
au •., J a oitri,
,a` ‘',1 I 0.2 . kC)

1.kx)•
a

f(x,O)dx- =10(710. 11,14
at

The Kokkos C++ Performance Portability EcoSystem
Unclassified Unlimited Release

01'41E* NV'S%

Christian R. Trott, - Center for Computing Research

Sandia National Laboratories/NM

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energys National Nuclear Security Administration under contract DE-NA-0003525.

SAND2019-3111 C

SAND2019-11367PE

: Cost Of Softwa re

10 LOC / hour ••• 20k LOC / year

W Sandia
I =des

• Optimistic estimate: 10% of an application needs to get rewritten for adoption

of Shared Memory Parallel Programming Model

• Typical Apps: 300k — 600k Lines

• Uintah: 500k, QMCPack: 400k, LAMMPS: 600k; QuantumEspresso: 400k

• Typical App Port thus 2-3 Man-Years

• Sandia maintains a couple dozen of those

• Large Scientific Libraries

• E3SM: 1,000k Lines x 10% => 5 Man-Years

• Trilinos: 4,000k Lines x 10% => 20 Man-Years

Pw

h‘ Applications

SNL NALU
Wind Turbine CFD

ORNL Summit
IBM Power9 / NVIDIA Volta

LANL/SNL Trinity
Intel Haswell / Intel KNL

• Fs

SNL LAMMPS
Molecular Dynamics

Libraries

UT Uintah
Combustion

Frameworks

♦

ANL Aurora
Intel Xeon CPUs + Intel Xe Accelerators

gialublisma

ORNL Raptor
Large Eddy Sim

SNL Astra
ARM Architecture

Applications

SNL NALU
Wind Turbine CFD

ORNL Summit

• (1.

et A I

• Co

• Ni

• Fe

SNL LAMMPS
Molecular Dynamics

IBM Power9 / NVIDIA Volta LANL/SNL Trinity
Intel Haswell / Intel KNL

Libraries

UT Uintah
Combustion

Frameworks

ANL Aurora
Intel Xeon CPUs + Intel Xe Accelerators

d =1 mm
ENT) Itu.100.1

.29.100
Te.501,(M)
e MOO It (Crcee-Flow)

1:0 (Jet)
CO (Cram-Flow)

ORNL Raptor
Large Eddy Sim

1

SNL Astra
ARM Architecture

Outline

■ The Kokkos EcoSystem

■ Abstractions and Capabilities

■ CG-Solve as an Example

■ Kokkos Kernels & Tools

■ Kokkos Applications

■ Quo vadis?

■ C++ Standard Interactions

■ Properties for a more descriptive programming model

■ Enhanced asynchronous execution

What is Kokkos?
bawl

....... lilmOis

• A C++ Programming Model for Performance Portability

• Implemented as a template library on top of CUDA, OpenMP, ROCm, ...

• Aims to be descriptive not prescriptive

• Aligns with developments in the C++ standard

• Expanding solution for common needs of modern science/engineering codes

• Math libraries based on Kokkos

• Tools which allow inside into Kokkos

• It is Open Source

• Maintained and developed at https://github.com/kokkos

• It has many users at wide range of institutions.

PITtlirran Inirrr ro til,TillIF

: Kokkos EcoSystem

Science and En rin Al tio 11
Kokkos

g pp

Tools

Debugging

Profiling

Tuning
i

ilino

Kokkos EcoSystem

Linear Algebra Kernels , Graph Kernels \

Kokkos Kernels

•

Kokkos Core
Parallel

Execution
Parallel Data
Structures

Kokkos
Support

Documentation

Tutorials

Bootcamps

App support

[Kokkos Remote Spaces

PGAS I0

Multi-Core Ma APU CPU + GPU

: Kokkos Development Team

• Los Alamos
NATIONAL LABORATORY

EST 1943

ttOAK RIDGE
National Laboratory

Kokkos Core:

Kokkos Kernels:

Kokkos Tools:

Kokkos Support:

pw,kokkos

frggfr

Sandia
National Argonne v‘
Laboratories NATIONAL LABORATORY

BERKELEY LAB 44 CSCS

C.R. Trott, D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles, D. Hollman, V. Dang,

