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2 Course Outline

1. Introduction to Artificial Intelligence and Machine Learning (Ray Byrne) — 15 minutes

2. Machine Learning Overview (David Stracuzzi) — 45 minutes

3. Machine Learning Approaches and Data Considerations (Warren Davis) — 25 minutes

4. Optimization with Application to Machine Learning and Power Systems (JP Watson) — 10
minutes

5. Highlights of Artificial Intelligence/Machine Learning in Power Systems (Matt Reno/Logan
Blakely) — 20 minutes

6. Q&A — 5 minutes
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4  Why is Artificial Intelligence a Hot Topic?

Examples of Successful Artificial Intelligence (AI) Applications:

Self-driving cars, lane
departure detection, etc.

cogito
Conversation optimization

amazon
Product recommendations

Southwest
Rapad Rewards

Credit card fraud detection

R
Customer interaction

optimization (travel, etc.)

amazon alexa

Personal assistants

-
)0HN PAU (

Music Existing client interactions -
recommendations luxury travel concierge

FLIX
Product recommendations

nest
Thermostat control

1

R.L. Adams, "10 Powerful Examples Of Artificial Intelligence In Use Today," Forbes, www.forbes.com.



5 Families of Al Techniques
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Huang Ling-fang, "Artificial Intelligence," 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE), Singapore, 2010, pp. 575-578.



6  Al versus Machine Learning

Machine learning is considered a subset of artificial intelligence

Artificial Intelligence: a branch of computer science which studies building machines capable of
intelligent behavior

Machine Learning: a computer learns to perform a task, often without explicit instructions, by
studying a training set of examples

Artificial
Intelligence

c Machine
Learning

K. Bakshi and K. Bakshi, "Considerations for artificial intelligence and machine learning: Approaches and use cases," 2018 IEEE
Aerospace Conference, Big Sky, MT, 2018, pp. 1-9.

P. Louridas and C. Ebert, "Machine Learning," in IEEE Software, vol. 33, no. 5, pp. 110-115, Sept.-Oct. 2016.



7  Machine Learning is a Subset of Al
Tables making comparisons are often incorrect ... since machine learning is a subset of AI, every
machine learning approach has some application to AI

Machine Learning Exampl- Al application

Image segmentation and classification to visually
identify manufacturing flaws

Linear regression to predict future samples of a
time series (e.g., GDP growth)

Natural language (text and voice) processing for
translation (e.g., Google translate) of business
documents

Image segmentation and classification is a key
component in Al applications (e.g., humanoid
robots, etc.)

Numerous Al applications related to prediction
(e.g., motion of images in a scene for
autonomous navigation and obstacle avoidance)

Natural language processing is required for any Al
application that involves language

Pattern recognition applied to credit card fraud
detection

Product recommendations to improve customer
experience and boost online sales

Pattern recognition applied to autonomous
grasping (e.g., pick up the ball not like the
others)

Product recommendations provided by an Al
assistant

In addition, there are many fields of AI that are not application specific and machine learning is not
the primary focus or methodology ... examples include research on planning and cognitive
architectures



8 I Machine Learning

While there are many machine learning techniques, the basic process flow is the same for all
approaches

Machine learning
process - (truth)
data is the key!

New Data

Training
Data

Machine
Learning
Algorithm

Model Prediction



9 Enabling Technological Advances

Moore's Law is Alive and Well!

Transistors per Square Millimeter by year
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Moore's Law: the number of transistors on
an IC would double every few years.
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-80 bytes/punch card
133 bytes/sec

1951 - 7200 bytes/sec

1980 - 5MB, 0.625MB/sec
1990 - 400MB, 0.7MB/sec
2008 - 750GB, 64MB/sec

today - solid state drive
4TB, 500MB/sec

E. P. DeBenedictis, "It's Time to Redefine Moore's Law Again," in Computer, vol. 50, no. 2, pp. 72-75, Feb. 2017.



10 Enabling Technological Advances (continued)

Low cost, high performance sensors, platforms

GPS

LIDAR (Light Detection
and Ranging)

Image
sensors

UAVs

Graphical Processing Units (GPUs)

1717171-1-1-1-1-1-1.-!-!11=7
ri••!"1-1-‘11v,r1rtr...r-lr,r-lcirtirir

Application Specific Integrated Circuits (ASICs)



11 Enabling Technological Advances (continued)
Truth data for training/validation — there are a large number of datasets available for image
processing, natural language processing, and audio/speech processing
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MNIST - 70,000 handwritten Open Images Dataset - 9 Million annotated images
digits

Fashion-MNIST, 70,000
images

A iiA fi4A11
IIIA :al IRA •

94141140AintiOpeThAr
44 4 * istig - tAA414674,4e4I t

The Street View House
Numbers (SVHN), 600,000

images

"25 Open Datasets for Deep Learning Every Data Scientist Must Work With",
https: / /www.analyticsvidhya.com / blog/2018/03 /comprehensive-collection-deep-learning-datasets/



12  A Brief History of Al — The Turing Test
Proposed by Alan Touring in 1950

Three players

o A — computing machine

o B — human being

o C — interrogator

All communication is through a textual device
(e.g., keyboard)

Can the interrogator identify the human and
computer?

Turing predicted that a computer could convince
—33% of the judges after 5 minutes of
questioning by the year 2000

June 2014, A chatbot called Eugene Goostman,
which simulates a 13-year-old Ukrainian boy,
convinced 30% of the judges

A - computer

B - human

ALA
C - interrogator

S. Guccione and G. Tamburrini, "Turing's Test Revisited," Proceedings of the 1988 IEEE International Conference on
Systems, Man, and Cybernetics, Beijing, China, 1988, pp. 38-41.



