Unclassified Unlimited Release

Christian R. Trott, - Center for Computing Research
Sandia National Laboratories/NM
U.S. DEPARTRSINT OF \ / Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
m m Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

SAND2019-3111 C

~ Cost Of Software i

10 LOC / hour ~ 20k LOC / year

= Optimistic estimate: 10% of an application needs to get rewritten for adoption
of Shared Memory Parallel Programming Model

= Typical Apps: 300k — 600k Lines
= Uintah: 500k, QMCPack: 400k, LAMMPS: 600k; QuantumEspresso: 400k
= Typical App Port thus 2-3 Man-Years

= Sandia maintains a couple dozen of those
= lLarge Scientific Libraries
= E3SM: 1,000k Lines x 10% => 5 Man-Years
= Trilinos: 4,000k Lines x 10% => 20 Man-Years

Fa

sea=1mm
dx 240 x 160
T=450K (Jot)

=
Applications Libraries Frameworks Laborsiories

T = 1000 K (Cross-Fiow)

00 (Jet)
00 (Cross-Fiow)

. SNL LAMMPS uT Uinta_h
SNL NALU Molecular Dynamics Combustion

Wind Turbine CFD ORNL Raptor

arge Eddy Sim

I

SNL Astra
' ARM Architecture

ORNL Summit
IBM Power9 / NVIDIA Volta

LANL/SNL Trinity ANL Aurora
Intel Haswell / Intel KNL Intel Xeon CPUs + Intel Xe Accelerators

" Applications Libraries

t=0 t=40ps

UT Uintah
Combustion

SNL LAMMPS
Molecular Dynamics

SNL NALU
Wind Turbine CFD

Kokkos

ORNL Summit

IBM Power9 / NVIDIA Volta LANL/SNL Tr|n|ty ‘ ANL Aurora
Intel Haswell / Intel KNL

Frameworks

Intel Xeon CPUs + Intel Xe Accelerators

wd=1mm
dx24dx 16d

T =450 K (Jet)
T = 1000 K (Cross-Fiow)
00 (Jet)

00 (Cross-Fiow)

ORNL Raptor
Large Eddy Sim

SNL Astra
ARM Architecture

~ Outline (!

= The Kokkos EcoSystem
= Abstractions and Capabilities
= CG-Solve as an Example
= Kokkos Kernels & Tools
= Kokkos Applications
= Quo vadis?
= C++ Standard Interactions
= Properties for a more descriptive programming model
= Enhanced asynchronous execution

Ne

What is Kokkos?)

A C++ Programming Model for Performance Portability

= |mplemented as a template library on top of CUDA, OpenMP, ROCm, ...
= Aims to be descriptive not prescriptive
= Aligns with developments in the C++ standard
Expanding solution for common needs of modern science/engineering codes
= Math libraries based on Kokkos
= Tools which allow inside into Kokkos
It is Open Source

= Maintained and developed at https://github.com/kokkos

It has many users at wide range of institutions.

~ Kokkos EcoSystem

‘- 8\

Kokkos
Tools

4 N\ |

Kokkos EcoSystem

Kokkos Kernels

Kokkos Core

[

Kokkos Remote Spaces

~ Kokkos Development Team &
Ckokkos

P Sandia
» Los Alamos National AI’gOﬂ ne °
NATIONAL LABORATORY I.aboratories NATIONAL LABORATORY

EST.1943

| BERKELEY LAB <¥,® CSCS

%OAK RIDGE B}

National Laboratory

Kokkos Core: C.R. Trott, D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles, D. Hollman, V. Dang,
H. Finkel, N. Liber, D. Lebrun-Grandie, B. Turcksin, J. Wilke, D. Arndt
former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova

Kokkos Kernels: S. Rajamanickam, N. Ellingwood, K. Kim, C.R. Trott, V. Dang, L. Berger, J. Wilke, W. McLendon
Kokkos Tools: D. Poliakoff, S. Haommond, C.R. Trott, D. Ibanez, S. Moore
Kokkos Support: C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff, and all of the above as needed

former: H.C. Edwards, D. Labreche, Fernanda Foertter

” Kokkos Core Abstractions

Parallel Execution

Execution Spaces (“Where”)