H. Finkel, N. Liber, D. Lebrun-Grandie, B. Turcksin, J. Wilke, D. Arndt

former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova

S. Rajamanickam, N. Ellingwood, K. Kim, C.R. Trott, V. Dang, L. Berger, J. Wilke, W. McLendon

D. Poliakoff, S. Hammond, C.R. Trott, D. Ibanez, S. Moore

C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff, and all of the above as needed

former: H.C. Edwards, D. Labreche, Fernanda Foertter

, Kokkos Core Abstractions

All Data Structures 41
=Pi

Memory Spaces ("Where") Ill

P

- HBM, DDR, Non-Volatile, Scratch

- Row/Column-Major, Tiled, Strided

Tlerniry .fir11ow 11
- Streaming, Atomic, Restrict

flodh
Mod
liboluis

Parallel Execution

P" Execution Spaces ("Where") 111

- CPU, GPU, Executor Mechanism
, N

xecu ion a erns

- parallel for/reduce/scan, task-spawn

xecution o icies ow

- Range, Team, Task-Graph

Kokkos Core Capabilities

Parallel Loops parallel_for(N, KOKKOS_LAMBDA (int i) { ...BODY... });

Parallel Reduction parallel_reduce(RangePolicy<ExecSpace>(0,N), KOKKOS_LAMBDA (int i, double& upd) {
...BODY...
upd +=
Sum<>(result));

Tightly Nested
Loops

parallel_for(MDRangePolicy<Rank<3> > ({0,0,0},{N1,N2,N3},{T1,T2,T3},
KOKKOS_LAMBDA (int i, int j, int k) {...BODY...});

Non-Tightly Nested
Loops

Task Dag

Data Allocation

parallel_for(TeamPolicy<Schedule<Dynamic>>(N, TS), KOKKOS_LAMBDA (Team team) {
... COMMON CODE 1 ...
parallel_for(TeamThreadRange(team, M(N)), [&] (int j) { ... INNER BODY... });
... COMMON CODE 2 ...

});

task_spawn(TaskTeam(scheduler , priority), KOKKOS_LAMBDA (Team team) { ... BODY });

View<double", Layout, MemSpace> a("A",N,M);

Data Transfer deep_copy(a,b);

Atomics

Exec Spaces

atomic_add(&a[i],5.0); View<double*,MemoryTraits<AtomicAccess» a(); a(i)+=5.0;

Serial, Threads, OpenMP, Cuda, HPX (experimental), ROCm (experimental)

: More Kokkos Capabilities
emoryPool 1111

410 parallel scale
I

AlliayoutRight

LayoutLeft116

DualView "11111
AO

4dkticWorkGraphjro

44Leducers alro

44 ScatterVie: will

ANIF
UnorderedMapPro

46

4er kokkos mall"'
41

Altector*,

40 ScratchSpacec
410 ScratchSpace
ir

„

Sandia
National
Laboratories

41 OffsetView

4111. RandomPool 1111
t

401 kokkos_free

411AlrofilingHooks

ayoutStridil

: Example: Conjugent Gradient Solver

• Simple Iterative Linear Solver

• For example used in MiniFE

• Uses only three math operations:

• Vector addition (AXPBY)

• Dot product (DOT)

• Sparse Matrix Vector multiply (SPMV)

• Data management with Kokkos Views:

View<double*,HostSpace,MemoryTraits<Unmanaged> > h_x(x_in, nrows);

View<doubll *> x("x",nrows);
deep_copy(x, h_x);

: CG Solve: The AXPBY

• Simple data parallel loop: Kokkos::parallel_for

• Easy to express in most programming models

• Bandwidth bound

• Serial Implementation:

void axpby(int n, double* z, louble alpha, const double* x,
double beta, const double* y) {

for(int i=0; i<n; i++)
z[i] = alpha*x[i] + beta*y[i];

• Kokkos Implementation:
axpby(int n, View<uou

parallel for("AXp
= alpha*x(i) + beta*y(i);

}
});

0,

Loop Body

le alpha, View<consl Uth
w<const double*>
AMRII(const i it i) {

CG Solve: The Dot Product
• Simple data parallel loop with reduction: Kokkos::parallel_reduce

• Non trivial in CUDA due to lack of built-in reduction support

• Bandwidth bound

• Serial Implementation:

double dot(nt n, const double* x, const double* y) {
double sum = 0.0;
for(int i=0; i<n; i++)
sum += x[i]*y[i];

sum;
}

• Kokkos Implementation:
double dot(n, View<
double x dot y = 0.0.
barallel reduce("Dot" n, KOKKOS LAMBDA (;onst int
sum += x[i]*y[i];