13  A Brief History of Al — the Dartmouth Workshop

The term "artificial intelligence" was first coined by John McCarthy, Marvin
Minsky, Nathaniel Rochester, and Claude Shannon in 1956

They proposed a summer workshop on artificial intelligence at Dartmouth
College

Topics included:
• Automatic Computers — "If a machine can do a job, then an automatic calculator can be programmed to

simulate the machine. The speeds and memory capacities of present computers may be sufficient to
simulate many of the higher functions of the human brain, but the major obstacle is not the lack of
machine capacity, but our inability to write programs taking full advantage of what we have."

• How Can a Computer be Programmed to Use a Language — "It may be speculated that a large part of
human thought consists of manipulating words according to rules of reasoning and rules of conjecture.
From this point of view, forming a generalization consists of admitting a new word and some rules whereby
sentences containing it imply and are implied by others. This idea has never been very precisely formulated
nor have examples bieen worked out."

• Neuron Nets —"How can a set of (hypothetical) neurons be arranged so as to form concepts.
Considerable theoretical and experimental work has been done on this problem ..."

• Theory of the Size of Calculation — you have to understand the size of the calculation to measure the
efficiency of an algorithm

• Self Improvement — a truly intelligent machine will carry out self-improvement
• Abstractions — machine methods of forming abstractions from sensory and other data
• Randomness and Creativity — conjectured that creative thinking involves some randomness

J. McCarthy, M.L. Minsky, Nathaniel Rochester, and C.E. Shannon, "A proposal for the Dartmouth summer research project
on artificial intelligence", submitted to the Rockefeller Foundation, August 31, 1955.



1958
LISP

developed

14 A Brief History of Al - Timeline
I

Al Winter: period of significantly reduced research funding. One
cause was outlandish claims that were impossible to meet.

1950
[Alan Turing proposes

"Turing Test"  

T

1956
Dartmouth
Workshop rFi 1965

rst Expert
System

L 1974-80 I
Al Winter

Funding Cuts

1981
First

Commercial
Expert System

1

1997
IBM's Deep
Blue defeats

Garry
Kasparov

1987-93
Al Winter

Funding Cuts

SIRI was spun out of the DARPA funded CALO (Cognitive
Assistant that Learns and Organizes) project, 2003-2008.

-2006
Al for image
processing
takes off

_ 
2008

Google's speech
recognition app

on iPhone

2015
Google DeepMind's
AlphaGo beats
human champion

2011
IBM's Watson
beats two
legendary
humans at
Jeopardy

2014
Chatbot Eugene
Goostman passes
"Turing Test"

2011
Siri released with

iPhone 4S
41-



15 Research in Machine Learning Applied to Energy Systems
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Figure 2. The growth in the number of articles during. the past two decades.

A. Mosavi, M. Salimi, S. F. Ardabili, T. Rabczuk, S. Shamshirband, and A. R. Varkonyi-Koczy, "State of the Art of Machine
Learning Models in Energy Systems, a Systematic Review," Energies, vol. 12, no. 7, Apr. 2019.



16 Limitations of Machine Learning

Performance of a ML algorithm can be very good if the characteristics of the training data match the
observed data

If the characteristics of the data change over time, and this is not captured in the training data, the
performance of the ML algorithm can vary widely

%V'
Training
data

Characteristics
change



17 I Limitations of Machine Learning

For some problems, there is a known non-machine learning solution that is efficient, elegant, and
robust

Is machine learning the best fit for my problem?

Wow, I applied
machine learning

to solve my
problem!

1



1 8 Course Outline

1. Introduction to Artificial Intelligence and Machine Learning (Ray Byrne) — 15 minutes

2. Machine Learning Overview (David Stracuzzi) — 45 minutes

3. Machine Learning Approaches and Data Considerations (Warren Davis) — 25 minutes

4. Optimization with Application to Machine Learning and Power Systems (JP Watson) — 10
minutes

5. Highlights of Artificial Intelligence/Machine Learning in Power Systems (Matt Reno/Logan
Blakely) — 20 minutes

6. Q&A — 5 minutes



Machine Learning Overview

David J. Stracuzzi (djstracgsandia.gov)

September 9, 2019



20  Artificial Intelligence

"The automation of
activities that we
associate with
human thinking ..."
(Bellman, 1978)

"The art of creating
machines that
perform functions
that require
intelligence when
performed by
people."
(Kurzweil, 1990)

"The study of the
computations that
make it possible to
perceive, reason,
and act."
(Winston, 1992)

0

I



21 What is Machine Learning?

Machine Learning coined in 1959 by Arthur Samuel while trying to
use data to improve performance of a checkers playing program.

Samuel, A.L. (1959). Some
studies in machine learning
using the game of checkers.
IBM Journal of Research and
Development.

IBM, 1956



22 What is Machine Learning?

A computer program is said to learn from

experience E with respect to some class of

tasks T and performance measure P

if its performance at tasks in , as measured by P,

improves with experience .