- HBM, DDR, Non-Volatile, Scratch - CPU, GPU, Executor Mechanism
Execution Patterns

- Row/Column-Maijor, Tiled, Strided - parallel_for/reduce/scan, task-spawn

Execution Policies (“How”)

- Streaming, Atomic, Restrict - Range, Team, Task-Graph

~ Kokkos Core Capabilities o
L

Parallel Loops parallel_for(N, KOKKOS_LAMBDA (inti){...BODY...});
Parallel Reduction parallel_reduce(RangePolicy<ExecSpace>(0,N), KOKKOS_LAMBDA (int i, double& upd) {
...BODY...
upd += ...
}, Sum<>(result));
Tightly Nested parallel_for(MDRangePolicy<Rank<3> > ({0,0,0},{N1,N2,N3},{T1,T2,T3},
Loops KOKKOS_LAMBDA (inti, intj, int k) {...BODY...});

Non-Tightly Nested parallel_for(TeamPolicy<Schedule<Dynamic>>(N, TS), KOKKOS_LAMBDA (Team team) {
Loops ... COMMON CODE 1 ...

parallel_for(TeamThreadRange(team, M(N)), [&] (intj) { ... INNER BODY... });

... COMMON CODE 2 ...

N

Task Dag task_spawn(TaskTeam(scheduler, priority), KOKKOS_LAMBDA (Team team){ ... BODY });
Data Allocation View<double**, Layout, MemSpace> a(“A”,N,M);
Data Transfer deep_copy(a,b);
Atomics atomic_add(&a(i],5.0); View<double*,MemoryTraits<AtomicAccess>> a(); a(i)+=5.0;
Exec Spaces Serial, Threads, OpenMP, Cuda, HPX (experimental), ROCm (experimental)
— =

” More Kokkos Capabilities M

MemoryPool m

parallel_scan w

LayoutRight StaticWorkGraph

m kokkos malloc el A e
m ¢ LayoutStrided
ScratchSpace ScratchSpace ProfilingHooks

= Example: Conjugent Gradient Solver @i,

= Simple lterative Linear Solver
= For example used in MiniFE
= Uses only three math operations:
= Vector addition (AXPBY)
= Dot product (DOT)
= Sparse Matrix Vector multiply (SPMV)
= Data management with Kokkos Views:

View<double*,HostSpace,MemoryTraits<Unmanaged> > h_x(x_in, nrows);

View<double*> x("x",nrows);
deep_copy(x,h_x);

” CG Solve: The AXPBY

= Simple data parallel loop: Kokkos::parallel_for
= Easy to express in most programming models
= Bandwidth bound

= Serial Implementation:

void axpby(int n, double* z, double alpha, const double* x,
double beta, const double* y) {
for(int i=0; i<n; i++)
) zZ[i] = alpha*x[i] + beta*y[i];

Loop Body

= Kokkos Implementation:

void axpby(int n, V|ew<dou ble alpha, View<const do¢> X;
e P w<const double*> y) {

[parallel for("AXpB e “{i (const |f|t i){]
(i) = alpha*x(i) + beta’ *V(0);

}}),

 CG Solve: The Dot Product i)

= Simple data parallel loop with reduction: Kokkos::parallel reduce

= Non trivial in CUDA due to lack of built-in reduction support
= Bandwidth bound
= Serial Implementation:

double dot(int n, const double* x, const double* y) {
double sum = 0.0;
for(int i=0; i<n; i++)
sum += x[iI*y[i];

return sum;
} [Iteration Index + Thread-Local Red. Varible]
= Kokkos Implementation:
double dot(int n, View<cons e*> x, View<const double*> y) {
double x_dot y = 0.0;

barallel_reduce("Dot"Jn, KOKKOS_LAMBDA (const intli.double& sum) {
sum += x[iI*y[i];

}, x_dot_y);

return x_dot_y;

= CG Solve: Sparse Matrix Vector Multiply @,

= Loop over rows
= Dot product of matrix row with a vector
= Example of Non-Tightly nested loops

= Random access on the vector (Texture fetch on GPUs)
Outer loop over matrix rows J

void SPMV(int nrows, cgnsidg
const double* s. double* y, const double* x) {
for(int row=0; row<nrows; ++row) {
double sum =0.0;