}, x_dot y);
return x dot y;

Iteration Index + Thread-Local Red. Varible

> x, View<const double*> y) {

i.doublE & sum) {

: CG Solve: Sparse Matrix Vector Multiply 'ffit=

• Loop over rows

• Dot product of matrix row with a vector

• Example of Non-Tightly nested loops

• Random access on the vector (Texture fetch on GPUs)
Outer loop over matrix rows

void SPMV(int nrows, c•n row offsets, const i * A cols,
const double* * y, ;onst double* x)

}
}

or(int row=0; row<nrows; ++row) {
doubl sum = 0 n;
int row start=A row offsets[row];
in row end=A row offsets[row+];
((i=row start; i<row end; ++i)
sum += A vals[i]*x[A cols[i]];

}
y[row] = sum;

Inner dot product row x vector

•

pw
CG Solve: Sparse Matrix Vector Multiply

void SPMV(int nrows, View<const int*> A_row_offsets,
View<const int*> A_cols, View<const double*> A_vals,
View<double> y.
View const double", MemoryTraits< RandomAccess» x) { ■

rformance heuristic to figure out how many rows to give to a team
int rows_per_team = get_row_chunking(A_row_offsets);

*I(Enable Texture Fetch on x

parallel_for("SPMV:Hierarchy", TeamPolicy< Schedule< Static > >
((nrows +rows_per_tea m-1)/rows_pe r_tea m,AUTO, 8),

sKOKKOS_LAMBDA (const TeamPolicy<>: ber_type& team) {

const int first_row = team.league_rank()*rows_ r team;
const int last_row = first_row+rows_per_team<n s? first_row+rows_per_team : nrows;

p rallel_for(TeamThreadRange(team,first_row,last_),[&] (const int row)
const int row_start=A_row_otisets[
const int rowiength=A_row_offsets[-row_start;

dou y row.
pa allel_reduce(ThreadVectorRange(team,row_len
s m += A_vals(i+row_start)*x(A_cols(i+row_start));
} , row);
y(row) = y_row;

});
});

t int i, doublE& sum){

1,4 Row x Vector dot product

aG Solve: Performance
• Comparison with other 90

80

Programming Models 70

2- 60
50

• Straight forward 40

t 30

implementation of kernels a.' 20
10

• OpenMP 4.5 is immature at

this point

• Two problem sizes: 60

100x100x100 and
50

200x200x200 elements 30

0

E
8 20

10

0

NVIDIA P100 / IBM Power8

AXPBY-100 AXPBY-200 DOT-100 DOT-200 SPMV-100

• OpenACC • CUDA • Kokkos • OpenMP

Intel KNL 7250

SPMV-200

111111•1
AXPBY-100 AXPBY-200 DOT-100 DOT-200 SPMV-100 SPMV-200

• OpenACC • Kokkos • OpenMP • TBB (Flat) •TBB (Hierarchical)

flodh
Mod

1 7

: Tasking Example Code
template< typename Scheduler >
struct FibonacciTask {

using sched_type = Scheduler;
using future_type = BasicFuture< long, Scheduler >;
future_type fib_ml, fib_m2;
const long n;

KOKKOS_INLINE_FUNCTION

TestFib(const value_type arg_n)
: fib_ml(), fib_m2(), n(arg_n) {}

KOKKOS_INLINE_FUNCTION

void operator()(sched_typ
(auto& sched = member.scheduler();
if (n < 2) { result = n; }
else ((!fib m2.is null •
else {

Fi2d 12814Laboratories

Scheduler obtained from arguments: task could be a lambda

Spawn child tasks

Make compound dependency

_type & mem value_type & result Respawn task with new deps

b ml.is result = fib_ 1 () + fib_m2.get(); }

'tib_m2 = task_spawn(Tas Single
fib_m1 = task_spawn(TaskSi •

d, TaskPrio it bonacciTask(n -));
sched), FibonacciTask 1)) ;

BasicFuture<void, Scheduler> dep[1 = { fib_ml, f };
3asicFuture<void, Scheduler> fib_all = sched. _all(dep, 2);, lf dependencies are not NULL this is respawn

(!fib_m2.is_null() && lfib_m1.1 && lfib_all.is_null()) {
(respawn(this, fib_all, Taskpriority::High);)

