end procedure

Input Variables

Geometry

Design Variables

Sandia 
50
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2

1 •

UCAV Nozzle Robust Design

TRMM

(Aero, Structural, Thermal)

min Var(F(x,
x

subject to E[M (x)] Mreq

-2

• LF: L1 sparse grid w/ Euler COARSE

• HF: L1 sparse grid w/ Euler MEDIUM
E[F (x, 0] Freq

-2 -1 2
ENT0II] Tmax,o• 1st-order consistent w/ FD gradients

• 

UN

•

• Converged in 5 iterations using filter HISO(ol)(x• 0)111 1

method Ax < b
single temperatureDesign variables 1<x<uconstraint for entire

oCzAzVI e
• 21 B-spline & 8 thickness geometry

• Random variables von Mises stress
• 7 total used as single

failure criterionRandom Variables

interior wall shape (B-spline parameterization)

thermal layer thickness > baffle geometry

load layer thickness > stringer geometry

Material Properties

Inlet Conditions

Environment

density

elastic modulus

Poisson ratio

thermal conductivity

thermal expansion coef.

inlet stagnation temperature

inlet stagnation pressure

atmospheric temperature

atmospheric pressure

heat transfer coef. to environment

• Leverage multiple (deterministic) simulation
fidelities / discretizations

• Leverage multiple (stochastic) UQ approaches /
resolutions



DUU of Scramjet-lnspired Model Problem:
MLMC (UQ level) + noise-tolerant DFO informed by std error estimates

O Objective: Pressure loss (inlet outlet}

imr amis. All

Supersonic Duct
COARSE solution (30 s) Vs MEDIUM resolution (300 s)

Pressure

2 548mi-05

1 8960,5

1 2640.5

. 61201

: •Sor03

hb

Figure: Design parameters

• Design: = [hb, 2t, Up, lb, TNT

0.5 <hb < 2.5

7.5 <it < 11.5

2.5 <ltp < 4.5

17.5 <lb < 20.5

79.5 <xb < 85.5

( L Po(Y)clY) 1 P
y 
iVin1Pi 0 s s = Po 

Q Constraint: Average temperature along the cavityut  centerline

Tc = —
1 
I T(x)clx

L L

O OUU formulation:

O Uncertain: = [po, To, , MiTh]

Po N(1.48e6, (7.4e3)2)

N(1550, 7.752)

Min N(2.51, 0.012552)

Pross( *, = napa E[73loss(',0]

s.t. 593 < 4)]-3,7[Tcavf, 4)]
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Multilevel error estimators for E, V and -VV.
Variance sk:

Standard deviation

V[sifj = +V[PVII — 2C0v(P1, PI-1)
t=0

2where V[I1] = 
1 
04/ - ATM-„ 

) + Not _ 1 )VIQII2
s2A4L

SE (40  1 VV[44,]2 VsLL
Stochastic MC OPTIMIZATION - Results Stochastic MLMC OPTIMIZATION - Results Stochastic MLPCE OPTIMIZATION - Results

08 ctive O.. Obective Constraint800  Ob dive Constraint0.58

856

•ni Evaluations
optimization Path 036

• wi Evaluations
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•P. Evaluations
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eos

g 0.54
034

s

032
0.510

o3
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0.48
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0.46o
595

0360
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Optimization step
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Optimised. step

GO 70
optoni rt tep 0.<950 10 20 30 40 50 60 /0

Optimization 8ep
10 60 70

Optimization step

Figure: Initial design Figure: Final design • Figure: Initial design Figure: Final design Figure: Initial design Figure: Final design

Each ML anal sis 3x less ex•ensive; MLPCE converses in —10 iterations



Summary Remarks (ML-MF Opt/OUU) ct
The case tor muitnevei and mumnaenty metnods

• Push towards higher simulation fidelity can make propagation / inference / OUU untenable

• Multiple model fidelities / discretizations are often available that trade accuracy for cost

• Deployments for CFD (nozzle, scramjet, wind) 4 rich model ensemble, challenging Qol

Towards multilevel-multifidelity UQ tailored for smoothness and dimensionality

• Multilevel-multifidelity MC framework for cost-optimized variance reduction

• ML-MF MC employs LF control variate at each HF discretization level; tailor to hierarchy type

• Well suited for high dimensionality and/or low regularity

• Multilevel PCE/SC: higher performance estimators than MC; optimal resource allocations

• CS / FT: exploit sparsity / low rank in 6; SC hierarchical interp; expand to model dimensions

• Rate estimation of estimator variance: complicated by abrupt transitions in CS/FT recovery

• RIP sampling: shape sample profile based on observed sparsity; issues w/ feedback

• Greedy refinement: competition among multiple candidates per level, normalized by cost
• ML compr. sensing with exp order candidates; ML sparse grids with level / index set candidates

Achieve more rapid convergence (sufficient regularity, moderate dimensionality)

Multilevel-Multifidelity Opt / OUU: move beyond common bi-fidelity

• By exploiting richer model ensemble, computational effort can be pushed down the
hierarchy, supporting case of only a handful of HF fine-grid evaluations

• Recursive TRMM looks promising relative to current multilevel approaches (MG/Opt)

• Multiple levels and multiple forms in simulation, UQ, or both
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