Int row_start=A_row_offsets[row]; Inner dot product row x vector J

infrow end=A_row offsets[row+1]:
far(int i=row_start; i<row_end; ++i) {
um += A_vals[i]*x[A_cols][i]];

}

_row_offsets, const int* A_cols,

y[row] = sum;
}
}

= CG Solve: Sparse Matrix Vector Multiply Mg,

void SPMV(int nrows, View<const int*> A_row_offsets,
View<const int*> A_cols, View<const double*> A_vals,
View<double*>y
View{const double*, MemoryTraits< RandomAccess>> x) {]

ﬂ Enable Texture Fetch on x]

/I Performance heuristic to figure out how many rows to give to a team
int rows_per_team = get_row_chunking(A_row_offsets);

((nrows+rows_per_team-1)/rows_per_team,AUTO,8),

arallel_for("SPMV:Hierarchy", TeamPolicy< Schedule< Static > >]
KOKKOS_LAMBDA (const TeamPolicy<>:]

ber_type& team) {

const int first_row = team.league_rank()*rows
const int last_row = first_row+rows_per_team<n

r_team;
s? first_row+rows_per_team : nrows;

p{rallel_for(TeamThreadRange(team,ﬁrst_row,Iast_),[&] (const int row)}
const Nt row_start=A_row_ofiseisS gk

const int row_length=A_row_offsets[

double y_row;
pafallel_reduce(ThreadVectorRange(team,row_len
sum += A_vals(i+row_start)*x(A_cols(i+row_start));
}, Y _row):
y(row) =y_row;

tint i, double& sum){]

D
}})i [_[Row x Vector dot product]

"CG Solve: Performance i

" Comparison with other N NVIDIA P100 / IBM Power8
Programming Models :

= Straight forward “
implementation of kernels S

" OpenMP 4.5 is immature at Cmwmm swewn e s g wan

this point

Intel KNL 7250

= Two problem sizes: &
100x100x100 and
200x200x200 elements

w
o

Performance [Gflop/s]

10

AXPBY-100 AXPBY-200 DOT-100 DOT-200 SPMV-100 SPMV-200
M OpenACC M Kokkos ™ OpenMP TBB (Flat) M TBB (Hierarchical)

ﬁ
S

~ Tasking Example Code G

template< typename Scheduler >
struct FibonacciTask {
using sched_type = Scheduler;
using future_type = BasicFuture< long, Scheduler >;
future_type fib_ml, fib_m2;
const long n;

Scheduler obtained from arguments: task could be a lambda]

Spawn child tasks]

KOKKOS_INLINE_FUNCTION
TestFib(const value_type arg_n)

. b LY, FIB_M2CY, nl aran) I} Make compound dependency]

KOKKOS_INLINE_FUNCTION
void operator() (typename sched_typ
(auto& sched = member.scheduler();
if (n<2) {result =n; }
else if[('fib_m2.is_null

e e e & pesuls Respawn task with new deps]

result = fib_ml O + fib_m2.get(Q; }

else {
T1b_m2 = task_spawn(TaskSingle , TaskPriori onacciTask(C n - 2));
fib_ml = task_spawn(TasksSi sched), FibonacciTask 1));

e

BasicFuture<void, Scheduler> dep[] = { fib_ml, fi
—all(dep, 2);

BasicFuture<void, Scheduler> fib_all = sched. If dependenCIeS are not NULL this is ISPl]

if C 'fib_m2.is_nul1(Q) && !'fib_ml.i 10 && !fib_all.is_nul1Q)) {
(respawn(this, fib_all, TaskPriority::High);)
} else { Kokkos::abort("TestFib insufficient memory"); }

}
}
S ———S—li—i—éé————NnNAA—A—mAA—m——M—M—m—SM——————MiMM—lhh__—— —nn——~—~a~—a——n——nN—nNnN————

F

Kokkos Kernels ()

= BLAS, Sparse and Graph Kernels on top of Kokkos and its View abstraction
= Scalar type agnostic, e.g. works for any types with math operators
= Layout and Memory Space aware