} lse { Kokkos::abort("TestFib insufficient memory"); }
}

}

Kokkos Kernels

• BLAS, Sparse and Graph Kernels on top of Kokkos and its View abstraction

• Scalar type agnostic, e.g. works for any types with math operators

• Layout and Memory Space aware

• Can call vendor libraries when available

• View have all their size and stride information => Interface is simpler

// B LAS // Kokkos Kernels
int M,N,K,LDA,LDB; double alpha, beta; JUDI *A, *B, *C; double alpha, beta; View<double**> A,B,C;
dgemm('N','N',M,N,K,alpha,A,LDA,B,LDB,beta,C,LDC); gemm('N','N',alpha,A,B,beta,C);

Sandia
Menai
Lobotomies

• Interface to call Kokkos Kernels at the teams level (e.g. in each CUDA-Block)
parallel for(NestedBLAS", TeamPolicy<>(N,AUTO), KOKKOS_LAMBDA (con team handle t& team handle) {

// Allocate A, x and y in scratch memory (e.g. CUDA shared memory)
// Call BLAS using parallelism in this team (e.g. CUDA block)
gemv(team_handle,'N',alpha,A,x,beta,y)

1);

:Kokkos-Tools Profiling & Debugging .1M111
Sandia
Wand
Laboratories

• Performance tuning requires insight, but tools are different on each platform

• KokkosTools: Provide common set of basic tools + hooks for 3rd party tools

• One common issue abstraction layers obfuscate profiler output

• Kokkos hooks for passing names on

• Provide Kernel, Allocation and Region

• No need to recompile

• Uses runtime hooks

• Set via env variable

M1 Basic Hotspots Hotspots by CPU Usage viewpoint (change)

4 Analysis Target A Analysis Type ES Collection Log El Summary

Grouping: l Frame Domain 1 Frame / Function /Call Stack

Bottorri-up

Frame Domain / Frame / Function /Call

Stack

CPU Tir

Effective

• Idle • Poor

Time

0

by Utilization

Ok • Ideal • Over lmbala

'v'ParallelFor.AXPI3 4.768s 0.57

0.17

0.1E

1.615s I I I
1)3 1.593s 11 1 1
>2 1.56Ds I 1 I 0.2:

>[No frame domain - Outside any frame] 0.07951 1.3,

> Parallel Reduce.Dot 1.952s 1 11 0.5:

>ParallelFor.Z4mainEUIRKIE_ 2.168s 11 I 0.17

DOE Machine Announcements flodh
Mod

• Now publicly announced that DOE is buying both AMD and Intel GPUs

• Argonne: Cray with Intel Xeon + Intel Xe Compute

• ORNL: Cray with AMD CPUs + AMD GPUs

• NERSC: Cray with AMD CPUs + NVIDIA GPUs

• Have been planning for this eventuality:

• Kokkos ECP project extended and refocused to include developers at

Argonne, Oak Ridge, and Lawrence Berkeley - staffing is in place

• HIP backend for AMD: main development at ORNL

The current ROCm backend is based on a compiler which is now deprecated ...

• SYCL for Intel: main development at ANL

• OpenMPTarget for AMD, Intel and NVIDIA, lead at Sandia

:Supporting Aurora

• Two backend plans

• SYCL: will need Intel proposed extensions

ANL will lead development

• OpenMPTarget: OpenMP 5.x based

NERSC/SNL will lead development

• Timeline:

• Q2 FY20: Initial capabilities, enough for many miniApps

• Q4 FY20: Functional backends

• FY21: Production support

: OpenMPTarget Backend

• Started work on this more than 2 years ago

• Hindered by compiler bugs: 15 min work on backend, 6 hours work on
compiler bug reproducer, 6 months wait for fix, repeat

• With Clang 9 first time this isn't the case

• Got some capabilities:

• RangePolicy: parallel_for, parallel_reduce

• MDRangePolicy: parallel_for

• Views

:OpenMPTarget Issues

• Virtual Functions

• Technically not supported: need to discuss with compiler vendors

• TeamPolicy:

• Scratch memory: Not clear whether this is relevant for Aurora

• Handling of SIMD? — In OpenMP right now inconsistent across vendors:

Does it do anything? Are vector lanes redundantly executing?

