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UQ & Optimization: DOE/DOD Mission Deployment (i) o
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Common theme across these applications:

» High-fidelity simulation models: push forward SOA in computational M&S w/ HPC
- Severe simulation budget constraints (e.g., a handful of runs)
- Significant dimensionality, driven by model complexity (multi-physics, multiscale)




Research Thrusts for UQ ) et

* Focus: Compute dominant uncertainty effects despite key challenges

« Emphasize scalability through exploitation of special structure ' m
« Adaptivity: p- and h- refinement of stochastic expansions

» Adjoints: gradient enhancement for PCE / SC / GP

...............

» Sparsity: compressed sensing

- * Low Rank: tensor / function train (w/ UMich)

» Dimension reduction: active subspaces (w/ CU Boulder),
adapted basis PCE (w/ USC)

« Compound efficiencies
* Multilevel-Multifidelity with sampling & CS/FT surrogates (new: ROM, NN)
* Active subspaces: subspace quadrature, enhance MF control variates

r = Nhi/Nlo = 6

; 10’ & —e— CS multi

» Address complexity w/ component-based approach L. A cssins

« Emulator-based Bayesian inference, Mixed aleatory-epistemic UQ, 2 | il
Optimization under uncertainty (new: Optimal experimental design) |z ©’}
g 10°]

» Position UQ for next generation architectures T TS

Equivalent Number of High-Fidelity Model Evaluations

» Current (imperative): multilevel parallelism (MPI + local async)

* Future (declarative): exploit DAG + AMT for ensemble workflows (w/ Stanford)




Multiple Model Forms in UQ & Opt ) i,

Discrete model choices for simulation of same physics

Potential Flow

A clear hierarchy of fidelity (from low to high)

« Exploit less expensive models to render HF practical
» Muiltifidelity Opt, UQ, inference

» Support general case of discrete model forms
» Discrepancy does not go to 0 under refinement

An ensemble of peer models lacking clear preference
structure / cost separation: e.g., SGS models
« With data: model selection, inadequacy characterizatior
 Criteria: predictivity, discrepancy complexity
» Without (adequate) data: epistemic model
form uncertainty propagation
* Intrusive, nonintrusive
» Within MF context: CV correlation

Potential Flow

Reynolds ‘One- m ‘Revnolds
Averaged Navier- equation equation '
Stokes (RANS) RANS model RANS model
» ke

Hybrid
RANS/LES

Discretization levels / resolution controls
» Exploit special structure: discrepancy = 0
at order of spatial/temporal convergence

Simulation

ANPPL] [PPOJAl Surseddu]

Large Eddy
7 Simulation (LES)

Combinations for multiphysics, multiscale




Research & Development in Multifidelity Methods

th

Recurring R&D theme: couple scalable algorithms with exploiting a (multi-dimensional) model hierarchy
» address scale and expense for high fidelity M&S applications in defense, energy, and climate
> render UQ / optimization / OUU tractable for cases where only a handful of HF runs are possible
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AZe wake dynamics

SECURE ¢

Emerging mission areas: abnormal thermal, Z-pinch MagLlIF,

quantum chemistry

Monte Carlo UQ Methods

* Production: optimal
resource allocation for
Lttt

* Emerging: active
dimensior 8-E
LDRD), generalized
fmwk for approx
control variates
(ASC V&V Methods)

* On the horizon: control
of time avg; learning
latent var relationships
(CIS LDRD); model
tuning / selection
(CIS LDRD, DOE BES)

ol
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* On the horizon: new

Surrogate UQ Methods (PCE, SC)

* Production (v6.10): i
ML PCE w/ projection &
regression; ML SC w/
nodal/hierarchical interp;

greedy ML adaptation
(DARPA SEQUOIA) "

* Emerging: multi-index
stochastic collocation, -
multilevel function train
(ASC V&V Methods)

1 = Sl e

surrogates (ROM, deep
NN) with error mgmt
(‘19 EE LDRD, DOE BES);
unification of surrogate
+ sampling approaches
(CIS LDRD)

Optimization Under Uncertainty

Production: manage simulation
and/or stochastic fidelity

Emerging:
Derivative-based methods (DARPA SEQUOIA)
+ Multigrid optimization (MG/Opt)
* Recursive trust-region model mgmt.:
extend TRMM to deep hierarchies
Derivative-free methods (DARPA ScramjetUQ)
+ SNOWPAC (w/ MIT, TUM) w/
MLMC error estimates

On the horizon: Gaussian process-based

approaches: multifidelity EGO (FASTMath OUU);
Optimal experimental design (OED) (A2e)




Simple demonstration of key ML-MF concepts )
Monte Carlo Sampling: MSE for mean estimator

Problem statement: We are interested in the expected value of Qy = G(Xjpr) where

» M is (related to) the number of spatial degrees of freedom

» E Q] EH—OOHE[Q] forsome RVQ: Q2 — R

Monte Carlo:

two sources of error:

» Sampling error: replacing the expected value by a (finite) sample average

» Spatial discretization: finite resolution implies Qy ~ @

Looking at the Mean Square Error:

E (@M% — E[Q)?| = N"'Var (Qu) + (E[Qy — Q))*

Accurate estimation = Large number of samples at high (spatial) resolution




Simple demonstration of key ML-MF concepts i

Multilevel MC: decomposition of estimator variance
Multilevel MC: Sampling from several approximations @y of @ (Multigrid...)

Ingredients:

> {M,:¢=0,..., Lywith My <M; <--- <M., ¥M

» Estimation of E [@7] by means of correction w.r.t. the next lower level

L L
def li 15
Ye = Qu,—Qu,_, —— E(Qu] =E [Qu,]+ D E|Qu, — Qu,_,| = > _E[Y/]
» Multilevel Monte Carlo estimator

G defZ = Y 2( Q)

» The Mean Square Error is

L
E (@ —EQ)?] =Y N, 'Var (¥o) + (E[Qu — Q))°
(=0

Note If @37 — @ (in a mean square sense), then Var (Y,) L3 p




Simple demonstration of key ML-MF concepts i) .
Multilevel MC: optimal resource allocation

Let us consider the numerical cost of the estimator

L
c(@f") => N
£=0

Determining the ideal number of samples per level (i.e. minimum cost at fixed
variance)

j N
C(@") =D N
£=0 Lagrange multiplier 2 - 1/2 Var (Yg)
L 4 > Ng = 5 Z(Var(Yk)Ck) —————
£ E—0 Cg
> "N, 'Var (Y;) = £%/2
- ) \ ' J\ ' J
‘ Y ' Level Level
Balance ML estimator variance independent dependent
(stochastic error) and residual : ;
bias (deterministic error) |
- don’t over-resolve one at Optimal sample profile

the expense of the other

M. Giles, “Multilevel Monte Carlo path simulation,” 2008.



Deployment Vignettes: ML, MF, MLMF Monte Carlo

Multiscale-multiphysics application of
Large Eddy Simulation (LES)

Model forms:

- 2D,3D
R Discretizations:
‘ « d/{8,16,32,64}

Scramjet

State of
the Art LES

("P2" Case)
P 0,mean | P 0,rms,mean | Mimean ‘ TKEmean ‘ KXmean .
P1 No variance
d/8" [ 4.02554e-03 | 1.90524¢-06 | 1.99236¢-02 | 3.34905¢-07 [ 42452003 |  decay for
d/16 || 4.03350¢-07 | 7.77838¢-08 | 6.68974-05 | 1.74847¢-08 | 4.40048¢-05 .
P1 updated hlgher
dJ8 | 4.05795¢-03 | 1.90612¢-06 | 1.60029¢-02 turbulence
d/16 || 2.85017¢-04 | 7.36978¢-07 | 2.07638¢-03 _ levels

Variance for the five Qols of the P1 unit problem.

UCAV
Nozzle

Non-
. LF LF (updated)
predICtlve correlation | Variance reduction [%] || correlation | Variance reduction [%]
LF stress Thrust 0997 9142 0.9% %2
. Mechanical Stress 2.31e-5 2.12¢-3 0.944 89.2
prior to Thermal Stress 0.391 12.81 0.987 93.4

reformulation

Correlations and variance reduction for €% /e = 0.001.