Tom Mitchell, Machine Learning, 1997



23 I Many Types of Tasks and Methods

Tasks:

• Supervised vs Unsupervised

• Classification

• Clustering

• Regression

• Anomaly Detection

• Time Series Analysis

• Policy Learning

- Transfer Learning

Methods:

• Decision Trees

• Rule-Based Methods

• Neural Networks

• Inductive Logic

• Support Vector Machines

• Bayesian Methods

• Genetic Algorithms

Statistical Algorithms

Ensembles



24 I Example Problem: Handwriting Recognition

Task (T): Recognizing and classifying handwritten numbers within images

Performance measure (P): Percent of numbers correctly classified

Experience (E): Database of handwritten numbers with given classifications
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1
Example adapted from Tom Mitchell, Machine Learning, 1997 Data from MNIST database, http://yannlecun.com/exdb/mnist/



25 How Does Machine LearningWork?

Data / Experience

X = {xi, x2, ..., xj

Model

Y f(x)

Loss Function

6= ,,E7',1,0g(f(x1)- Y1)

Learning Algorithm

if °sett ngs[O] c writ areTA s' 1-AD f
f 

else if Isett ng [0] c areTA d 1 == OP

else if I sett ng [O] c areT,r d' 1 Or

ame areTA 1 ' -01 1

if n am e c writ areThl 1 1-01 1

f Iname c areTA 1 1-01 1:

name+ etr getstringl sett ngs[1]1,

name += Datel It f -Irmatietr getDatel settings[ 1]1

name + '

name +

name + _ ,

Parameterized Model

f(x) = 01x1 + t92x2 + •••

Predictions a Evaluation
0 9

0.8

AT

6.6

ro:
0.1

01

0

0.001.0 5.00107 100E-06 190E06 100E06 1001-05 100E06 0101-06 4.00E-C6 990906 900106

Amu I probability of emceed ng danyge state



26 I Learning Example : Decision Trees

Task: Determine if Bill will play
tennis given weather observations

Performance Metric: Prediction
accuracy

Experience: Past observations

rOutlook

c-i-Y \'1)° •

Humidity
1401ILL 

Wind

, %.fl*fa. 1-,_. la' rA
.c `s") 

4.) o
.9 ‘50.

*Yes No ► 'es

-"Mr-

Day Outlook Temperature Humidity Wind Play Tennis?

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

Example from Mitchell, T.M. (1997). Machine Learning.



27 I Learning Example: Data Preprocessing and Feature Engineering

Many learning algorithms take a set or sequence of vectors as input

Raw data needs to be encoded in this format

° For many data types, there are existing encoding conventions

Feature engineeringuses domain knowledge to create these encodings

Highly manual and time consuming

Quality of learned model often dependent on feature encodings

Example: Play Tennis?

Outlook: {sunny, overcast, rain} or
{sunny, partly cloudy, mostly cloudy, cloudy, drizzle, rain, downpour} or
RGB image from TennisCam

Temperature: {hot, mild, cool} or
{hot, warm, mild, cool, cold} or
{-20F, -19F, ... , 114F, 115F} or
continuous



28 Learning Example: Decision

General Approach:

• Split the data based on

information theory (entropy)

• Entropy measures the

distribution of positive and

negative examples in each block

• Greedy search through

attribute (feature) space

Gain = 
Entropy _ Sum of Entropies
all data after split

No, No, No,
Yes, Yes

>
0

Yes, Yes,
Yes, Yes

Yes, Yes, No,
Yes, No

Trees

Day Outlook Temperature Humidity Wind Play Tennis?

D1 Sunny

D2 Sunny

Hot

Hot

High

High

Weak

Strong

D3 Overcast Hot High Weak

D4

D5

D6

Rain

Rain

Rain

Mild

Cool

Cool

High

Normal

Normal

Weak

Weak

Strong

D7 Overcast Cool Normal Strong

D8 Sunny

D9 Sunny

Mild

Cool

High

Normal

Weak

Weak

D10 Rain Mild Normal Weak

a D11 Sunny Mild Normal Strong

ID12 Overcast Mild

D13  Overcast 1._ Hot 

High

Normal

Strong

Weak

Rain 9,17471.111.1 High Strong

No

No

Yes

Yes

Yes

No

Yes

No

Yes

Yes

Yes

Yes

Yes

No

1

G=0.247 G=0.029 G=0.152 G=0.048



29 I Learning Example: Decision Trees

(Day 15) What will happen on a sunny, cool, humid, windy day?

Many design decisions affect performance:

• Training data
(number and quality of examples)

Which variables describe the data

Splitting criterion

Binary versus multivariate splits

What to do with numeric variables

Stopping criterion

Humidity

itr
1•4‘.

•L
‘.4)

Outlook

Yes,
Wind

ty \a 1
o
kse i



30 I Decision Tree Hypothesis Space

sunny, cool, high, strong

-z
on
•Z

+
+

+

Sunny Overcast

Outlook

Rain

On
Z

V)

-.c
*1

Note: Original data was in 5 dimensions. Only showing 3 here compressed into 2.



31 I Bias-Variance Trade-Off (a)

Always choose the simplest
model that can fit the data.

Circuits (a), (b), (c) represent same

logical function

Can view gates and connections as

learnable parameters

• All things equal, (a) is a much easier

learning problem and most likely to

generalize well.

Many theoretical constructs attempt to

explicitly manipulate this trade, yet it

remains a vexing problem.

CD

3 3
A A
A B C D

©____________________________ __________________
e e

CD

3 3
A A
E F G H

CD

3 3
A A
IJKL

©

3 0
A A
MNOP

4 layers

15 gates

30 connections

VC < 490

(b)

0

®

0
® ® ® ® ® ® ® 0 ® ® ® ® ® 0 ® ®

A B C D E GH KLMNO

3 layers

19 gates

50 connections

VC < 798

(c)

2 layers
65 gates
320 connections
VC < 5815



32 Learning Example: Image Analysis

Task: Classify pixels as tree, grass, roof, water, concrete, or boat

Performance Metric: Accuracy

Experience: Labeled pixels

RGB Color Height

NV

Labels Predictions



33 I Learning Example: Image Analysis

As we develop an application, we need to
ask:

• How else might we formulate the problem?

What input variables might provide the most

information?

- How good are my labels?