O

parallel for(,TeamPolicy<>(N,AUTO,),

[=] (team_t& team) {
int i = team.league_rank();
int t = team.team rank();
parallel_for(TeamThreadRange(team,m),
[&] (int j) {
parallel for(ThreadvectorRange(team,K),
[&] k) { ... }) ;

1);
1);

#pragma omp teams distribute target
for(int i=(); i<N; i++) {
#pragma omp parallel
{

int t = omp_thread_num();
#pragma omp for
for(int j=o; j<m; j++) {
#pragma omp simd
for(int k=(); k<K; k++) { ...

: OpenMPTarget Issues 11 Sandia
National
Labmatodes

• Arbitrary reductions

• Stateful reducers are cumbersome (need to replace the value type with
some wrapper, which contains the stateful reducer)

• Can we get the equivalent of CudaSpace, CudaUVMSpace, and
CudaHostPinnedSpace?

• Not clear that we can currently do that in OpenMP, problem for Trilinos
which currently relies on page migratable memory ...

• Equivalent of Stream support, or at least asynchronous dispatch?

• Arbitrary Atomic Operations

• Need to implement our own most likely

:SYCL Backend

• Started recently both with Codeplays and Intels compiler

• Not much working yet

• RangePolicy: parallel_for works with Codeplay

• Looking into some of the problems around restrictions of SYCL such as kernel
naming

• We likely need to rely on Intel proposed extensions

• A good chunk of which are already implemented!

: SYCL Issues I

• Kernel naming and lambdas

• Can not name a kernel implicitly templated on a lambda

• Relying on Intel not requiring names

• Data management

• SYCL auto data management is not in line with general Kokkos data
management philosophy

• Could be workable, would require somewhat nasty internal plumbing

• Current plan: rely on Intel proposed extensions for raw allocations and
deep_copy

:SYCL Issues 11

• Virtual functions not supported

• Reductions:

• Need to implement our own: not sure how to do efficient ones need
shuffle operations, and scratch memory

• Arbitrary atomics

• Need to implement our own

: RAJA will be there too! flodh
Mod

• Expect RAJA to be working on A21

• OpenMP target based backend is largely functional on other platforms

• Will work as part of ECP RAJA/Kokkos project to make sure that this works
with Intel compiler

• SYCL backend is getting explored

• Will need Intel extensions for good usability

• Production support a question of needs by users, and whether OpenMP
target backend will work well enough

• If you are using/want to use RAJA on A21 let us know

• Work by Argonne members of RAJA/Kokkos will to a large degree be
guided by user requests.

: Supporting Aurora Sandia
National
Labmatodes

• OpenMP Target Offload underway

• Need to have some discussions on details of how to implement standard

• SYCL just begun

• Problems in the current standard

• BUT: Intel is addressing them

• We expect both backends will be viable

• Major concerns are already known to Intel

• A good chunk are already addressed:

Standalone allocations

Kernel Naming

Kokkos Based Projects flodh
Mod
liboluis

• Production Code Running Real Analysis Today

• We got about 12 or so.

• Production Code or Library committed to using Kokkos and actively porting

• Somewhere around 35

• Packages In Large Collections (e.g. Tpetra, MueLu in Trilinos) committed to
using Kokkos and actively porting

• Somewhere around 65

• Counting also proxy-apps and projects which are evaluating Kokkos (e.g.
projects who attended boot camps and trainings).

• Estimate 100-150 packages.

Pw, Some Kokkos Users

Los Alamos
NATIONAL LABORATORY

ES-1.1943

*OAK RIDGE
National Laboratory

Pacific Northwest
NATIONAL LABORATORY

ARL

Argonne 6
NATIONAL LABORATORY

LITHE
UNIVERSITY
OF UTAH

Max-Planck-Institut
für Plasmaphysik

Sandia
National
Laboratories

cea

U.S. NAVAL
RESEARCH
LABORATORY

9 JOLICH
•

rffrfff

BERKELEY LAB

Forschungszentrum

Rensselaer

Saida
National
Labonaodes

041
If II
&MA EL
NATIONAL RENEWABLE ENERGY LABORATORY

CSCS

TUT1

TECH N ISCHE
UN IVERSITAT
MUNCHEN

:Sparta: Production Simulation at Scale
• Stochastic PArallel Rarefied-gas Time-

accurate Analyzer

• A direct simulation Monte Carlo code

• Developers: Steve Plimpton, Stan Moore,

Michael Gallis

• Only code to have run on all of Trinity

• 3 Trillion particle simulation using both

HSW and KNL partition in a single MPI

run (-20k nodes, —1M cores)