Nalu V1.0 i Wind

OpenFAST |
Open Source: BSD license has been grantedsm=

Weak scaling demonstrated to 524,000 core with 10 billion unstructured hex mesh |
Generalized unstructured (CVFEM and EBVC supported)

LES Jet
(cold and reacting)

Multiphysics CHT

Thrust

Power
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Nalu LES for QO is too coarse with limited predictive value
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E=- -
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1D |LF,
MFB MLB !
o HF [ 3D
[s0]— | [o0 15,
17 [op
(a) Multifidelity (CV) (b) Multilevel

G
|-
= Cscu
3D Model 1D Model 0D Model
MLME
Effective Cost No. 3D No. 1D No. 0D
i Method | (3D Simulations) | Simulations | Simulations | Simulations
MC 9885 9885 |
MFA 56 21 15681 =
o
F[10 | —s MFB 30 36 = 154880
MLA 305 212 41990 =
MLB 156 150 342060
MLC 165 156 1324 351940
MLMF 165 156 1219 362590

0D has greater predictive value,
for which MF outperforms ML

(¢) Multilevel-Multifidelity
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Multilevel — Multifidelity Challenges

Key Challenge: existing ML/MF/MI performance is compelling on (elliptic) model problems, but
significant generalization required for engineering apps. with non-trivial model relationships

 How well do we know the predictive value of each model a priori?
« Are the dependency relationships clear from the modeling source?
* Are they known to be highly correlated such that, e.g., control weights are not required?

« Conversely, can there be a penalty in greater generality with more weights to estimate,
indicating the need for graph discovery?

Research directions:

* Generalize: start from a fully-connected, weighted structure
« Compute correlations across full model ensemble

« Optimize: learn latent relationships for an optimized graph representation
» Estimate reduced weight set from finite simulation instances




Multilevel — Multifidelity Sampling Methods i)

Generalized framework for approx. control variates

For M approximate models, look beyond —
(recursive) model pairings > - oo
M -2 ACV-MF
SOV A 5 2 - ) —
—¥J1 o 1 — i & (K,L)=(1,1)
4% =0+ a (@ — i) - R =)
g K,L)=(3,1
C e RMM iariance matrix among (); _% z K, L; =, 54‘1; I
a;rgamin Var [QCV ( g)] :> ¢ € RM vector of covariances between Q . g 10-3 .
- a* =Cle = Y= - 1
| | . 2 10| oovs -
Simple Monomial Example: Q=0°, Q; = ®° 1 ocv e s
] MLMC 10> . : :
100 +-MC -- —¥— Opt-MLMC 0 10 20 30
S § / MFMC MLMC
i= P I - N 100+ o - —%— Opt-MLMC -
= 1071, - MFMC
g f \ OCV-1 o 2 0-1] § | PN e e [—— ACVKL
p < o o
£ 10 — ER I,
-3 . - .
= U oo ¢ 109] -
‘g ] % OCV-2
3 1044 _ocv3 E :
QCy. 2 1073 ocv3 )
10-5 1 . . | | pooy I
0 10 20 30 10— 1 %0 0
x, 80 that r; = 27" (assumed sample ratio) z,50 that r; = 2i+

A. Gorodetsky, G. Geraci, E., J. Jakeman “A generalized approximate control variate framework for multifidelity uncertainty quantification,” arxiv.org/abs/1811.04988v3



Multilevel — Multifidelity Sampling Methods i)

Generalized framework for approx. control variates

For M approximate models, look beyond
(recursive) model pairings

QCV =Q+§:ﬂé (Qz —[Ji)
i=1

C € RM*M  qyariance matrix among Q;
arg min Var [QCV (Q)] :> c € RM yector of covariances between Q@ and each Q);
a

a* = Cle

— L MF)

Simple Monomial Example: Q=0°, Q, = »°

] MLMC m
10 -ME -~ —¥— Opt-MLMC - 1044 MLMC -
g ; / MFMC E - === Opt-MLMC ]
::31 L | K| m — 1
= 1071; = 1075
o : \ QCV-1 - k=
9 ] 2 ]
g 1072, - L1078
ks ] =z |
-3 B i f
g 1079 ocvee £ 10 ! =
3 : [ |
£ 104{ ooV 10-8
o Q0N i v i e - i 1 i e | N
0 10 20 30 il 102 10 10* 10°

x, 0 that 7; = 27 (assumed sample ratio) Target Cost

A. Gorodetsky, G. Geraci, E., J. Jakeman “A generalized approximate control variate framework for multifidelity uncertainty quantification,” arxiv.org/abs/1811.04988v3



Generalized framework for approx. control variates

Tunable model problem

S =
w o

&

Q=A(c056‘x5+sin(9y5), Q,:Al(c0501x3+sin01y3), Q> =Az(cos by x +sinb, y)

s o
=

A= VI1,A; = VTand A; = V3 0=n/2,6,=nm/6and 6, < 6y <6,

1.0

0.9
- 08
(=]
= —— )}
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g —— 12
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Exploiting the OCV vs. OCV-1 gap for different cost ratios

Elastic wave propagation in 2D

- Well correlated |:> General multifidelity
w discretization hierarchy with model gaps
EZ 10°% — 107* 107
:fs g o \: rcm g a0 \ g o \
o a - = g = : i ” :
005 =4 E g
o g 10-¢ B Bige
17505025 0 02505075 1 -1-07505025 0 02505075 1 107505025 0 !12.05 075 1 . -1 :ﬂJMMZ 0 02505 n.75.| 14.750.ij 0 025 0.5.5.75 1 1077 i 1077 i 1071 1
Shear stress contours for 2 fidelities x 5 discretizations .. A = o N - o "

Perfomance of ACV-KL is robust to reduced model predictivity

A. Gorodetsky, G. Geraci, E., J. Jakeman “A generalized approximate control variate framework for multifidelity uncertainty quantification,” arxiv.org/abs/1811.04988v3



Research & Development in Multifidelity Methods

Sandia
National _
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Recurring R&D theme: couple scalable algorithms with exploiting a (multi-dimensional) model hierarchy
» address scale and expense for high fidelity M&S applications in defense, energy, and climate
» render UQ / optimization / OUU tractable for cases where only a handful of HF runs are possible

Y

“Ucava
Nozzle
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AZ2e wake dynamics

SECURE ¢

Emerging mission areas: abnormal thermal, Z-pinch MagLlIF,

quantum chemistry

Monte Carlo UQ Methods

* Production: optimal
resource allocation for
multilevel, multifidelity,
combined (DARPA
SEQUOIA/ScramjetUQ)

* Emerging: active

dimensions (18 EE | -

LDRD), generalized
fmwk for approx
control variates
(ASC V&V Methods)

* On the horizon: control
of time avg; learning
latent var relationships
(CIS LDRD); model
tuning / selection
(CIS LDRD, DOE BES)

s et

400004 0000} ool

ol

g

Estimator Variance (normalized

100

Lt — Emerging: multi-index
e tochastic collocation . -
e multilevelfunction train =
o - (@
3 wo
S (.20 )

Surrogate UQ Methods (PCE, SC)

* Production (v6.10): i
ML PCE w/ projection &
regression; ML SC w/
nodal/hierarchical interp;
greedy ML adaptation

DARPA SEQUOIA "o

=1l

(ASC V&V Methods)

Il

* On the horizon: new
surrogates (ROM, deep
NN) with error mgmt
(19 EE LDRD, DOE BES);
unification of surrogate
+ sampling approaches
(CIS LDRD)

Optimization Under Uncertainty

Production: manage simulation
and/or stochastic fidelity

Emerging:
Derivative-based methods (DARPA SEQUOIA)
« Multigrid optimization (MG/Opt)
* Recursive trust-region model mgmt.:
extend TRMM to deep hierarchies
Derivative-free methods (DARPA ScramjetUQ)
+« SNOWPAC (w/ MIT, TUM) w/
MLMC error estimates

On the horizon: Gaussian process-based
approaches: multifidelity EGO (FASTMath OUU)