= Can call vendor libraries when available

= View have all their size and stride information => Interface is simpler

// BLAS // Kokkos Kernels
int M,N,K,LDA,LDB; double alpha, beta; double *A, *B, *C; double alpha, beta; View<double**> A,B,C;
dgemm('N"','N',M,N,K,alpha,A,LDA,B,LDB,beta,C,LDC); gemm('N','N',alpha,A,B,beta,C);

= Interface to call Kokkos Kernels at the teams level (e.g. in each CUDA-Block)

parallel_for("NestedBLAS", TeamPolicy<>(N,AUTO), KOKKOS_LAMBDA (const team_handle_t& team_handle) {
// Allocate A, x and y in scratch memory (e.g. CUDA shared memory)
// call BLAS using parallelism in this team (e.g. CUDA block)
gemv(team_handle, 'N',alpha,A,x,beta,y)

¥

~Kokkos-Tools Profiling & Debugging)

= Performance tuning requires insight, but tools are different on each platform
= KokkosTools: Provide common set of basic tools + hooks for 3rd party tools
= One common issue abstraction layers obfuscate profiler output
= Kokkos hooks for passing names on
= Provide Kernel, Allocation and Region |ekiis it e e e e

& Analysis Target Analysis Type | B Collection Log | | ¥l Summary
e NO need to recomplle Grouping: [Frame Domain / Frame [/ Function / Call Stack

. CPU Tir

u U SeS ru ntl m e h O O kS SemeSEmain ;EZLE £ Eall Effective Time by Utilization
. . [die [l Poor [JOk [llldeal [Over |Imbala
= Setvia env variable ~ParallelFor.AXPB s7ces I 05
b1 1.615s [0.17
b3 1593 [0.18
b2 1.560s [1 0.21
D[No frame domain - Qutside any frame] 0,0795| 1.34
PParallelReduce. Dot 1.952s [N 0.53
PParallelFor.Z4mainEUIRKIE_ 2.168s [0.17

~ DOE Machine Announcements i

= Now publicly announced that DOE is buying both AMD and Intel GPUs
= Argonne: Cray with Intel Xeon + Intel Xe Compute
= ORNL: Cray with AMD CPUs + AMD GPUs
= NERSC: Cray with AMD CPUs + NVIDIA GPUs

= Have been planning for this eventuality:

= Kokkos ECP project extended and refocused to include developers at
Argonne, Oak Ridge, and Lawrence Berkeley - staffing is in place

= HIP backend for AMD: main development at ORNL
= The current ROCm backend is based on a compiler which is now deprecated ...

= SYCL for Intel: main development at ANL
= OpenMPTarget for AMD, Intel and NVIDIA, lead at Sandia

~ Supporting Aurora T

= Two backend plans

= SYCL: will need Intel proposed extensions
= ANL will lead development

= OpenMPTarget: OpenMP 5.x based
= NERSC/SNL will lead development

= Timeline:
= Q2 FY20: Initial capabilities, enough for many miniApps
= Q4 FY20: Functional backends
= FY21: Production support

~ OpenMPTarget Backend i

= Started work on this more than 2 years ago

= Hindered by compiler bugs: 15 min work on backend, 6 hours work on
compiler bug reproducer, 6 months wait for fix, repeat

= With Clang 9 first time this isn’t the case
= Got some capabilities:

= RangePolicy: parallel_for, parallel_reduce

= MDRangePolicy: parallel for

= \iews

~ OpenMPTarget Issues o

= Virtual Functions

= Technically not supported: need to discuss with compiler vendors
= TeamPolicy:

= Scratch memory: Not clear whether this is relevant for Aurora

= Handling of SIMD? — In OpenMP right now inconsistent across vendors:
= Does it do anything? Are vector lanes redundantly executing?

parallel_for("K",TeamPolicy<>(N,AUTO,8), #pragma omp teams distribute target
[=] (team_t& team) { for(int i=0; i<N; i++) {
n int i = team.league_rank(); 2l #pragma omp parallel
O int t = team.team_rank(Q); E {
X parallel_for(TeamThreadRange(team,M), C int t = omp_thread_num(Q);
X [&] Cint j) { D #pragma omp for
Q parallel_for(ThreadvectorRange(team,K), (@} forCint j=0; j<M; j++) {
[&] Cint k) { .. }); O #pragma omp simd
B; for(int k=0; k<K; k++) { ... }
¥s 11}

” OpenMPTarget Issues | ®

= Arbitrary reductions

= Stateful reducers are cumbersome (need to replace the value type with
some wrapper, which contains the stateful reducer)

= Can we get the equivalent of CudaSpace, CudaUVMSpace, and
CudaHostPinnedSpace?