RGB Color Height

What is the most appropriate knowledge

representation?

What is the most appropriate performance metric?

Given the task and the data, what learning

algorithms are likely to perform well?

Labels Predictions with
Color Only (78%)



34 I Evaluation

rr

I Training Data

Learning Process

[Training Data

It Learning
Algorithm

Validation Data

Model
Selection

What makes evaluation hard?

l"-- ---1

Test Data
l J

Parameterized
Model

PredictionsLr
• Many ways to formulate error and performance metrlcs

• Highly dependent on the data, task, and goals

• Extrapolation ability is difficult to evaluate

• Hard to determine if/when we are extrapolating

-

Performance (Loss) Metrics

• Accuracy = (TP + TN)/n

• Precision = TP / (TP+FP)
• Recall (Sensitivity) = TP / (TP+FN)
• F-score = (P*R) / (P+R)
• Confusion Matrices

• Log Loss = 71 riv=i E7=1 yii x log(pi 1)

• ROC Curves: calibrate classification

thresholds
• P-R Curves: similar to ROC; lots of negatives
• Regression metrics:

• Root Mean Squared Error
• Mean Absolute Error
• R2 — variance explanation

All of these can be applied with cross validation,J

random resampling, and stratification

1



35 I Learning Example: Time Series Application

Task: Change detection

Want to know, as precisely as possible,
when the signal first arrived

Model the noise

Performance Metric: No Ground Truth!!
Internal distance metrics only

Experience: Waveform data,
containing both signal and noise

Optimize fit; Models
meet at change point

Model the signal

I

24 2 6 28 30 312 34



36 I Uncertainty

Data / Experience

X = {xi, x2, ..., xj

Model

Y f(x)

41\
Loss Function

E= i+irt1= 0 g (xi) - Y1)

Measurement
Errors

Regu larization
Effects

Learning Algorithm

if l'setti ngs[0].c p areTor s")=AT.i
if (n am e. c om p areTor "} !=0} &-

name += "2;

n am e+- etr.getstring(setti ngs[1]};
3 else if (setting [0]. c p areTor d" } == 0.11:

if In am e. c pareTor") !=0}
name += "2;

n am e += DateLltils.format(etr.getDate(settings[ i ])

else if (setting [0].c p areTor ==
if (name.compareTor") !=0}

name += "2;

Model Form
Uncertainty

Parameterized Model

f(x) = 01x1 + 02x2 + •••

Inference
Errors

Predictions

—Pak maimYe mthoolganage
ma:Manta on bawd end teem]

0.2  

01

0  

0.001.0 5.001.07 1001-06 110106 200106 2.501-01 100E06 2.10106 4.006-Ce 050225 5.00105

Anne I probability el easeeding damage state



37 Uncertainty Example: Seismic Onset Detection

800

600

400

200

-200

-400

Noise-Signal Onset Search Window

— High/Low Filtered Seismic Data

-600 — A.I.C. for AR(2)

A.I.C. for ARMA(1,1)

— A.I.C. for ARMA(1,3)

-800
0 50 100 150

40

20

-20

-40

- Raw Seismic Data

— A.I.C. for ARMA(2,2)

— A.I.C. for AR(4)

Noise-Signal Onset Search Window

1

1
11

-60
200 0 50 100 150 200



38 Uncertainty Example: Seismic Onset Detection

Mode of
Analyst Picks

Mode of
Automated Picks

V

data

Analyst Mode

Automated Mode

Analyst
Picks

Automated
Picks

II I 1111111111111111111  LI I I I

1100 1150 Sample Time (40hz) 1200 1250



39 Domain Knowledge

• Variable selection
• Representative data

Data / Experience

X = {xi, x2, ..., xj

Model

Y f(x)

Loss Function

E= ,,E7',1,0g(f(x1)- Y1)

Structural
knowledge

1111—
Learning Algorithm

if l'setti ngs[0].c p areTor s")=AT.i
if (n am e. c om p areTor "} !=0}

n am e "2;

n am e+- etr.getstring(setti ngs[1]};
3 else if (setting [0]. c p areTor d" }

if In am e. c pareTor") !=0}
name += "2;

n am e += DateLltils.format(etr.getDate(settings[ i ])

else if (setting [0].c p areTor ==
if (name.compareTor") !=0}

name += "2;

Domain
constraints

Parameterized Model

f(x) = 01x1 + t92x2 + •••

Predictions

—Pak eitimate Atoolcansav,
Ina:Kanto onhisoclondfrapin]

0.2  

01

0  

0.001.0 5.0014/11.001-06 110106 200106 2.501-01 200E06 510E06 1.010-26 050225 5.00101

Amu I probability al emceed ng damage state



40 Interactions Between Domain Theories and Machine Learning

6;•arse measurements
Example: Given spars
network of rainfall
sensors and doppler
radar, compute rainfall
distribution map for
entire region.

Becomes input to
hydrology simulations.

J.

Sandoval
Bernalillo

i_vent detection
Example: Given
seismograph network,
identify all onset times
and estimate relative
detection quality. 40 60 so

liecomes input to slowness inversion.

Predictive Model
Induction
Example: Given URL
format rules and
known examples of

benign and malicious
links, learn to
distinguish between the
two.

https://www.facebook.contelp/cookies/?ref=sitefooter

HostName Path Parameters

4rror correction
Example: Compare mod/sim results to
observations, learn an error term for the
simulation model. Error term may use
observables not included in the model.

0.20-

.ttit t
o.natti k

Ant t
lo•ttl'nrtt,

0.20 0.20

0.15

0.10

1St%

IR 414 „

/

0.15

o.lo

0.05 0.05

0.913.00 0.05 0.10 0.15 0.20 .9%0 0.05 0.10 0.15 0.20 100 0.05 0.10  o.ls 0.2J0
u/h 

Surrogate models
Example: Given hig
fidelity model and
simulations, predict
physical model outputs
for given conditions.