Stochastic Expansions: Polynomial Chaos & Stochastic Collocation il B

Polynomlal chaos: spectral prOJectlon using orthogonal polynomial basis fns

To(€) = vo(&1)vo(&) = 1 Distribution ~ Density function Polynomial Weight function ~ Support range
R Z Ui(§) = lﬂl( ) vo(é) = & :”_’fma' \/%f% }:Z""“:H; ((I) E;T [?"1’ ;’]C]
Y . Us(6) = o(é) vi(le) = & e O PP e
g )| using BE) = Va6 o) = 61| o
Uy() = d’l(fl)ﬂ (§2) = & Gamma s Generalized Laguerre LY (z) 2% [0, 00]
Us(§) = vo(é)va(&) = -1
* Estimate ¢; using regression or numerical integration: (R, ;) 1

o = n =y f R e

J

sampling, tensor quadrature, sparse grids, or cubature

Stochastic collocation: instead of estimating coefficients for
known basis functions, form interpolants for known coefficients R(&) = Z ri L

* Global: Lagrange (values) or Hermite (values+derivatives)
* Local: linear (values) or cubic (values+gradients) splines
* Nodal or Hierarchical interpolants

1 &= & i — By s o 4
L=IE=g = (RO 3 o 3 e df) (W oo 1)
k;] Ji=1 Jn=1

A . Sparse interpolants formed using 2 of tensor interpolants
 Tailor expansion form:

— p-refinement: anisotropic tensor/sparse, generalized sparse
— h-refinement: local bases with dimension & local refinement

* Method selection: requirements for fault tolerance, decay, sparsity, error estimation




Formulations for Multilevel PCE / SC § ) =R
Starting point (2012): prescribed ML/MF resolutions w/ adaptivity mm o
Nio Np;i % 10*L
fh’e Z f{o E} + Z Af{é 3 (g) Nlo >> Nhi i 10° 161 162 163 10°
Equivalent Number of High-Fidelity Model Evaluations

1. Optimal resource allocation: parameterize estimator variance = optimal N,
5 Global xand y> 0 N — =
e . Var[Y] - | VarVy dilE
o= V| — — 3 v K T LU 1
= - Var[Y)] N N, e Z Y/ Var[Y,]Cs Cz il
o Pl
"% E., G. Geraci, J.D. Jakeman, “Multilevel Monte Carlo Hybrids Exploiting Multidelity j
o Modeling and Sparse Polynomial Chaos Estimation," SIAM UQ 2016, Lausanne. W 4 ; :
Main challenge: abrupt transitions in sparse / low rank recovery S -
- Njow = 600, degree=4
g‘ 2. Restricted Isometry Property (RIP) for sparse recovery (BLUE for OLS, FTT N, scaling w/ rank)
()
- N; > s EDQS(SE) L EUQ'(CE) Jakeman, Narayan, and Zhou, 2016
E\ o . . = i ‘ i Standard'Deviaﬁon
© Main challenge: compressible fns ] R \
3 - increasing s N g oo 1\
5 - feedback not well controlled Coml s ot
= ;j:z L / 00135 | ///'/?}\Nﬂi**w;r—’iiif::y‘\l‘
2 3. Greedy Multilevel refinement . e o T I
g B ML competition with multiple level candidate generators
O | Main challenges: scalable refinement schemes, loss of precision




. . Sandia
Surrogate approaches: Greedy multilevel refinement (Y e,

‘QL ~ Qo+ Y AL for Ay = 01— 01

Compete refinement candidates across model levels: max induced change / cost
* 1 or more refinement candidates per model level

* Measure impact on final Qol statistics (roll up multilevel estimates)
* norm of change in response covariance (default)
* norm of change in level mappings (goal-oriented: z/p/f/3*)
normalized by relative cost of level increment (# new points * cost / point)

« Greedy selection of best candidate, which then generates new candidates for this model level

Level candidate generators:

* Uniform refinement: 1 exp order / grid level candidate per model level e
« Tensor / sparse grids: projection PCE, nodal/hierarchical SC B
* Regression PCE: least squares / compressed sensing

* Anisofropic refinement: 1 exp order / grid level candidate per model level

— N W = Ut

« Tensor / sparse grids LEER R
* Index-set refinement: many candidates per level | |
* Generalized sparse grids: projection PCE, nodal/hierarch SC I }

* Regression PCE

* Adapted candidate basis: ~3 frontier advancements per model level e

* Regression PCE (Jakeman, E., Sargsyan, “Enhancing £1-minimization estimates of
polynomial chaos expansions using basis selection,” J. Comp. Phys., Vol. 289, May 2015.)




Multilevel / Multi-index PCE: greedy competition across models

Steady state diffusion

Sandia
National

0L

Advection diffusion

d du
= [a‘(a:,s)@(m,s)] —10, (2,€) € (0,1) x I¢

u(0,€) =0,

u(1,€) =0.

du du d
I(Xl’ t,Z)+ EK(XIJ. Z) - ax

du
k(X1.Z)Z(X1,t. Z)| =g(x1,t,2)

u(0,t,Z)=0 u(1,t,Z)=0 u(x1,0,2)=0,

Greedy ML PCE: compressed sensing

Greedy ML PCE: sparse grids with

Greedy multi-index PCE: sparse
grids with generalized refinement

Laboratories

(x1,Z) e (0,1)xTI

with uniform candidate refinement uniform / generalized refinement .
107 e - 107° . . .
—B— PCE CS single level —B— PCE UniSG single level ’l, "
A - A~ MF PCE CS 2 level p = 10 —— HSG UniSG single level b bl
? =ML PCE CS 5 levelx =1 107" —&— PCE GenSG single level 10—2_ .
N ~ML PCE CS 5 levelx = 1.5 5 ‘_‘E_ gscge&fiéigg&e lg\éels el - -x :
107 NG “PMLPGEGS Slewslx =2 s PN o- G;::dy ML HSC UniSG 3 lovel | T %
Sommurstiates || " | g0 Somuzemml = r =
G = i M
&y | 10 &
5 10°) 5 v “~ = (312D
5 L o - = ([0.1.2.3[0.1,2) =
g g == (412D
é ) é 10° — - ([0, 1,2, 3, 4,0, 1, 2])
& 10°f & == ([51[2])
15 —— ([0, 1,2, 3.4,5][0, 1, 2]) @ &
1073 10! 10! 10°
10°F 4 107 Work
A
107
107 Lt : 1072 .
10’ 10° 10° 10* 10" 107 10° 10* 10° 10°
Equivalent HF Simulations Equivalent HF Simulations -@
10_‘ 10361
’ Conv Tol , N, ’ Ny ‘ Nj | Ny ‘ Ny ‘ = 5 -
Conv Tol \ Ny \ Na \ N3 \ Ny \ N5 \ lLe-2 43 23] 19] 19] 19 Ll | '
le4 211 83 19 19 19 3 . o "
Le-1 | 198 91 91 91 9 le6| 301| 271| 156| 19| 19 g i
l.e-2 644 198 9 9 9 l.e-8 | 1359 743 | 327 59 19 1 i 22
le3 11802 | 644 | 9| 9| o Le-10 | 3535 | 2311 | 1039 | 391 | 19 ) " g
l.e-12 | 10319 | 5783 | 2783 | 1343 43
le4 | 4505 | 1802 | 50| 9] 9 le-14 | 26655 | 14991 | 8063 | 3703 | 1535

Jakeman, E., Geraci, Gorodetsky, “Adaptive Multi-index Collocation
for Uncertainty Quantification and Sensitivity Analysis,” in review.
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Related ML-MF Topics (Time permitting)

Emulator-Based Bayesian inference

Trust-region Optimization / OUU




(ML-MF) Emulator-based Bayesian inference (i i

Laboratories

MCMC sampling performed on emulator, leveraging differentiable emulator structure
* Pre-solve for MAP (maximum a posteriori probability) point: full Newton min of —log(posterior)
* Accurate MCMC proposal: emulator derivatives = Hessian of misfit > MVN proposal covariance
* mitigates sample rejection in high D: for 10D Rosenbrock test, 98% rejection rate reduced to 30%

p(d[§) = exp [—%(f@) —d)'T7 ' ((€) —d)] Gaussian Likelihood

~log[p(d[E)] = $(F(5) ~d)'T3'(f(§)~d) = M(§)|  Negative Log Likelihood = Misit

V%M(&_,) — .?gf'(g)T FEI V’gf(ﬁ)fr V%f(&_,) * [I—EI (f(E)— d)} Hessian of Misfit
'Gauss-Newton approx. Hessian Rosenbrock Problem; Prior ~ N(0,1)

(if only emulator grads)