= Not clear that we can currently do that in OpenMP, problem for Trilinos
which currently relies on page migratable memory ...

= Equivalent of Stream support, or at least asynchronous dispatch?
= Arbitrary Atomic Operations
= Need to implement our own most likely

~ SYCL Backend i

= Started recently both with Codeplays and Intels compiler
= Not much working yet
= RangePolicy: parallel_for works with Codeplay

= Looking into some of the problems around restrictions of SYCL such as kernel
naming

= We likely need to rely on Intel proposed extensions

= A good chunk of which are already implemented!

~ SYCL Issues | Tl

= Kernel naming and lambdas
= Can not name a kernel implicitly templated on a lambda
= Relying on Intel not requiring names

= Data management

= SYCL auto data management is not in line with general Kokkos data
management philosophy

= Could be workable, would require somewhat nasty internal plumbing

= Current plan: rely on Intel proposed extensions for raw allocations and
deep_copy

~ SYCL Issues I i

= Virtual functions not supported
= Reductions:

= Need to implement our own: not sure how to do efficient ones need
shuffle operations, and scratch memory

= Arbitrary atomics

= Need to implement our own

~ RAJA will be there too! i

Expect RAJA to be working on A21
OpenMP target based backend is largely functional on other platforms

= Will work as part of ECP RAJA/Kokkos project to make sure that this works
with Intel compiler

SYCL backend is getting explored
= Will need Intel extensions for good usability

= Production support a question of needs by users, and whether OpenMP
target backend will work well enough

If you are using/want to use RAJA on A21 let us know

= Work by Argonne members of RAJA/Kokkos will to a large degree be
guided by user requests.

~ Supporting Aurora T

OpenMP Target Offload underway

= Need to have some discussions on details of how to implement standard
SYCL just begun

= Problems in the current standard

= BUT: Intel is addressing them
= We expect both backends will be viable
= Major concerns are already known to Intel

= A good chunk are already addressed:
= Standalone allocations
= Kernel Naming

~ Kokkos Based Projects ®

= Production Code Running Real Analysis Today

= We got about 12 or so.
= Production Code or Library committed to using Kokkos and actively porting
= Somewhere around 35

= Packages In Large Collections (e.g. Tpetra, MuelLu in Trilinos) committed to
using Kokkos and actively porting

= Somewhere around 65

= Counting also proxy-apps and projects which are evaluating Kokkos (e.g.
projects who attended boot camps and trainings).

= Estimate 100-150 packages.

™ Some Kokkos Users - TR

. Pacific Northwest
@ Sandia NATIONAL LABORATORY m

A Plat}lonal _
7 aboratories
05 Mamos ARL r'

EST.1943

% OAK RIDGE Argonne 'a Y STATE
National Laboratory NATIONAL LABORATORY <&
LgsggggJ <@,® CsCs
THE LABORATORY
U UNIVERSITY
OF UTAH . LT
@) JULICH

. Forschungszentrum TECHI\“SCHE
Max-Planck-Institut UNIVERSITAT
MUNCHEN

fiir Plasmaphysik f‘\| A Rﬁnsselaﬁr

BERKELEY LAB

= Sparta: Production Simulation at Scale @

= Stochastic PArallel Rarefied-gas Time-
accurate Analyzer SPARTA Weak Scaling
= A direct simulation Monte Carlo code

— 450 gg— —={ —]
= Developers: Steve Plimpton, Stan Moore, & 400
Michael Gallis § o
= Only code to have run on all of Trinity éiig‘ —
= 3 Trillion particle simulation using both ;é EEF —8— :Ao
HSW and KNL partition in a single MPl <
run (~20k nodes, ~1M cores) s 6 m er s am
= Benchmarked on 16k GPUs on Sierra —S=EosEell =R=RRL —EiRe