Use learned model as
inexpensive proxy for
the high-fidelity model.
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44 Outline

Factors in deciding upon a machine learning approach

Classes of Machine Learning

• Supervised Learning

• Unsupervised Learning

• Semi-Supervised Learning

• Reinforcement Learning

Information Representation

E



45 Deciding Upon a Machine Learning Approach

What problem are you trying to solve?
Predict a category

Predict a value

Group data

Find anomalies

Find correlations

Optimize parameters

What data is available?
o Numerical

o Categorical

Images/Audio/Video

Text



46 Supervised Learning

Tasks
O Regression (continuous response)
O Classification (discrete response)

o Binary (2 classes)

. Multiclass (>2 classes)

Experience (data)
o Regression: input-output pairs
- Classification: feature-label pairs

Performance measures
o Many different methods

Iris Data (subset)
Sepal
len • th

Sepal
width

Petal
len • th

Petal
width

Species

5.1 3.5 1.4 0.2

4.9 3 1.4 0.2

4.7 3.2 1.3 0.2

4.6 3.1 1.5 0.2

5 3.6 1.4 0.2

7 3.2 4.7 1.4

6.4 3.2 4.5 1.5

6.9 3.1 4.9 1.5

5.5 2.3 4 1.3

6.5 2.8 4.6 1.5

6.3 3.3 6 2.5

5.8 2.7 5.1 1.9

7.1 3 5.9 2.1

6.3 2.9 5.6 1.8

6.5 3 5.8 2.2

setosa

setosa

setosa

setosa

setosa

versicolor

versicolor

versicolor

versicolor

versicolor

virginica

virginica

virginica

virginica

virginica
I it iI r

Features Label

Fisher, 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics. 7 (2): 179-188.
Anderson, 1936. The species problem in Iris. Annals of the Missouri Botanical Garden. 23 (3): 457-509.



47 I Examples of Supervised Learning

Linear Regression

Support Vector Machines

1.2

0.8

Naïve Bayes
0.6

Decision Trees / Random Forests 0.4

0.2

Neural Networks

k-Nearest Neighbor

petal width <

YES NO

petal length >

YES NO

versicolor

support vectors

=0o+O1xi+Ei
y = X13 + E

• •

0.2 0.4 0.6 0.8 1 1 2

maximum-margin hyperplane

maximum margin

support vectors



48 Neural Networks

Brain has neurons that communicate with other neurons

through electrical impulses.

0 Approximately 100 billion in human brain

Connections strengthen with experience

Neural networks are mathematical models inspired by

the connectionist model of the brain



49 Artificial Neural Networks

Sepal
Length

Sepal
A/idth. 

Petal
Length

Petal
Width

 ► Input 1

Input 2

Input 3

 *1 Input 4

32

tanh x

#tanh

/14

.43

tanh x

anh

tanh x

Hidden
Layer 1

Node 1

Hidden
Layer 1

Node 2

Hidden
Layer 1

Node 3

Hidden
Layer 1

Node 4

Hidden
Layer 1

Node 5

Connection
Weights

1 1

.39

Hidden

tanh x 
Layer 2

anh x

Node 1

Hidden
Layer 2

Node 2

Hidden
Layer 2

Node 3

Hidden
Layer 2

Node 4

Activation
Functions

tanh x Setosa

anh x Virginicat 

Example feed-forward neural network



50 Advanced Neural Networks

Convolutional/Deep Networks
• Convolutional networks take advantage of local dependencies

• Deep networks capitalize on the power of deeper networks to encode/represent higher level, latent features

• Deep convolutional networks revolutionized the processing of images, sounds, and video

• Applicable to other modalities

Recurrent Neural Networks
• Takes data of varying length

• Useful for temporal and sequential data (e.g., text, signal processing)

Autoencoders / Generative Adversarial Networks
• Autoencoders create compressed representations of the original data
• Useful in anomaly detection, compression, domain feedback

• Variational autoencoders can generate new data

• Generative Adversarial Networks pit two models (usually neural networks) against each other
• Generator creates new samples

• Discriminator learns to tell original samples from generated samples

• Generator and Discriminator co-evolve

• "Battle-testee generator produces high quality new samples



51 I k-Nearest Neighbor

Input: k closest instances (nearest neighbors) in feature space

Output

Regression: average values of k nearest neighbors

° Classification: majority class of k nearest neighbors

kNN: example of instance-based learning
- Function only approximated locally
• Computation deferred until prediction

https://www.quora.com/How-is-the-k-nearest-neighbor-algorithm-different-from-k-means-clustering

I



5 2 I Unsupervised Learning

Tasks
o Clustering (grouping)

o Dimensionality reduction

O Anomaly detection

o Association

o Generative modeling

Experience (data)
o Instances are unlabeled

Performance measures
o Challenging due to lack of labels/known solutions

o Validation often leverages labeled data sets (labels only used in testing)

Iris Data (red=setosa,green=versicolor,blue=virginica)

Sepal.Length

_

_

2.0 3.0 4.0

SepaLWIdth

• •

• ••t•••

. gsso....•
4.5 5.5 6.5 7:5

Petal.Length

Fisher, 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics. 7 (2): 179-188.
Anderson, 1936. The species problem in Iris. Annals of the Missouri Botanical Garden. 23 (3): 457-509.