7-

Laplace approx.: MVN proposal covariance defined by
inverse Hessian of negative log posterior

—logmy(&) = M(&)—logmo(€)

« augmenting misfit: Hessian of negative log prior provides
regularization for priors w/ curvature (normal, beta, gamma)

» Posterior Hessian-based proposal balances likelihood and
prior, performing better than either alone




Recursive Trust Region Model Management

Bi-fidelity opt. work in early 2000’s

2
Sequence.of trust régions

I

Algorithm 9 Recursive Trust Region Updating

procedure RECTR(r = 1 :en, x7, x], fI..(x))
for r = len to 1 (bottom up: low to high || coarse to fine) do
if State, = new candidate x’, then
Test for new center: TR(xY, xI, flxl(x), f7..(x))
end if
if State, = new center x. then
Compute f~(x7)
Compute CORRECTION(X, R, f™~'(x7), f7(x0))
if Converged(xZ, fl}(x%), L', U™") then
X! = X7 (new candidate)
end if
end if
end for
for r = 1 to len (top down: high to low || fine to coarse) do
if State, = new center x/. then
Recompute CORRECTION(x, R, £~ (a%), f"(x%))
end if
if parent corrected then
Recur updated corrections for f7, (x])
end if
Reset State,
end for
end procedure

) 1 0 1 2
3-level Recursive TRMM for Euler
Coarse evals Mediumevals Fineevals Cp Cp
Reference NACA 0012 - - — 0.10345 0.80118
Single-fidelity SQP - - 806 | 0.064904 0.80118
Single-fidelity SLP - - 1190 | 0.065024 0.80199
Single-fidelity NIP BFGS - - 2294 | 0.066894 0.80119
Three-level 17-order TRMM 43630 4882 187 | 0.064968 0.80153
Three-level BEGS 2™-order TRMM 17020 248 L 93 ) 0.068695 0.81966

* Order of magnitude fewer HF runs

* More aggressive profile shaping than MG/Opt

Sandia
National
Laboratories

0L

Extend to deep model hierarchies

Transonic Airfoil Design

minifnize Cp(u(x))

subjectto Cr(u(x)) = Cp
CEuter(X, u(x)) = 0
—-001 <x<0.01

Single-fidelity (NPSOL)

Multifidelity TRMM




Summary Remarks h) i,

The case for multilevel and multifidelity methods

» Push towards higher simulation fidelity can make propagation / inference / OUU untenable
* Multiple model fidelities / discretizations are often available that trade accuracy for cost

» Realistic deployments (nozzle, scramjet, cardio, wind) = rich model ensemble, challenging Qol

Towards multilevel-multifidelity UQ tailored for smoothness and dimensionality

* Generalized MC framework for approximate control variates
+ Beyond assumed model relationships - CV wts for fully connected graphs - optimized LVN
» Leverage dissimilar models (with dissimilar parameterizations) - discover shared physics
» Well suited for high dimensionality and/or low regularity

* Multilevel PCE/SC:

+ Extend ML MC machinery with higher perf. estimators (sparsity, low rank, hierarchical
stats), while extending previous heuristics (~2012) to include optimal allocations

* Rate estimation: Recovery theory Greedy refinement
» Achieve more rapid convergence (sufficient regularity, moderate dimensionality)
» Enables emulator-based / derivative-enhanced approaches to inference, OUU, OED

Vision:

* Robustly span range of application scenarios / mission needs
— General framework with range of estimators, supporting different model features & analysis goals
— Automatic discovery and exploitation of model relationships
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Emphasis on Scalable Methods for High-fidelity UQ on HPC

Compounding effects:

* Mixed aleatory-epistemic uncertainties (segregation - nested iteration)
* Requirement to evaluate probability of rare events (resolve PDF tails for Qol)
* Nonsmooth Qol (exp conv in spectral methods exploits smoothness)

Steward Scalable Algorithms within )>

DAKOTA

Sandia
National _
Laboratories

0.8
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Explore and predict with confi

Core (Forward) UQ Capabilities:
« Sampling methods: MC, LHS, QMC, et al.

dence

* Reliability methods: local (MV, AMV+, FORM, ...),

global (EGRA, GPAIS, POFDarts)

» Stochastic expansion methods: PCE, SC, fn train

Model
Parameters

DAKOTA

Optimization

Uncertainty Quant. |
Parameter Est.
Sensitivity Analysis

Commercial simulation codes
Library mode (semi-intrusive):
ALEGRA (shock physics),
Xyce (circuits), Sage (CFD),

Black box:
Sandia simulation codes

Quantities
of Interest

Albany/TriKota (Trilinos-based),
MATLAB, Python, ModelCenter,
SIERRA (multiphysics)

« Epistemic methods: interval est., Dempster-Shafer evidence

samples =5

08

06

04

Expected
Improvemen

2 4 6 8 10 12
R=> a;¥;(€)

PI(>Y) or P(>Y) or Bel(>Y)

0* L L 1 1 | |
06 08 10 12 14 16 18 20 22
Y
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Initial Deployment of MLCV MC to UCAV Nozzle UQ

7| Netora

High fidelity model: ~3D

tary T

Medium fidelity model: ~2D

SR
i’ oy o &area
7 8 e
Estimator Variance (normalized) LF MF
Coarse | 0.016 0.053
= = - Medium | N/A 0253
= = — == (@ Fne \ Fine N/A 1.0

Optimal sample allocations for MLMF

Target accuracy LF MF
Coarse || Coarse | Medium | Fine
0.01 21143 1757 20 20
0.003 69580 5775 36 20
0.001 212828 || 17715 109 34




Updated Deployment of MLCV MC to UCAV Nozzle UQ

fh

1

LF LF (updated)
correlation | Variance reduction [%] correlation | Variance reduction [%]
Thrust 0.997 91.42 0.996 94.2
Mechanical Stress 2.31e-5 2.12e-3 0.944 89.2
Thermal Stress 0.391 12.81 0.987 93.4
Estimator variance (normalizeq)
BEY
=
!
N = LF Medium Fidelity LF (updated) Medium Fidelity
ceuracy (& /o Coarse | Coarse | Medium | Fine Coarse Coarse | Medium | Fine
0.1 N/A | NJ/A | N/A |N/A 104 20 20 20
0.01 21,143 | 1,757 20 20 3,091 177 31 20
0.003 69,580 | 5,775 36 20 N/A N/A N/A N/A
0.001 212,828 | 17,715 109 34 32,433 1.0 314 20




Initial Deployment of MLCV MC for Scramjet UQ ) s

Multiscale-multiphysics application of « Provided benchmark LES calculations of the

Large Eddy Simulation (LES Hypersonic International Flight Research Experiment
. . 4 (HIFIRE) to support development of UQ e - /" \ Ti. M Od el fO rms.
« Case of interest corresponds to the geometry and H £ Y *
conditions of ground based experiments performed & / / - .\\\ o 2 D, 3D
in the HIFIRE Direct Connect Rig (HDCR) / // / \\\ . . . .
« A hierarchy of unit cases (including high-fidelity LES / b D ISCI'etlzatIO nS .
of the HDCR) has facilitated UQ tasks and provided N
optimal workflow between team members * d/ {8, 1 6,32,64}
« Unit cases are designed to emulate key Qols while Computation ~ Primary g
making comprehensive parametric studies possible doratn * / 55 ]
. L N\l 478 | 54 01l
e N &) < il d/16 | 0014 1
@ Tsolator Cmilly Combustion chamber
TABLE: Computational cost.

L] 03 244 205 350 4?1 419 71|1 mm
b rl | | L h
k t 1 t L t

State of 400 ! I;(J 800
the Art LES 279_! _887

("P2" Case)

MC —— 4 1;"!1&?

1
MLMC —— .
MLMF
% —l’
< 04
3 2D 3D
d/8 4,191 263
d/16 68 9
Optimal sample allocations for MLMF
0.01 i (MSE target = .045 of pilot MSE)
10 100 1000 10000 100000  1e+06

Optimized allocation: achieve MSE target for 3D LES in 24D using only 9 HF sims. (50 equiv HF)



Updated Deployment of MLCV MC for Scramjet UQ h

P1 updated: re-formulate inputs in order to obtain an higher level of turbulence and,

in turn, a more non-linear response of the system

P 0,mean P 0.rms,mean Mmean TKEmearz Xmean
P1
d/8 || 4.02554e-03 | 1.90524e-06 | 1.99236e-02 | 3.34905e-07 | 4.24520e-03
d/16 || 4.03350e-07 | 7.77838e-08 | 6.68974e-05 | 1.74847e-08 | 4.40048e-05
P1 updated
d/8 || 4.05795e-03 | 1.90612e-06 | 1.60029¢e-02
d/16 || 2.85017¢-04 | 7.36978e-07 | 2.07638¢-03 _

Table 2: Variance for the five Qols of the P1 unit problem.