= Production runs now at 5k GPUs
= Co-Designed Kokkos::ScatterView

~ Uintah ®

= System wide many task framework from Reverse Monte Carlo
University of Utah led by Martin Berzins Ray Tracing 643 cells

= Multiple applications for combustion/radiation 16
simulation = 14

= Structured AMR Mesh calculations
= Prior code existed for CPUs and GPUs
= Kokkos unifies implementation

6
. . 4
= Improved performance due to constraints in = 5 I
Kokkos which encourage better coding practices 0
CPU GPU KNL

m Original ®Kokkos

Time per Timeste

Questions: Dan Sunderlan

" LAM M PS Questions: Stan Moore @

Widely used Molecular Dynamics

Architecture Comparison

Simulations package Example in.reaxc.tatb /
= Focused on Material Physics 196k atoms / 100 steps
= QOver 500 physics modules 200
= Kokkos covers growing subset of those -
= REAX s an important but very complex gmo
potential T
= USER-REAXC (Vanilla) more than " i . I I I
10,000 LOC Q\cﬁ §,® %-\3/ v{_@ QQQ S
= Kokkos version ~6,000 LOC %Jr\é@ \Q)@QO \§§ Q\Q\ @Q\V @Q\v
= L in comparison: 200LOC Fo W

= Used for shock simulations = verilla = Koldos

4
L. Alexa i)

= Portably performant shock Best Threaded TimesSingle-Rank

140
120

= Solving multi-material problems for s 1g8

internal Sandia users 60
: i= 40

= Uses tetrahedral mesh adaptation 20 B
0

hydrodynamics application

Time in

S Intel NVIDIA NVIDIA NVIDIA Intel Intel
Questions: Dan Ibanez KNL K40 K80 P100 Xeon KNG
E7-4870

= All operations are Kokkos-parallel

= Test case: metal foil expanding due to
resistive heating from electrical
current.

PV
.". SPARC Courtesy of: Micah Howard

Goal: solve aerodynamics problems for Sandia
(transonic and hypersonic) on ‘leadership’ class
supercomputers

Solves compressible Navier-Stokes equations
Perfect and reacting gas models

Laminar and RANS turbulence models -> hybrid
RANS-LES

Primary discretization is cell-centered finite
volume

Research on high-order finite difference and
discontinuous Galerkin discretizations

Structured and unstructured grids

log, Time per Time Step [s]

Compute Residual: Interior Terms
T T T

o i s . - A—A ATS-1/HSW, 2 threads ||
e NN e o ATS-L/KNL, 16 threads]

RS SRO—— e D . ORI b V¥ ATS-2/V100

T T
%% CTS-1/BDW, 1 thread
@@ ATS-1/HSW, 1 thread

BB ATS-1/KNL, 4 threads
@-@ ATS-1/KNL, 8 threads

V-V CTS-1/P100

V-V ATS-2/P100

1 1 1
NS e &
Number of Compute Nodes or GPUs

8 Sierra nodes (32x V100)
equivalent to ~80 Trinity nodes
(160x Haswell 16¢c CPU) for
Residual Computation

i i i
Vv ™ ®

= Aligning Kokkos with the C++ Standard Mg,

= Long term goal: move capabilities from Kokkos into the ISO standard
= Concentrate on facilities we really need to optimize with compiler

Move accepted features

to legacy support Propose for C++

Kokkos Legacy C++ Standard

Implemented legacy
capabilities in terms of Back port to compilers we got
new C++ features C++ Backport

_ C++ Features in the Works @®

= First success: atomic_ref<T> in C++20
= Provides atomics with all capabilities of atomics in Kokkos
= atomic_ref(a[i])+=5.0; instead of atomic_add(&a[i],5.0);
= Next thing: Kokkos::View => std::mdspan
= Provides customization points which allow all things we can do with
Kokkos::View
= Better design of internals though! => Easier to write custom layouts.
= Also: arbitrary rank (until compiler crashes) and mixed compile/runtime ranks
= We hope will land early in the cycle for C++23 (i.e. early in 2020)
" Production reference implementation: https://github.com/kokkos/mdspan
= Also C++23: Executors and Basic Linear Algebra (just began design work)