0.5 1.5 2.5

• e • •
_

Petal.Width

-
-



53 I K-means Clustering

Task
Group data instances by distance into K groups

. Data instances are points in a multidimensional feature vector space

Standard Algorithm
1. Initialize cluster centroids randomly

2. Iterate until convergence

a) Assign each instance to the cluster whose centroid is "closest"

b) Update the centroids given the current cluster assignments

0 x
0 0

0
0

o
a
o x 0
o

x a
o a

a a

Centroids (x) and cluster
assignments (color) at start of iteration

0
• x
0

a e

0

x X.

Assignment of instances
to cluster with closest centroid

cluster centroid =
arithmetic mean of
the points in the
cluster

go
a

• . x a
0 x • •
..

•

*
0 
X 
•

0

Update centroids based
on new cluster assignments



54 K-means Clustering

Task

Group data instances by distance into K groups

o Data instances are points in a multidimensional feature vector space

Challenges

• What value to use for K?

Most often chosen by the user/analyst/subject matter expert

o How to initialize the centroids?

o Random instances as centroids vs. random cluster assignments

o How to compute distances?

• Euclidean distance often used

• Often data- and problem-dependent

o When to stop iterating?

• Assignment stagnation often used

• K-means clustering is equivalent to local minimization



55 I Other Partitional Clustering Methods

K-medoids

K-means like algorithm using medoids (median values of cluster points) instead of means for assignments

Fuzzy K-means

Fuzzy set membership for observations

DBSCAN

density-based clustering with outlier detection and no predetermined number of clusters

Gaussian Mixture Models

K-means like algorithm with Gaussian distribution assumptions & probabilistic assignment

Spectral Clustering

Useful for exploiting affinities (e.g., connections, similarities), in data points, regardless of Cartesian
proximity



56 I Hierarchical Clustering

o
00 ©
Data in 2D Feature Space

Dendrogram

1

2

4

6

Clusters

Clustering Approaches

Agglomerative

° Merging from bottom to top

0 Divisive

O Splitting from top to bottom

Metric

Distance between data points

Linkage Criteria

° Distance between sets

o Single: minimum

o Complete: maximum

o Average

Number of clusters

1
1

I
1
1
•

1
I

Choose a level to cut dendrogram i

1
Gan, et al., Data Clustering: Theory, Algorithms, and Applications. SIAM, 2007.



57 I Semi-Supervised Learning

Tasks

' Supervised Learning Tasks

Experience (data)

O Small amount of labeled data

o Mostly unlabeled data

Performance measures

o Supervised Learning measures

Training model

O Train a model using labeled data

o Use model to predict labels for unlabeled data

o Add (some) unlabeled data and predicted labels to labeled data

O Repeat

Co-training

O Multiple classifiers working in tandem

o Requires independence between classifiers

E



58 I Reinforcement Learning

Tasks

o Take the best action based on current state (i.e., information available)

Experience (data)

Interactions with the environment/system

State of environment/system

Performance measures

Maximize reward

Minimize risk
Agent

State Reward

Environment

Action

Reinforcement Learning: State-of-the-Art. Eds. Wiering and van Otterlo, Springer-Verlag, 2012.



59 I Success
Information Representation is Key to Machine Learning

Aforementioned examples assume that the data is already in the correct form to solve the problem

Knowledge Elicitation
• Gaining knowledge from Subject Matter Experts

Feature engineering / Data wrangling
• Getting the data in a form useful for answering the pertinent questions

• Often an iterative process

Feature selection
• Some features may be irrelevant

• Many algorithms are robust to this, but irrelevant features can degrade performance or cause machine learning methods to take
longer than desired

Data properties
• Are the relevant features included?

• Is there enough of the data?

• Is the data drawn from the correct distribution?

111-1 Fil

■

1
1



60 I Technical References

Tools

Scikit-learn

o https://scikit-learn.org/ 

PyTorch

o https://pytorch.org

Tensorflow

o https://www.tensorflow.org

Data

UCI Machine Learning Repository:

o https://archive.ics.uci.edu/ml/index.php 

Kaggle:

o https://www.kaggle.com/datasets 
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I What Do We Mean By "Optimization"?62

Linear programming (LP)

arg min c Tx

s.t. Ax

x E Qn

Classic example: Linear Assignment Problem (LAP)

arg min LLcuxu
x JEN iEN

s.t. Lx,, =1 Vj E N
iEN

IXinj =1 Vi E N
JEN

VieNj EN

"Standard" form..

arg min CT X

We generally assume that an
algebraic description of the

underlying problem is available

Popular extensions:
• Mixed-integer programming
• Non-linear programming
• Stochastic programming
• Robust optimization



63 I Machine Learning and Optimization (I)
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Slope-intercept
parameters of a line

4mm

Linear regression is an optimization problem

n rt
A 2
E i

Z=1 z =

( • — a — Px,)2

0

9 D 0

0 

—
0 0 

0 
0 0 ao._

o ... qP_ 42. -to- CP — —0 0
ip. —0- e7

—Cro 0 0 Do
0 0 0

o0 -0C 9
044, d 0

ni -

o -

1

0
1

10

1

20

1

30

I

40

r

50



64 Machine Learning and Optimization (2)

OPTIMIZATION
FOR MACHINE LEARNING

50,1(0 0,

SUVRIT SRA

SEBASTIAN NOWOZIN

STEPHEN J . WRIGHT

MIT Press

"The interplay between
optimization and machine
learning is one of the most
important developments in
modern computational
science. Optimization

formulations and methods
are proving to be vital in
designing algorithms to

extract essential knowledge
from huge volumes of data."