Observations from pilot sample: decay in variance across discretizations (LF d/8 and

discrepancy d/16 — d/8) no longer observed for all Qol

* Need to engage additional refinement levels (i.e., d/32, d/64) to converge Qol statistics
tied to resolution of turbulence

* Need robust MLMF strategies that handle non-monotonicity while outperforming MC




‘ Computational Approach

*Low Fidelity: OpenFAST-AeroDyn-Turbsim (https://github.com/OpenFAST)

* Turbsim generates turbulent atmospheric boundary layer flow field, semi-empirical

¢ AereoDyn models the aerodynamic forces on the rotor

* OpenFAST models the structural and controls response of the rotor (same for Nalu)

*High Fidelity: Nalu (https://github.com/NaluCFD)

* LES, Solves the Navier-Stokes equations in the low-Mach number
approximation with the one-equation, constant coetficient, TKE

model for SGS, unstructured massively parallel.

* Actuator Line model of the rotor

* Single, uniform mesh (no nesting)

Nalu V1.0

2D/3D periodic

' SAND2014-15367M 3
sk o
* Nalu

Open Source: BSD license has been granteds:

Weak scaling demonstrated to 524,000 core with 10 billion unstructured hex mesh
Generalized unstructured (CVFEM and EBVC supported)

= Cost estimates for Nalu and OpenFAST simar: &) ,
Case Mesh size Simulation time | CPUs Cost Cost
(seconds) (CPU-hours) | (relative)
OpenFAST 500 1 0.42 1
Coarse 100x50x50 2000 30 240 576
Medium 200x100x100 2000 160 960 2304
Fine 400x200x200 2000 400 6360 16500
Reference | 800x200x200 2000 400 38400 91400

Domino, S. "Sierra Low Mach Module: Nalu Theory Manual 1.0", SAND2015-3107W, Sandia National Laboratories Unclassified Unlimited

Release (UUR), 2015. https://github.com/NaluCFD/NaluDoc




‘ Extrapolation

= Given the statistical properties estimated for power and thrust,
we canh extrapolate the behavior of several estimators:

e Standard MC estimator

e MLMC-3I: Multilevel Qy + (Q; — Qy) + (Q, — Q)

° MLMC-2I: Multilevel Ql + (QZ — Ql)
* MLMEF-2I: MLLMC-21 with CV for Q4

10000

* MLMEF-3I: MLMC+dwith CV for Q, Thrust
100 ¢ T T T T L L L | L LR | T T T T T 10 T T T T T T TTTT)
E MC —— 1 i MC —— ]
MLMC —o ] MLMC —e ]
MLMF — e — | MLMF —e — |
MLMC-2| —& MLMC-2| —&
MLMF-2] — = B MLMF-2] — =
3 10t 3 n
()] r o
(%) (%)
()] 1]
S 5 1r
(] ©
E 1L 1 3 = E A
‘
|
0.1 ' ' : 0.1 : ' '
1 10 100 1000 10000 1 10 100 1000
Equivalent HF simulations Equivalent HF simulations
Power Thrust
MLMC MLMF MLMC MLMF
Level | Nalu | Nalu | OpenFAST | Nalu | Nalu | OpenFAST
0 161 =T 2040 181 136 2887

Nalu LES for QO is too coarse will limited predictive value




Multilevel — Multifidelity Sampling Methods ) e

Cardiovascular flow

Jost Effective Cost
Solver | (1 simulation) | (No. 3D Simulations)

3D 96 hr 1
1D 11.67 min 2E-3
0D 5 sec 1.45E-5

Courtesy of C. Fleeter (Stanford), Prof. D. Schiavazzi
(Notre Dame), Prof. A. Marden (Stanford)

3D Model 1D Model 0D Model

Model relationships / graph topologies Costs to achieve prescribed error tolerance

MLA
HF [ 3D Effective Cost No. 3D No. 1D No. 0D
MEA I MLC MLME Method | (3D Simulations) | Simulations | Simulations | Simulations
HF
[]e—[m] w[w] [sm]w MC 9885 9885 = =
! L MFA 56 21 15681 | -
- s [0]ir, ¥ [10 ] — MFB 39 36 = 154 880
— 1 ILA 305 212 41900 | -
(30 | - MLB 156 150 = 342 060
I MLC 165 156 1324 351940
L MLMF 165 156 1249 362590

(a) Multifidelity (CV) (b) Multilevel (¢) Multilevel-Multifidelity

1D predictivity was insufficient and 0D contribution required control weighting



Generalized framework for approx. control variates (i) &
Tunable model problem

10
09
L 08
Q:A(c056x5+sin6y5), Q1:A1(cosﬁ1x3+sin61y3), Q2 = Az (cos 6y x +sinb, y) Zor i
é» —— B3
A=VI1,A = VTand Ay = V3 6=n/2,00=mn/6and 6 < 0 < 0. o8
03
| P

Exploiting the OCV vs. OCV-1 gap for different cost ratios

T L0 ; 1.04

= 1.0 - > e
-% 0.8 0.84
208
g § |
£ 06 0.6 0.6
5
E 04 041 0.4
- 74 2_
= n2 0.z 0
=

0.0 0.0 0.0

0.6 0.8 10 1.2 14
&
(a)w =10

1.0 1.0 1.04
= .
2 08 08 0.8
=
£ 06 0.64 0.61
5
=1
= 04 0.44 0.4
z
% 02 0.2 0.2
=
&=

0.0 0.0+ 0.0+

A. Gorodetsky, G. Geraci, E., J. Jakeman “A Generalized Framework for Approximate Control Variates,” arxiv.org/abs/1811.04988v3



Generalized framework for approx. control variates (i) &
Two dimensional elasticity in heterogeneous media

Elastic wave propagation in 2D

01
1 1 Tt S 0 00s
¢ 0
0.75 075 |-
e -05 005
05 4 05 |- 01
0.25 2 025 |- 4 015
0 0 o o3
025 - 025 -15 015
05 4 05 |- > 00
-0.75 ® 0.75 | 0
5 ] 8 A 1 1 1 25 ::(:5
-1 -075-05-025 0 025050.75 1 -1-0.75-05-025 0 02505075 1 e
(a) Trace of the stress tensor. (b) VClOClty u component. K -1 07505025 0 02505075 1 -1-07505025 0 02505075 1 -1-07505025 0 02505075 1 -1-07505-025 0 02505075 1 -1 -o..754)..salz 0 olzs ol.5 o.l75 1 o
q: + Aqx + Bqy, =0
Well correlated :> General multifidelity
discretization hierarchy with model gaps

103 103
MFMC
RDiEF
—¥ W.RDiE
8 1074 —— ACV.MF z & 1
El —— ACVKL E] 2
g : ol 8 g
= 1073 S 5 £ 1078 =
=1 — 2 -] :
g g £ 2
4 106 A k- | 106
1077 T T 10" T T 107 T T
10% 10° 107 w? 10° 10?
Target cost Target cost Target cost

Perfomance of ACV-KL is robust to reduced model predictivity

A. Gorodetsky, G. Geraci, E., J. Jakeman “A Generalized Framework for Approximate Control Variates,” arxiv.org/abs/1811.04988v3



Stochastic Polynomial Expansion Methods
* Projection, Regression, Interpolation

* Multilevel | Multifidelity expansions (heuristic)

« Multilevel | Multifidelity expansions (optimized)




MF UQ with Spectral Stochastic Discrepancy Models (i) o

« High-fidelity simulations (e.g., RANS, LES) can be prohibitive for use in UQ

« Low fidelity “design” codes often exist that are predictive of basic trends

 Can we leverage LF codes w/i HF UQ in a rigorous manner? - global approxs. of model discrepancy
Nio Ny

