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M1. Evaluate existing potentials for Ni-Zr, Zr-O and Zr-H — 28 February 2019

M2. Create DFT data to add H interactions to the Ni-Zr and Zr-O potentials — 30 April 2019
M3. Calculate H/T diffusion in the bulk systems Ni, Ni-Zr, Zr and ZrO, — 31 July 2019
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M5. Complete analyses and final report and/or journal article — 30 September 2019
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Tempersature (C)

Motivation

e Zyr-4is a getter of H due to its ability to
absorb and transport H

e Zr forms a surface oxide layer that inhibits its
H permeability

* Coating with Ni prevent oxide formation

 How does the Ni layer affect H permeability?

* Understanding can inform experiments/
design/testing
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Project plan

0003305888

1. Build an interatomic potential for Zr-Ni-H based on ......‘.......
new DFT training data and existing potentials %’.’.’.‘.’.‘.‘.’.’.‘.

- - 00000000000

2. Use hlgh temper.ature mo.lecular dynamlcs e.and A A did,
Arrhenius behavior to estimate the H diffusion 00000:00000
coefficient in bulk Zr, Ni, and Zr-Ni bimetals. '..... vy Ay

3. Build an interatomic potential for Zr-O-H based on
new DFT training data and existing potentials

4. Use high temperature molecular dynamics and
Arrhenius behavior to estimate the H diffusion
coefficient in bulk ZrO,, and Zr-ZrO, bimaterials.

5. Explore the effects of bulk and interface defects on
the H-diffusion

6. Use results to understand the change in kinetics of
Ni plated Zr.




EXIStIng pOtent|aIS Zr-H Arrhenius behavior

A number of binary potentials have been 10’ . —— T
developed that include two of Zr/Ni/H/O

in the appropriate phases. %
Notable potentials: S
* Zr-H by Byeong-Moon Lee and Byeong- 2
Joo Lee, Metallurgical and Materials L
Transactions, 2014 . | | | | |
° Ni_Zr by Mendelev et al.’ PhI/OSOphICG/ 100.0005 0.001 0.0015 0.002 0.0025 0.008 0.0035
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Magazine, 2012

Hin Zr random walk Zr-H radial distribution
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DIFFUSIVITY [A%/ps]

Diffusion

Zr-H Arrhenius behavior Ni-H Arrhenius behavior
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We pulled data from the literature (lines) and also ran independent calculations
(points, sometimes needing to translate papers to potential files and test translations)

Ko&Lee MEAM NiH is notable: apparently unstable for more than one H



Potential selection

Lee MEAM * Byeong-Moon Lee and Byeong-Joo Lee. A
comparative study on hydrogen diffusion in
-mm_ amorphous and crystalline metals using a

7r X 2 X molecular dynamics simulation. Metallurgical and
< > > Materials Transactions A, 45(6):2906—2915, 2014
H ? e MI Mendelev, MJ Kramer, SG Hao, KM Ho, and CZ
Wang. Development of interatomic potentials
appropriate for simulation of liquid and glass
Mendelev EAM properties of NiZr2 alloy. Philosophical Magazine,

-mmm 92(35):4454-4469, 2012
Zr X X ?
' ?
Ni X f - EAM:
H ? * no hydride formation

e optimized to study the liquid and amorphous
structure of the NiZr, alloy.

* simpler to parameterize

* peculiar behavior of Ko & Lee Ni-H MEAM
potential for more than 1 H in a simulation




Embedded atom (EAM) potential
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Multibody embedding energy Pair potential

Two potentials built upon the NiZr Mendelev potential:

* NiZr+H: set F_H =0 and only tune the *-H pair potentials
in Morse form (3x3 parameters):

Pab(1) = Eap (exp(—20ap(r — Tap)) — 2exp(—aap(r — Tap)))

* NiZrH: calibration of the full EAM interactions (20+
parameters)




Ab initio training data

We have training data for
Ni with H and Zr with H

* Hswelling volume

* Hinsertion energy

* H tetrahedral to octahedral
diffusion barrier

* H-H (in metal) interaction
energy

DFT cell

o

We have similar training data for H in ZrO,
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ial development

Zr+H potent
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Pair potential

In addition to calibrating a unified EAM

potential we have added H-Zr, H-Ni, and H-H

s potential using

’

interactions to Mendelev

the DFT data with a pairwise Morse potential

form (3 parameters for each pair)

This can be done independently

1. Calibrate H-Zr/Ni parameters
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Calibration °|

Ni-H pair interaction calibration
with SOGA genetic algorithm. The 0.1

ERROR

(o]
genetic algorithm is a hybrid o
between a sampler/explorer and
an optimizer.
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ENERGY CHANGE [A%]

VOLUME CHANGE [A%]

NiZr+H potential
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energy but the ordering is

different for Ni vs Zr
There is no clear trend in H-H

There is a clear trend in volume-

ial

H potent

H

distance vs energy

Ni insertion is effectively additive

(interactions very short range)
Zr insertion has an additional cost

(interactions long range compared

to cell size?)
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ENERGY CHANGE [A°]

Full EAM NiZrH potential — current state
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Full EAM NiZrH potential — current state

Issues with parameter identifiability: generating additional H in NiZr alloy training data
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Methodology for diffusion estimates

Diffusion in a slow process for MD, we need to accelerate it with high temperatures

e Assume Arrhenius behavior — single dominant
barrier with energy E

D(T) = Do () E

kT \
* Use the Einstein relationship between mean
squared displacement (MSD) and diffusion N REACTION COORDINATE
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The lattice must be stable a sufficiently high temperature for this to work



Validation: NiH

Baskes
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Validation: ZrH
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H diffusion in Ni, Zr,_

independent layers

Interface is diffuse so we examine
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H in ZrO, training data

ZrO has a multitude of phases/structures, e.g. monoclinic, cubic, and others that
are stabilized with dopants
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H diffusion in ZrO (monoclinic—low T phase).



H diffusion in ZrO,

COMB is a variable charge potential where charges are calculated by
electronegativity equalization. The short-range repulsion and attraction are Tersoff
like. It is very computationally expensive but does represent oxides.
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This is data is from an insufficient number of time samples



H diffusion in Zr|ZrO,

Assessing diffusivity of components in a heterogeneous system is difficult
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Ni diffusion in Zr

In the literature is is stated that Ni order of magnitude more mobile in Zr than reverse.
We can estimate Ni diffusion with the EAM potential

ave

—_
o
o

—_—
=

—_
=
w

DIFFUSION COEFFICIENT []
S
N

—
<
BN
T
L

*
*

0-5 | L | 1 1
0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016
INVERSE TEMPERATURE [1/K]

Preliminary data



Conclusmn

A diffuse/intermixed NiZr interface between pure Ni and Zr is
likely, possibly amorphous but likely crystalline

* This region could have much lower H-diffusivity than HCP Zr, and
perhaps FCC Ni

* Best to avoid layers that are disordered and high in Zr

* Work to obtain a full NiZrH EAM potential is ongoing. With it Ill
redo the diffusion calculations

* |t can also be used to estimate H solubility in NiZr phases

* The effects of interstitials & vacancies can be calculated but for
limited crystal structures given the current potential (crystanline
Ni,Zr, , is only stable at low temperatures)

* A NiZrOH potential that could model oxides, coatings and hydride
and other phases would be challenging but we have DFT
calibration data

RS g




Conclusion

» Alternative materials with high permeability (diffusivity x solubility)
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