ICML l 2019
Thirty-sixth International Conference on

Machlne Learning

Year (2019) -

Help -

My Registrations

Profile -

Contact ICML

Code of Conduct

Future Meetings

Diversity & Inclusion

A word doodle of accepted papers at
@NeurlPSConf -- Learning is more than
deep.

ai berkeley brain california carnegie chen
columbia 'eep deepmind facebook

generative google lab

learn i ng mellon
microsoft mit models nationdl networks
neural oxford

science stan or• tsinyll.

wang zhang

Dates Schedule- Subrnit - Attend- Organizers -

Show all

WE. Jun lath . 00 -- 04 20 PM 0 Room 103

Accelerated Linear Convergence of Stochastic Momentum Methods in Wasserstein Distances
Buena Can • Med gurPnzhreenen • Lines°, Zhu

Wed Jun 12th 0430 -- 04:25 PM 0 Roo. 103

SOD without Replacement: Sharper Rates for General Smooth Convex Functions
Oheeral Pauaral • Protect, Jain • Pro... Netraoalli

wed Jun 12. 04.25 -- 04.30 PM 0 Room 103
On the Complexity of Approximating Wasserstein Barycenters
Nes., Pro.nin • Naze. Toolsa Perna avinsickh Pavel Ovorecharakii Alexander Pasnisov Cesar

••

Veal Jun 12th 04:30 -- 04.35 PM 0 Room 1.

Estimate Sequences for Variance-Reduced Stochastic Composite Optimization
Awes x)iwssitkov Julian Md.

Slides - Video.

Wed Jun 12th 04:35 -- 04:40 PM 0 Poore ,03

A Dynamical Systems Perspective on Nesterov Acceleration
Michael Pluetliebach - Michael Jordan

Stiles x Video

Wed Jut lath MAO -- 05:00 PM a Roo. ,3

Randorn Shuffling Beats SGD after Finite Epochs
Jeff HaeChen SuvrIt Sra

Vide,/

Wed Jtat 12th 05:00 - 05:05 PM 0 Room 103

Rrat-Onler Algorithms Converge Faster than ( )( 1
Cning-eei Lee - Stephen Meta
S 101, vdeo

) on Convex Problems

Program Highlights

Oral

Many talk sessions at major machine
learning conferences would be at
home at optimization conferences
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I Journal of Machine Learning Research7 (2006) 1265-1281 Submitted 7/06:Published 7/06

The Interplay of Optimization and Machine Learning Research

Kristin P. Bennett
Department of Mathematical Sciences
Rensselaer Polytechnic Institute
Troy, NY 12018, USA

Emilio Parrado-Hernfindez

Department of Signal Processing and Communications

University Carlos III de Madrid

Leganes (Madrid), 28911, Spain

Editors: Kristin P. Bennett and Emilio Parrado-Hernández

Abstract

BENNEK@RPI.EDU

EMIPAR@TSC.UC3M.ES

The fields of machine learning and mathematical programming are increasingly intertwined. Op-
timization problems lie at the heart of most machine learning approaches. The Special Topic on
Machine Learning and Large Scale Optimization examines this interplay. Machine learning re-
searchers have embraced the advances in mathematical programming allowing new types of models
to be pursued. The special topic includes models using quadratic, linear, second-order cone, semi-
definite, and semi-infinite programs. We observe that the qualities of good optimization algorithms
from the machine learning and optimization perspectives can be quite different. Mathematical pro-
gramming puts a premium on accuracy, speed, and robustness. Since generalization is the bottom
line in machine learning and training is normally done off-line, accuracy and small speed im-
provements are of little concern in machine learning. Machine learning prefers simpler algorithms
that work in reasonable computational time for specific classes of problems. Reducing machine
learning problems to well-explored mathematical programming classes with robust general pur-
pose optimization codes allows machine learning researchers to rapidly develop new techniques.
In turn, machine learning presents new challenges to mathematical programming. The special issue
include papers from two primary themes: novel machine learning models and novel optimization
approaches for existing models. Many papers blend both themes, making small changes in the
underlying core mathematical program that enable the develop of effective new algorithms.

This is even before the deep
learning revolution...

"Optimization problems lie at
the heart of most machine
learning problems"
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Stochastic gradient descent (SGD) - a now standard optimization
method - is at the center of the deep learning revolution

There is still much more that optimization can do for
machine learning, e.g.,
• Rigorous proofs of global optimality
• Basis for adversarial machine learning
• From neural net training to architecture design

Training of deep (autoencoder)
neural networks is a non-linear

optimization problem to minimize
reconstruction errors

But: SGD is a local method for solving a
non-linear optimization model

• A heuristic - not a rigorous,
complete solution method

• Absolutely no guarantee of
optimality

• Nor any indication of how far you
are from a global optimum



67 Most of Power Systems Operations and Planning is
Optimization...

Decision making in power systems looks at processes ranging from very large time constants to
near real-time:

Years, Seasons, Months, Weeks: Resource adequacy, transmission and hydro resource
planning
Days: Hydro-thermal coordination, day-ahead UC of energy and reserves, intra-day UC
Hours: intra-day look-ahead processes, dynamic economic dispatch
Minutes: Economic Dispatch (ED)
Seconds: Automatic Generation Control (AGC)

Years Months Weeks Day Real-time

• Forward Capacity Markets
• Hydro planning

• Hydro-thermal coordination
• DA M energy and rese—nre
• LJC

• ED

Time

Every problem at the five minute and larger time scales is formulated and
solved as an optimization problem



68 ML for Power Systems Optimization:Warm Starting

The time required to solve operations problems such as commitment and dispatch can be
significantly lowered by up to 80% via "warm starting" - use historical data to fit a ML model that

predicts what are likely to be high-quality solutions for a given

Learning to Solve Large-Scale Security-Constrained Unit

Commitment Problems

klinson S. Xavier', Feng Qin', and Shabbir Ahmed2

Energy Systems Division, Argonne National Laboratory, Argonne, IL, USA. {azavier ,fqiu}Canl.gov