Fi€) = fiol&)Li (&) + > Af(€;)L;(€) Ny, >> Ny,
§= §=1

Ruign(€) = %% cos 0.5¢ — 0.5¢ 00265 . .
—e—— 10 - : - 10
. discrepanc
Ry (&) = =005 oog 0.5¢, pancy
= 107
10
) L% L% 107 ¢
5 10° 2 2 10°
O < <
£ 107t
8 107 |
%) = High—Fidelity = High-Fidelity
High—Fidelity Model o™ f— Multtﬂdellts:r . e ——= Ilk-1ultnﬂdeﬂutylr :
10710 Correction Function 0 5 10 15 20 0 5 10 15 20
5 10 15 20 Number of High—Fidelity Model Evaluations Number of High-Fidelity Model Evaluations
Fay Oroes (a) Error in mean (b) Error in standard deviation
i r=Nhi/Nlo = 6 -
10 & v —— CS multi
g , —&— CS single
. . P i . 10"k —e— -
Sparse grid bi-fidelity: target reduced complexity in model discrepancy |z ° oSG ange
. . . . 'g E —B—Mc
Compressed sensing bi-fidelity: target sparsity P 3
(Functional) tensor train bi-fidelity: target low rank g1
10° 10' 0 10° 10*
Equivalent Number of High-Fidelity Model Evaluations

E., Ng, Barone, Domino, “Multifidelity Uncertainty Quantification Using Spectral Stochastic Discrepancy Models,” Handbook of UQ, 2015.



ML PCE with rate estimation: Model Problem & UCAV Nozzle | %B

_ d_dr [Q(LE)%(I-E)] =10, (2,8) €(0,1) x I, o

where z is the spatial coordinate, £ a vector of independent random input parameters and a(z, &) denotes
the (random) diffusivity field. The following Dirichlet boundary conditions are also assumed

u(0,€) =0, u(1,€)=0. (23)

We are interested in quantifying the uncertainty in the solution u at specified spatial locations: = =
0.05,0.5,0.95.
We represent the random diffusivity field a using the following expansion

d
a(z,&) =1+ JZ I.2—1772 cos(2mkz)€;, (24)
k=1

;“>;< | SS'Diﬁusion

Std Deviation Error

.|| =—=PCE Cs single level S

10 °F| A =MF PCE CS 2 level p = 10 iy

4D =MLPCECS5levelk=1 A

4D =ML PCECS5levelx=15

4 =ML PCE CS 5 level x = 2
ML PCE CS 5 level k = 3

10' 10° 10

Equivalent HF Simulations

Optimized resource allocation outperforms
previous heuristics: k> 1 is effective

Optimal sample allocations based on
relative cost, variance distribution

EstimatordSi@53\evels.8nd L5 &)
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ML PCE shows more rapid convergence
using coarse/medium/fine discretizations:
- Exploits smoothness in moderate dim.

Initial results were promising, but rate estimation impeded by abrupt transition in recovery




Algebraic Test Problems: e
Numerical investigation of estimator variance relationships

e Currin et al. (1988) — Exponential function

f&)=[1- 1 )] 2300¢f + 190067 + 2092¢; + 60
P\ 2| 100g7 500t 261+ 2

Jiow(&) = 1 [f(fl +0.05,& + 0.05) + f(& + 0.05, max (0, & — 0.05)]

+ % [£(&1 — 0.05, & + 0.05) + f(&; — 0.05, max (0, & — 0.05)]

e Short Column (Eldred 2012 and Berchier 2016)

e Park (1991) - F1

(&)= % \/1 + (&2 +€3) ] + (&1 + 3&4) exp (1 +sin (&3))
frow(€) = [1 o (51)] f(€&) 26 +E+2+05

e Park (1991) - F2

f(&) = —eXP (61 + &) — E4sin(€3) + &3
flow(é) =1 2f(§) -1




Numerical Investigation of Estimator Variance: ) S
Laboratories
ML MC, ML PCE CS, and ML FT
CURRIN PARK 2 SHORT COLUMN
Var (f@) Var (Ye> Wiy (Ye)
SR 5 Vi Paka Variance — Short Column
10" 3 X 4
H= | B = =] "TEE= -
- X ] i - s Thead. ] PC (Low) —e— i Fx
10?2 %EEE%E;_: ‘:f;""x‘ E 104-%§§%§i: = %Eié%nn‘éi-:» S m iEme = = EEEE
: 1 SRR 1§ wef  WETC jgrorp M- .
g 10° : .\\ g 10% " & T e - -\
g \:\ g 7 . g * \
S I e
“““ R - asns ™~
o 10 102 T o e 10! 10 T ol 10 102 10
N N N
g | s R =
Low A | Low A Low A | Low A
MC 0.997 8.47TE — 01 1.005 1.03E + 00 MC 0.572 1.275 1.120 0.959
FT 2.737 7.97F — 02 1.224 2.11E + 00 FT 33.024 97.752 0.848 0.759
PC 34.040 1.26E — 06 1.446 4.59E + 00 PC 0.247 0.321 1.463 1.538
¥ K
Low A | Low A
MC 1.13E + 00 1.43E + 00 9.78FE — 01 9.17E — 01
FT 3.61E + 03 5.33E — 03 1.90E + 00 4.44FE + 00
PC 5.82E + 04 6.59E — 11 1.70E + 00 8.65E + 00

Kinks in estimated rate curves ?



Numerical Investigation of Estimator Variance:
ML MC, ML PCE, and ML FT

Park 1 function -- Low-fidelity 600 -- degree 4

s,

Currin function -- Low-fidelity 600 -- degree 6 Park 2 function -- Low-fidelity 600 -- degree 4

13 : , . —— . . - e ' . |
) 1 F | : L . _ ] |
g 0T 1 ;
B 9t - ‘ ] . _
§ .: 2 & 1 __%_ !
7 J % t‘% ! 1 24t |
il I L l a 23 | |
TS T 8—.: i TN U 22 b T

High-fidelity simulations

Low-fidelity 600, High-fidelity 80, degree 6

High-fidelity simulations

Low-fidelity 600, High-fidelity 40, degree 4

® o2 40 (e0) (& 10 20 @ (&0 160 10l (a0 80 160

High-fidelity simulations

Low-fidelity 600, High-fidelity 20, degree 4

05 0.8 T T T T T 0.6
mwve =3
045 07 FT =1
s 04 s 5 05
H T 2
E om s 5 o4
03 2
£ & ]
2 0.25 8 8 03
z oz z z
8 o 8 g 02
2 8 8
a a o
0.1 041
0.05
[ 0
71 72 73 74 75 76 77 78 79 8 8.1 8 8.2 8.4 86 8.8 9 9.2 9.4 96 245 25 255 26 265 27 275 28 28 29
Expected Value Expected Value Expected Value
Low-fidelity 600, High-fidelity 160, degree 6 Low-fidelity 600, High-fidelity 80, degree 4 Low-fidelity 600, High-fidelity 40, degree 4
0.4 T T T T T T 1 T T T T
MwmMe 0 0o L MLMC 23 |
035 - FT = ; FTEe=
5 § £
3 g 08 B
e € <
[ < 0.25 - z
z g 7 g
§ g o2l s
=] 8 ) 8
£ 2 o15f Z
8 |
g 8 o1f g
a a o
0.05 -
0
72 73 74 75 7.6 77 78 79 8 8.2 84 8.6 8.8 9 9.2 9.4 9.6 9.8 25 2.55 26 265 27 275 28 285 29
Expected Value Expected Value Expected Value

Abrupt threshold in CS / FFT: more important to ensure sufficient recovery than estimate smooth rate that follows



Sandia
Multilevel-multifidelity expansion methods — beyond rate estimation i ol
Algorithm 1: RIP sampling for multilevel sparse recovery

Address/avoid abrupt transition by ensuring sufficient sample density for accurate recovery

Restricted isometry property (RIP) based on sparsity s, cardinality C, mutual coherence L:

N; > s logg(,sz) L ,fog(CE) Jakeman, Narayan, and Zhou, 2016

Basic Algorithm:
« Starting from a pilot sample, shape profile based on observed sparsity & iterate until convergence
* In practice, RIP sampling levels are quite conservative - enforce a constraint on the profile

N; < 7Cy| for some collocation ratio 7

Mean Standard Deviation
0.12908 - ———— - ————— 0.0137
0.12906 | e 7
0.12904 | i ’Li:k";fﬁﬂ g8 = 0.01365 |-
0.12902 | ]
0129 l S 00136 %
S 0.12898 . s '
] >
= 0.12896 | . (]
0.12894 | i & 0.01355 |-
0.12892 | .
0.1289 | ; . 0.0135 1
0.12888 |- 1
*
0.12886 ' et 5 nval ' e 0.01345 : et ¢ 0l : .
10 100 1000 10 100 1000
Eqg. Number of HF Eq. Number of HF

Challenge: feedback not well controlled for compressible fns - more samples allow accurate recovery of more terms



Sandia
Multilevel-multifidelity expansion methods — beyond rate estimation i R
Algorithm 2. Greedy ML PCE with generalized sparse grids

GSG for a single level / fidelity:

1. Initialization: Starting from reference grid
(often w = 0 grid), define active index sets using Smolyak sparse grid
admissible forward neighbors of all old index sets.