• Benchmarked on 16k GPUs on Sierra

• Production runs now at 5k GPUs

• Co-Designed Kokkos::ScatterView

500

450

0 400

733-0 350

z • 300
lar)
o_ 250
a)
200

E 1 5

,t 100
50

SPARTA Weak Scaling

Sandia
National
Laboratodes

0
4 8 16 32 64 128 256

—40—Haswell fKNL —N—V100

: Uintah

• System wide many task framework from
University of Utah led by Martin Berzins

Soda
National
Laboratadas

Reverse Monte Carlo
Ray Tracing 64"3 cells

• Multiple applications for combustion/radiation 16

simulation 7 14

0- 12
• Structured AMR Mesh calculations 1-0-1 (1) io
• Prior code existed for CPUs and GPUs E

i= 8

'ci) 6• Kokkos unifies implementation 0_
(I) 4
E• Improved performance due to constraints in i= 2

Kokkos which encourage better coding practices o

Questions: Dan Sunderlan

CPU GPU KNL

• Original • Kokkos

: LAM M PS Questions: Stan Moore

Widely used Molecular Dynamics

Simulations package

• Focused on Material Physics

• Over 500 physics modules

• Kokkos covers growing subset of those

• REAX is an important but very complex

potential

• USER-REAXC (Vanilla) more than

10,000 LOC

• Kokkos version —6,000 LOC

• LJ in comparison: 200LOC

• Used for shock simulations

Architecture Comparison
Example in.reaxc.tatb /
196k atoms / 100 steps

200

150

100

50

0

'qe,
'Or 934 to t„-i- 1),+

•Vanilla • Kokkos

Alexa Rio=— Laboratories

• Portably performant shock
hydrodynamics application

• Solving multi-material problems for
internal Sandia users

• Uses tetrahedral mesh adaptation

Questions: Dan Ibanez

Best Threaded TimesSingle-Rank

140
120

u) 100
• - 80

60
iz 40

20
0

Intel NVIDIA NVIDIA NVIDIA Intel Intel
KNL K40 K80 P100 Xeon KNC

E7-4870

• All operations are Kokkos-parallel

• Test case: metal foil expanding due to
resistive heating from electrical
current.

: SPARC Courtesy of: Micah Howard

• Goal: solve aerodynamics problems for Sandia
(transonic and hypersonic) on 'leadership' class
supercomputers

• Solves compressible Navier-Stokes equations

• Perfect and reacting gas models

• Laminar and RANS turbulence models -> hybrid
RANS-LES

• Primary discretization is cell-centered finite
volume

• Research on high-order finite difference and
discontinuous Galerkin discretizations

• Structured and unstructured grids

1

—4

—5

Compute Residual: Interior T rms

ti t),

* * CTS-1/BDW, 1 threa

• ATS-1/HSW, 1 three

• ATS-1/HSW, 2 threa s -

FM ATS-1/KNL, 4 threa

• ATS-1/KNL, 8 threa

 air—* ATS-1/KNL, 16 thre s -

1-1 CT5-1/P100

V-7 ATS-2/P100

V—V ATS-2/V100

Number of Compute Nodes or GPUs

8 Sierra nodes (32x V100)
equivalent to —80 Trinity nodes
(160x Haswell 16c CPU) for
Residual Computation

: Aligning Kokkos with the C++ Standard
• Long term goal: move capabilities from Kokkos into the ISO standard

• Concentrate on facilities we really need to optimize with compiler

Move accepted features
to legacy support

t

Kokkos Legacy
a

Implemented legacy
capabilities in terms of
new C++ features

rm. Kokkoluslill

C++ Backport Ammob-

Propose for C++

t

C++ Standard

J

flodh
IOW
liboluis

Back port to compilers we got

C++ Features in the Works Sao
Mod
liboluis

• First success: atomic_ref<T> in C++20

• Provides atomics with all capabilities of atomics in Kokkos

• atomic_ref(a[i])+=5.0; instead of atomic_add(&a[i],5.0);

• Next thing: Kokkos::View => std::mdspan

• Provides customization points which allow all things we can do with
Kokkos::View

• Better design of internals though! => Easier to write custom layouts.