= Towards C++23 Executors @

= C++ standard is moving towards more asynchronicity with Executors
= Dispatch of parallel work consumes and returns new kind of future

= Aligning Kokkos with this development means:

= Introduction of Execution space instances (CUDA streams work already)

DefaultExecutionSpace spaces[2];

partition(DefaultExecutionSpace(), 2, spaces);

// f1l and f2 are executed simultaneously

parallel for(RangePolicy<>(spaces[@], @, N), f1);
parallel for(RangePolicy<>(spaces[1], @, N), f2);
// wait for all work to finish

fence();

= Patterns return futures and Execution Policies consume them

auto fut_1 = parallel for(RangePolicy<>(“Functl”, @, N), f1);

auto fut_2a = parallel for(RangePolicy<>(“Funct2a”, fut_1,0, N), f2a);
auto fut_2b = parallel for(RangePolicy<>(“Funct2b”, fut_1,0, N), f2b);
auto fut_3 = parallel for(RangePolicy<>(“Funct3”, all(fut_2a,fut2_b),0, N), f3);
fence(fut_3);

~ Links i

= https://github.com/kokkos Kokkos Github Organization

Kokkos: Core library, Containers, Algorithms

Kokkos-Kernels: Sparse and Dense BLAS, Graph, Tensor (under development)
Kokkos-Tools: Profiling and Debugging

Kokkos-MiniApps: MiniApp repository and links

Kokkos-Tutorials: Extensive Tutorials with Hands-On Exercises

= https://cs.sandia.gov Publications (search for ‘Kokkos’)

Many Presentations on Kokkos and its use in libraries and apps

= http://on-demand-gtc.gputechconf.com Recorded Talks

Presentations with Audio and some with Video

~ Improved Fine Grained Tasking M

= Generalization of TaskScheduler abstraction to allow user to Fibonacci 30 (V100)

be generic with respect to scheduling strategy and queue .

= |mplementation of new queues and scheduling strategies:

»

= Single shared LIFO Queue (this was the old implementation)
= Multiple shared LIFO Queues with LIFO work stealing

($)]

EAN

= Chase-Lev minimal contention LIFO with tail (FIFO) stealing

= Potentially more
= Reorganization of Task, Future, TaskQueue data structures to
accommodate flexible requirements from the TaskScheduler
= Forinstance, some scheduling strategies require additional II

storage in the Task

w

|V|I||I0n Tasks per Second
N

Questions: David Hollman m Old Single Queue mNew Single Queue

= Multi Queue m Chase-Leve MQ

= Kokkos Remote Spaces: PGAS Support @ik,

= PGAS Models may become more viable for HPC with both changes in network
architectures and the emergence of “super-node” architectures

* Example DGX2 VIO V100 Vi00 V100 Vieo Vioo vioo V100

= First “super-node”
= 300GB/s per GPU link

» |dea: Add new memory spaces which return data handles with shmem semantics
to Kokkos View

» View<double**[3], LayoutLeft, NVShmemSpace> a(“A”,N,M);

—_— . template<>
- Operator a(i,3,k) returns: struct NVShmemElement<double> {

NVShmemElement (int pe_, double* ptr_):pe(pe_),ptr(ptr_) {}

int pe; double* ptr;

void operator = (double val) { shmem_double p(ptr,val,pe); }
};

~ PGAS Performance Evaluation: miniFE g,

= Test Problem: CG-Solve CGSolve Performance
= Using the miniFE problem N*3 6000
= Compare to optimized CUDA 5000
= MPI version is using overlapping .
= DGX2 4 GPU workstation 2. 4000
= Dominated by SpMV (Sparse Matrix -g, 3000
Vector Multiply) 3 S
= Make Vector distributed, and store = 2000 i %
global indicies in Matrix = 3% \
. 1000 3 \
= 3 Variants . 3 \
= Full use of SHMEM 0 o
= |nline functions by ptr mapping 10073
= Store 16 pointers in the View m VP m SHMEM
= Explicit by-rank indexing _
= Make vector 2D 8B SHMEM-Inline ® SHMEM-Index

= Encode rank in column index