2. Trial set evaluation: For each trial index set,
evaluate tensor grid, form tensor expansion, update
combinatorial coefficients, and combine with
reference expansion. Perform necessary
bookkeeping to allow efficient restoration.

3. Trial set selection: Select trial index set that E
induces largest change in statistical QOI. ! o

4. Update sets: If largest change > tolerance, then
promote selected trial set from active to old and . ; .
compute new admissible active sets; return to 2. - as
If tolerance is satisfied, advance to step 5. |

5. Finalization: Promote all remaining active sets to
old set, update combinatorial coefficients, and
perform final combination of tensor expansions to
arrive at final result for statistical QOI.




Multilevel-multifidelity expansion methods: mh m,a,,;m.%
Greedy ML PCE: CS + uniform basis refinement

107 107
=—B— PCE CS single level —B— PCE CS single level
A= MF PCE CS 2 level p = 10 A= MF PCE CS 2 level p = 10
=ML PCE CS 5 levelk =1 =ML PCE CS 5 levelk =1
(? +#4A=MLPCECS5levelk=1.5 =ML PCE CS5levelk =1.5
w0l T '>-~MLPCECS5levelx=2 ] 107 '>=MLPCECS5levelx=2 |]
<] ~MLPCECS5levelx =3 <] =MLPCECS5Ilevelx =3
%) = Greedy ML PCE CS 5 level ) = Greedy ML PCE CS 5 level
107 {1 810" ;
:
w S
= kS
3 %
= [a]
-5 e —!
10°F 1 g10° -
—HB— PCE CS single level
. A= MF PCE CS 2 level p = 10
~MLPCECS5levelk=1
~MLPCECS5levelx=15
-6 - <>~ML PCE CS 5 level k =2
10 3 10_6 vq-Mchscsm:Zu:s
. 40 - Greedy ML PCE CS 5 level |]
e
107 Lt - > 3 4 107 1
10 10 10 10 10
Equivalent HF Simulations \ . v
Final sample profiles
~A'~‘<‘ﬁ>
Conv Tol Ny N | Ng | Ny g
l.e-1 198 9 9

le-2 | 644 | 198 9
l.e-3 | 1802 | 644 9
l.e-4 | 4505 | 1802 | 50

Equivalent HF Simulations

o O O o




Multilevel-multifidelity expansion methods mh ?:ﬁm
Greedy ML PCE: overlay all cases & references

107 T T T T T 107 T T T T T
x PCE CS single level & x PCE CS single level
¥ 'MF PCE CS 2 level p = 10 3 ' MF PCE CS 2 levelp =10
1072 L -:X—‘MLPCECSSIeveIK:1 4 1070 M. =X/~ MLPCECS5levelk =1 4
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CS approaches have greater flexibility at low sample levels (lower initialization cost), but
accuracy currently limited by numerical issues for large systems allocated at coarse levels



Emulator-based MCMC rh) teima

« Emulators eliminate direct interface of MCMC with expensive HF models
» Polynomial chaos expansion (PCE), Stochastic collocation (SC), Gaussian process (GP)

GPs/GEK: pivoted Cholesky

Kriging & GEK predictions of Herbie from a nested LHS design
Sample Design Kriging: |error| GEK: [error]| lerror|
0.35

- R, W, 1 e

J
=0

Polynomial chaos: spectral projection w/ orthogonal poly basis

Stochastic collocation: form interpolants for known coeffs
* Global / local, nodal / hierarchical, value-based / deriv-enhanced

= —
P o §— &k e
rRO=Y rLe [B=llg—g
le k;; et :
. Candidate basis terms (P)
= —CO_
0 F(x(N)] 1 o (x(M)  dp(x()) ... dp(x(M)] . (1] § -
I f(x(@) 1 & (x@)  dy(x®) ... dp(x@) c; €2 Lol
e ; : : : : . : 1 | 2 3 o b1 K
2 f(x(M) 1 o (xM) d(xM) ... dp(xM] | EN - Compressed se £l B é
o] - - - - |Cp - I P, fbaiaeown SR e ﬁ: 1
e) _ _ - . with basis adaptation =i £ &:
Over-determined (LS), under-determined (CS), Orthog. least interp. —

* For this milestone, we employ the ML PCE emulator from the forward UQ study




Exploit structure provided by emulator () &=

Form accurate proposal density using Hessian data

Laboratories

* Analytic derivatives of PCE/SC/GP - Hessian of misfit > proposal covariance

palE) = exp |~ (F®) -0 T3 (7€) ~a)

VeM(E) = Vef(€) Tq' (f(€)—d)

VEM(E) = Vef(®) Tq' Vef (&) + VEF(E)- I3 () )]

1

Gaussian Likelihood

—log[p(d|§)] = %(f(?’;) —ad)"r3!(f(E)—d) = M(E) Negative Log Likelihood = Misfit

Gradient of Misfit

Hessian of Misfit

Gauss-Newton approximate Hessian (if only emulator grads)

Use MVN proposal with covariance defined by inverse Hessian (Laplace approx) of:

» Negative log posterior, augmenting misfit with log prior

—logmy(§) = M(5) —logmo(S)

» Hessian of negative log prior results in a regularization with many priors: normal, beta, gamma

* No effect in other cases: uniform, exponential, triangular, histogram



Multilevel emulator-based Bayesian inference: i) feiw
Model Problem (Rosenbrock)

Greedy ML PCE expansion from forward UQ - efficient MCMC for data assimilation

» Define simulation-to-experiment or simulation-to-reference-simulation misfit function

* Markov Chain Monte Carlo (MCMC) performed on emulator, leveraging emulator structure
* Pre-solve for MAP (maximum a posteriori probability) point: full Newton min of —log(posterior)
* Accurate MCMC proposal mitigates sample rejection in high D

* In 10D, 98% rejection rate reduced to 30%
» Posterior Hessian-based proposal balances likelihood and prior, performing better than either alone

Weak prior ~ N(0,1) Medium prior ~ N(0,.25) Strong prior ~ N(0,.1)
Hessian of —log(my) is Hessian of —log(m,): L and =, Hessian of —log(my) is
likelihood-dominated contributions are ~ balanced prior-dominated

MCMC posterior samplesin , Hessian updatesin , insets plot rejection rate vs. Hessian-preconditioned MCMC cycle for 3 proposals



S5IAM J. So1. COMPUT. () 2005 Scciety for Industrial and Applied Mathematics
Vol. 26, No. 6, pp. 18111837

[ ] [ [ ] e e
Multigrid optimization
MODEL PROBLEMS FOR THE MULTIGRID OPTIMIZATION OF
(M G / 0 pt) SYSTEMS GOVERNED BY DIFFERENTIAL EQUATIONS*

ROBERT MICHAEL LEWIS! AND STEPHEN G. NASH#

SIAM REVIEW (© 2009 Soctety for Industrial and Applied Mathematics|
Vol 51, No. 2. pp. 361-395

As in multilevel Monte Carlo, exploit
Multigrid Methods for PDE

discretization hierarchy within optimization/OUU: Ofitlindzation?
« Apply multigrid V cycle to hierarchy of optimal solns Al Bora!
« Distinct from applying multigrid to KKT system s
» Distinct from successive refinement of optimal solns
(employs bi-directional prolongation / restriction)

