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Motivation

• Zyr-4 is a getter of H due to its ability to
absorb and transport H

• Zr forms a surface oxide layer that inhibits its
H permeability

• Coating with Ni prevent oxide formation
• How does the Ni layer affect H permeability?
• Understanding can inform experiments/

design/testing
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Project plan

1. Build an interatomic potential for Zr-Ni-H based on
new DFT training data and existing potentials

2. Use high temperature molecular dynamics and
Arrhenius behavior to estimate the H diffusion
coefficient in bulk Zr, Ni, and Zr-Ni bimetals.

3. Build an interatomic potential for Zr-O-H based on
new DFT training data and existing potentials

4. Use high temperature molecular dynamics and
Arrhenius behavior to estimate the H diffusion
coefficient in bulk Zr02, and Zr-Zr02 bimaterials.

5. Explore the effects of bulk and interface defects on
the H-diffusion

6. Use results to understand the change in kinetics of
Ni plated Zr.
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Existing potentials
A number of binary potentials have been
developed that include two of Zr/Ni/H/O
in the appropriate phases.

Notable potentials:
• Zr-H by Byeong-Moon Lee and Byeong-

Joo Lee, Metallurgical and Materials
Transactions, 2014

• Ni-Zr by Mendelev et al., Philosophical
Magazine, 2012
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H in Zr random walk
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Diffusion
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We pulled data from the literature (lines) and also ran independent calculations
(points, sometimes needing to translate papers to potential files and test translations)

Ko&Lee MEAM NiH is notable: apparently unstable for more than one H



Potential selectior
Lee MEAM F

a
Zr X ? X

Ni

H

Mendelev EAM

diEts ii  Ni H

Zr X X ?

Ni X ?

H ?

Byeong-Moon Lee and Byeong-Joo Lee. A
comparative study on hydrogen diffusion in
amorphous and crystalline metals using a
molecular dynamics simulation. Metallurgical and
Materials Transactions A, 45(6):2906-2915, 2014

• MI Mendelev, MJ Kramer, SG Hao, KM Ho, and CZ

Wang. Development of interatomic potentials
appropriate for simulation of liquid and glass
properties of NiZr2 alloy. Philosophical Magazine,
92(35):4454-4469, 2012

EAM:

• no hydride formation
• optimized to study the liquid and amorphous

structure of the NiZr2 alloy.

• simpler to parameterize

• peculiar behavior of Ko & Lee Ni-H MEAM

potential for more than 1 H in a simulation



Embedded atom (EAM) potential

( 7Laa,cuEga, 0Egb 

Pab(ra,3))+ E E 2 -oab(ro)
a,clEgc, b,13Egb7La

Multibody embedding energy Pair potential

Two potentials built upon the NiZr Mendelev potential:

• NiZr+H: set F_H = 0 and only tune the *-H pair potentials
in Morse form (3x3 parameters):

Oab(r) — F; a b (exp(-2cvab(r — rab)) — 2 exp(—cvab(r — rab)))

• NiZrH: calibration of the full EAM interactions (20+
parameters)



Ab initio training data

We have training data for
Ni with H and Zr with H

• H swelling volume
• H insertion energy
• H tetrahedral to octahedral

diffusion barrier
• H-H (in metal) interaction

energy

DFT cell

We have similar training data for H in Zr02

R
E
L
A
T
I
V
E
 V
O
L
U
M
E
 C
H
A
N
G
E
 

E
N
E
R
G
Y
 C
H
A
N
G
E
 [
e
V
]
 

0.011

0.01

0.009

0.008

0.007

0.006

0.005

0.004  
0

-2.5

3

-3.5

-4

-4.5

-5

-5.5

-6

-6.5

-7

-7.5

ZrH
NiH

0.2 0.4 0.6 0.8 1

REACTION COORDINATE (TET to OCT)

Zr'H
NiH

0 0.2 0.4 0.6 0.8 1

REACTION COORDINATE (TET to OCT)



NiZr+H potential development

In addition to calibrating a unified EAM
potential we have added H-Zr, H-Ni, and H-H
interactions to Mendelev's potential using
the DFT data with a pairwise Morse potential
form (3 parameters for each pair)

This can be done independently

1. Calibrate H-Zr/Ni parameters
using the (single H) swelling
volume and energy change
along the TET --> OCT diffusion

path

2. Calibrate H-H parameters using
the two H insertion energy and
volume change

I „E E —20abVa 0 )
a,clEga b,0Egb7Lc1

Pair potential

E = Do [e-2a(r-r0) — 2e-a(r-r°)] r < r,
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Calibration
Ni-H pair interaction calibration
with SOGA genetic algorithm. The
genetic algorithm is a hybrid
between a sampler/explorer and
an optimizer.

Calibration based on the energy
and volume changes along the DFT
diffusion path appears to be well-
posed — the are is a deep single
well in the error
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H-H potential
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• There is no clear trend in H-H
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• Ni insertion is effectively additive
(interactions very short range)

• Zr insertion has an additional cost
(interactions long range compared
to cell size?)
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Full EAM NiZrH potential current state
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Full EAM NiZrH potential current state

Issues with parameter identifiability: generating additional H in NiZr alloy training data
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Methodology for diffusion estimates
Diffusion in a slow process for MD, we need to accelerate it with high temperatures

• Assume Arrhenius behavior — single dominant
barrier with energy E

D(T) = Do exp
k BT)

• Use the Einstein relationship between mean
squared displacement (MSD) and diffusion

1 <2i-ce*

D = lim (11Ax(t)6 t-0.0

• Check radial distribution functions for H in NiZ
and the NiZr solid to assess fluid/solid states
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Validation: NM
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Validation: ZrH
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H diffusion in Ni.
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H in Zro2 training data
Zr0 has a multitude of phases/structures, e.g. monoclinic, cubic, and others that
are stabilized with dopants
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H diffusion in Zr02
COMB is a variable charge potential where charges are calculated by
electronegativity equalization. The short-range repulsion and attraction are Tersoff
like. It is very computationally expensive but does represent oxides.
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H diffusion in ZriZr02
Assessing diffusivity of components in a heterogeneous system is difficult
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Ni diffusion in 7-
In the literature is is stated that Ni order of magnitude more mobile in Zr than reverse.
We can estimate Ni diffusion with the EAM potential
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Conclusio
• A diffuse/intermixed NiZr interface between pure Ni and Zr is

likely, possibly amorphous but likely crystalline
• This region could have much lower H-diffusivity than HCP Zr, and

perhaps FCC Ni
• Best to avoid layers that are disordered and high in Zr
• Work to obtain a full NiZrH EAM potential is ongoing. With it I'll

redo the diffusion calculations
• It can also be used to estimate H solubility in NiZr phases
• The effects of interstitials & vacancies can be calculated but for

limited crystal structures given the current potential (crystanline
NixZr1, is only stable at low temperatures)

• A NiZrOH potential that could model oxides, coatings and hydride
and other phases would be challenging but we have DFT
calibration data

1111111111HO,



Conclusion
• Alternative materials with high permeability (diffusivity x solubility)
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Ferritic steel?

3.5

Also considerations for reactor

compatibility and miscibility with Zr
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