• Also: arbitrary rank (until compiler crashes) and mixed compile/runtime ranks

• We hope will land early in the cycle for C++23 (i.e. early in 2020)

• Production reference implementation: https://github.com/kokkos/mdspan

• Also C++23: Executors and Basic Linear Algebra (just began design work)

Towards C++23 Executors

• C++ standard is moving towards more asynchronicity with Executors

• Dispatch of parallel work consumes and returns new kind of future

• Aligning Kokkos with this development means:
• Introduction of Execution space instances (CUDA streams work already)

DefaultExecutionSpace spaces[2];
partition(DefaultExecutionSpace(), 2, spaces);
// f1 and f2 are executed simultaneously
parallel_for(RangePolicy<>(spaces[0], 0, N), f1);
parallel_for(RangePolicy<>(spaces[1], 0, N), f2);
// wait for all work to finish
fence();

• Patterns return futures and Execution Policies consume them
auto fut_1 = parallel_for(Rangepolicy<>("Functl", 0, N), f1);
auto fut_2a = parallel_for(Rangepolicy<>("Funct2a", fut_1,0, N), f2a);
auto fut_2b = parallel_for(Rangepolicy<>("Funct2b", fut_1,0, N), f2b);
auto fut_3 = parallel_for(Rangepolicy<>("Funct3", all(fut_2a,fut2_b)„ N), f3);
fence(fut_3);

Sandia
Ikainnal
Lobotomies

: Links 111RSandiaidvadas

• https://github.com/kokkos Kokkos Github Organization

• Kokkos: Core library, Containers, Algorithms

• Kokkos-Kernels: Sparse and Dense BLAS, Graph, Tensor (under development)

• Kokkos-Tools: Profiling and Debugging

• Kokkos-MiniApps: MiniApp repository and links

• Kokkos-Tutorials: Extensive Tutorials with Hands-On Exercises

• https.//cs.sandia.guv Publications (search for 'Kokkos')

• Many Presentations on Kokkos and its use in libraries and apps

• http://on-demand-gtc.gputechconf.com Recorded Talks

• Presentations with Audio and some with Video

Improved Fine Grained Tasking
• Generalization of TaskScheduler abstraction to allow user to

be generic with respect to scheduling strategy and queue

• Implementation of new queues and scheduling strategies:

Sands
National
Laboratodos

Fibonacci 30 (V100)
7

6
• Single shared LIFO Queue (this was the old implementation) -0

• Multiple shared LIFO Queues with LIFO work stealing o 5

• Chase-Lev minimal contention LIFO with tail (FIFO) stealing o_ '(15 4

• Potentially more co 3
co

• Reorganization of Task, Future, TaskQueue data structures to
g

accommodate flexible requirements from the TaskScheduler
2

• For instance, some scheduling strategies require additional 1

storage in the Task

Questions: David Hollman • Old Single Queue • New Single Queue

• Multi Queue • Chase-Leve MQ

: Kokkos Remote Spaces: PGAS Support fRav
• PGAS Models may become more viable for HPC with both changes in network

architectures and the emergence of "super-node" architectures

• Example DGX2 V100 V100 V100 V100 V100 V100 V100 V100

• First "super-node"

• 300GB/s per GPU link
MV100 V100 V100 V10 V100 V100 V100 V100

• Idea: Add new memory spaces which return data handles with shmem semantics
to Kokkos View

• View<double**[3], LayoutLeft, NVShmemspace> a(,N,M);

• Operator a (i, j, k) returns: template<>
struct NVShmemElement<double> {

NVShmemElement(int pe_, double* ptr_):pe(pe_),ptr(ptr_) {}
int pe; double* ptr;
void operator = (double val) { shmem_double_p(ptr,val,pe); }

};

_ PGAS Performance Evaluation: miniFE

• Test Problem: CG-Solve CGSolve Performance
• Using the miniFE problem NA3 6000
• Compare to optimized CUDA
• MPI version is using overlapping

5000

45• DGX2 4 GPU workstation sx 4000
• Dominated by SpMV (Sparse Matrix fn

= 3000
Vector Multiply) o

• Make Vector distributed, and store .- 2000
global indicies in Matrix i—

• 3 Variants
• Full use of SHMEM 0

• lnline functions by ptr mapping
• Store 16 pointers in the View

• Explicit by-rank indexing
• Make vector 2D
• Encode rank in column index

1000

1
I

10003 2001'3

• MPI n SHMEM
El SHMEM-Inline ES SHMEM-Index

Mk

Sandia
National
Labontodes

400^3