Recursively uses coarse resolution Algorithm 1 Multigrid Optimization
problems to generate search directions 1: procedure MGOPT(k, (¥, £ (x), v(k)
- - 2: if k=0 th
for finer-resolution solves 3 a0 —agming 00— [v] x
* Line search used to compute fine-resolution 4: return x¥
iterate lfror_n coarse-resolution search direction - e'sepmia"y solve: x{*) = argmin,  F(x) — [v9] 7 x
* Globalization enables provable convergence i 1) = (oW
Dive 1) vf(k—n(xilik—l)) _R [fok)(xfk))]
Special case of / component within S | A5 —eeE 1, r s, o)
. 10: = ™
generalized model management framework e=P et -]
: , 11: x9 = X9 4 e Return
* Requires effective subproblem solver to 12- R
generate a new iterate at a particular level }3 ‘ende;gojedm
« Leverages 15t and (quasi, finite diff.) 2n9- '

order additive & combined corrections




MG/Opt for Multilevel

Coarse and fine discretizations (50, 100 pts)
for LF model form

Adjoint design gradients

Prolongation/restriction via Lagrange interp.
MATLAB Optimization Solvers (2)

Grid scalings (1D and 2D diffusion)

Solver cost scalings (linear, quadratic, cubic)

Inner Optimization — Quasi-Newton w/ BFGS

T T
1 Level —— Actual fine—grid evaluations
- 2 Level —— Actual fine—grid evaluations
———— 2 Level —- Equivalent fine-grid evaluations (linear)
— — — 2 Level —- Equivalent fine-grid evaluations (quadratic)
— - — 2 Level —— Equivalent fine—grid evaluations (cubic)

2D diffusion

50

Fine-grid function evaluations
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Inner Optimization -— Quasi-Newton w/ BFGS
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. Inner Optimization — Trust-Region Interior-Reflective Newton Method
10 T T T T T
1 Level — Actual fine—grid evaluations
2 Level —— Actual fine—grid evaluations
10™ ——— 2 Level —— Equivalent fine-grid evaluations (linear) i
— — — 2 Level — Equivalent fine-grid evaluations (quadratic)
— - — 2 Level —— Equivalent fine—grid evaluations (cubic)
2 . 5
107 1D diffusion ;
10° E
107 1
107} 1
6 \
10 F \ . \ 4
L oA
" . 5 \»J \
! \
1 0'7 | | \ -
3 i | \ \
1 0-5 I 1 I 1 1
0 50 100 150 200 250 300

Fine—grid function evaluations




o . Sandia
Recursive Trust Region Model Management ) feia

Algorithm 9 Recursive Trust Region Updating
procedure RECTR(r = 1 :en, x7, xf, f..(x))
for r = len to 1 (bottom up: low to high || coarse to fine) do
if State, = new candidate x”, then Repeat until convergence on high-fidelity model
Test for new center: TR(x, x, fltl(x), fio ()
end if
if State, = new center x. then : T
Compute f-1(x7) High-Fidelity:
Compute CORRECTION(x, R, 7~ '(x%), f(x%)) i
if Converged(x’, fil(x0), L™, U™!) then OHM
x7! = 7 (new candidate) ]
end if Medium-Fidelity: | 2 |
end if
end for
for r = 1 to len (top down: high to low || fine to coarse) do
if State, = new center x7. then A
Recompute CORRECTION(x”, R, £ '(a%), f*(x")) Low-Fidelity: ——1
end if
if parent corrected then
Recur updated corrections for f7,(x7)
end if
Reset State,
end for
end procedure

Monschke and E., “Multilevel-Multifidelity Acceleration of PDE-Constrained Optimization,” AIAA SciTech 2017.



90
SEQUOIA: DUU w/ Recursive Trust Region Model Management Ah) Neoora

Laboratories

Algorithm 9 Recursive Trust Region Updating
procedure RECTR(r = 1 :en, x[, X[, f7... (X))
for r = len to 1 (bottom up: low to high || coarse to fine) do
if State, = new candidate x’, then
Test for new center: TR(x[, x7, f;},}(x), Sfeorr(X))
end if
if State, = new center x. then

UCAV Nozzle Robust Design (Aero, Structural, Thermal)

Compute f™'(x7) .
Compute CORRECTION(Y., R, f~'(x%), f7(x0)) mxm Var(F (x, & ))
if Converged(xl, fimt(x2), L', U™') then
S = % e candicdete) + RMM subject to E[M(x)] < M,
en 2 . .
adit LF: L1 sparse gl’l.d w/ Euler COARSE E[F (x,&)] > Freq
end for » HF: L1 sparse grid w/ Euler MEDIUM
for r = 1 to len (top down: high to low || fine to coarse) do - - E[IITOII] < T 0
if State, = new center x/ then » 1storder consistent w/ FD gradients = ‘max,
r r—1
PR s i G P : + Converged in 5 iterations using filter E["SO(UO(X: f))”] <1
if parent corrected then 0 method Ax < b
R ted tions for f7,. (x7) < ) ) . =
a4 i;ecurupda corrections for f7, : - Design variables single tgmperatute T
Reset State, UCAV . . constraint for entire = s
e Nozzle » 21 B-spline & 8 thickness geometry
€nd procediare » Random variables von Mises stress
» 7 total used as single
Input Variables | Design Variables | | Random Variables | failure criterion
interior wall shape (B-spline parameterization)
= I )| thermal layer thickness » baffle geometry .
load layer thickness » stringer geometry Base“ne Robust
»| density
»] elastic modulus
+ [ Material Properties »| Poisson ratio
»| thermal conductivity
»] thermal expansion coef.

Ga » | inlet sta tion t 1 % i . . .
 [Inlet Cond'UOHSF{ s « Leverage multiple (deterministic) simulation
fidelities / discretizations
» Leverage multiple (stochastic) UQ approaches /

atmospheric temperature k
« | Environment » | atmospheric pressure reSOIUtlonS
» | heat transfer coef. to environment

~




DUU of Scramjet-Inspired Model Problem: ) 2=,
MLMC (UQ level) + noise-tolerant DFO informed by std error estimates abortores

@ Objective: Pressure loss (inlet outlet)

: 1 ; .
pioss = Pl;n__ Po(y)dy /Pgn
Ly out

@ Constraint: Average temperature along the cavity centerline

1 /
== T(z)dz
L, L.
@ OUU formulation:

Supersonic Duct e Ploss (", @) = min Elpioss(, g)]
COARSE solution (30 s) Vs MEDIUM resolution (300 s) 20380403 st. 593 < E[T,,, (%, §)]—30[Te (2, §)]

® Design: & = [hb, It,ltp,lb,zb]T @ Uncertain: § = [po,in> To,in> Min]" Multilevel error estimators for E, V and v/V.

Variance s :

0.5<hb<25 Po,in ~ N (1.48¢€6, (7.4e3)2) P o

7.5 <lt <11.5 Ty in ~ N(1550,7.752) Vsl = g’VlP?HVlPL]%Cov(P?- PE1)

, sy 1 2

2.5 <lp<1b M, ~ N(2.51,0.01255%) where  V[PZ] =M(u4.f—V[Oe]2)+mVIOA2

17.5 <Ib < 20.5
79.5 <zb < 85.5

Standard deviation |/s2, :
Figure: Design parameters

SE(spy) ~
2\/s%

Stochastic MC OPTIMIZATION - Results tOCfESUC MLMC OPT|M|ZAT’ON Results Stochastic MLPCE OPTIMIZATION - Results

Objective Constraint °,_JE_CK'Ve Constraint
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Evaluations
s Evaluations == Evaluations cal 18 o pmization Fibi Evaluations
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&
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Figure: Initial design Figure: Final design Figure: Initial design Figure: Final design Figure: Initial design Figure: Final design

Each ML analysis 3x less expensive; MLPCE converges in ~10 iterations



Summary Remarks (ML-MF Opt/OUU) (),

Multilevel-Multifidelity Opt / OUU: move beyond common bi-fidelity

* By exploiting richer model ensemble, computational effort can be pushed down the
hierarchy, supporting case of only a handful of HF fine-grid evaluations

* Recursive TRMM looks promising relative to current multilevel approaches (MG/Opt)

* Multiple levels and multiple forms in simulation, UQ, or both
—————————————————————————————————————————————————————————————————————————————————————————————————————————————————————