2 School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

sahmedeisye.gatech.edu

Abstract. Security-Constrained Unit Commitment (SCUC) is a fundamental problem in power systems

and electricity markets. In practical settings, SCUC is repeatedly solved via Mixed-Integer Linear

Programming, sometimes multiple times per day, with only minor changes in input data. In this work,

we propose a number of machine learning (ML) techniques to effectively extract information from

previously solved instances in order to significantly improve the computational performance of MIP

solvers when solving similar instances in the future. Based on statistical data, we predict redundant

constraints in the formulation, good initial feasible solutions and alfine subspaces where the optimal

solution is likely to lie, leading to significant reduction in problem size. Computational results on a

diverse set of realistic and large-scale instances show that, using the proposed techniques, SCUC can

A Distributed Framework for Solving and Benchmarking Security Constrained
Unit Commitment with Warm Start

Publisher: IEEE

4 Author(s)

Abstract

Authors

Keywords

Metrics

Yonghong Chen ; Fengyu Wang ; Yarning Ma ; Yiyun Yao View All Authors

141 A', (3 STO

Abstract:

This paper discusses several methods to improve commercial optimization solver performance on day

ahead security constrained unit commitment through warm start and lazy constraint settings. Data analytics

is performed to greatly improve the quality of the initial commitment solution and lazy constraint setting. A

distributed optimization framework is proposed to take advantage of the diversity from prevalent solvers

(GUROBI and CPLEX) and different warm start strategies. A systematic distribution profile based

benchmarking method is also proposed.

Published in: IEEE Transactions on Power Systems ( Early Access )

Related techniques hold even more promise in the context of
stochastic power systems operations problems, which are

significantly more difficult in practice



69 I ML for Power Systems Optimization: Scenario Construction

Day-Ahead Scenarios for Bulk Load

4000

Historical forecasts and
corresponding actuals are fed into
ML algorithms to characterize error

distributions...

power power

lB

• Skeleton points

CDF of errors
applied to forecast

  Quantiles

et. c2 Cutpoints

UB Upper Bourtd

.. which are
then used to
construct

probabi listic
scenarios for
operations
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Day-Ahead Scenarios for Bulk Solar
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Probabilistic scenarios form the basis for stochastic power systems
operations and planning problems - and they are provided by ML
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(Examples of) Machine Learning
for the North American Energy
Resilience Model (NAERM)

Jean-Paul Watson (jwatson@sandia.gov)

September 9, 2019



7 1 Resilience Quantification: Stochastic Models are Critical

ML is central to developing probabilistic models of threats - which are
critical inputs to resilience analysis

Resilience of System after
Improvements

Reduced Expected Financial Consequence

Reduced Risk

E'(C) E(C) Consequences [$]

Improvements must
cost significantly
less than E-E'

Baseline System
Resilience

QUADRENNIAL TECHNOLOGY REVIEW

AN ASSESSMENT OF ENERGY
TECHNOLOGIES AND RESEARCH
OPPORTUNITIES

September 2015

QUADRENNIAL ENERGY REVIEW:

ENERGY TRANSMISSION, STORAGE,

AND DISTRIBUTION INFRASTRUCTURE



72 Resilience Analysis: Probabilistic Outage Scenarios

Historical transmission outage data associated Probabilistic ML models calibrated
with extreme weather events using historical outage data

0

CO

O

C \ I

O

Number of Outages per Event (Log Scale)

Real Events

Scenarios

Derecho, June 29, 2012

Spatially distributed failures

Superstorm Sandy, Oct 30, 2012

Spatially concentrated failures

— MLines
— Scenario Line Outages

Probabilistic outage scenarios are a pre-requisite for proactive resilience operations and investment strategies..

... and are equally applicable in planning and real-time contexts



73 ML for Accelerating National-Scale Grid Computation

Future El Case (ERGIS, from NREL)

Voltage (kV)
--- DC Line
  765

500
  345
  230-287 
 100-161

-11K generators in entire system
• Includes two very large ISOs

• Difficult to solve in isolation, let alone in a
coordinated manner

• Major challenges for solving core operations
simulations such as commitment and dispatch

Significant technology development efforts
required to execute ERGIS cases in tractable

run times

Time Domain Partitioning of

Electricity Production Cost

Simulations

Clayton Barrows, Marissa Hummon,
Wesley Jones, and Elaine Hale

ML methods for accelerating
commitment and dispatch 

optimization model solves can 
potentially yield order-of-magnitude

reductions in run times



74 I ML-Based Grid Situational Awareness and Control

Significant emerging efforts in the realm of ML for
proactive power grid operations via deep ML

From Grid Eye to Grid Mind
-A Data-driven Autonomous Grid Dispatch Robot Based on PMU Measurements

Di Shi, Ruisheng Diao, Jiajun Duan, Bei Zhang, Zhe Yu, Zhiwei Wang, Xiao Lu*,

Haifeng Li*, Chunlei Xu*, Yar r"-

GEIRI North America (GEIRINA
*State Grid Jiangsu Electric Power (

April I 5-1 7, 21

@ NASPI April Work G

L2RPN Challenge
- Learning to Run a Power Network throu,

Di Shi

Team: Tu Lan, Jiajun Duan, Bei Zhang, Zhiwei

Zhang, Ruisheng Diao, Yan Zan

Al & System Analytics

GEIRI North America (GEIRINA)

@PSERC Summer Workshop

July 16, 2019

Smarter Grid 11111111111"11
Prepare for The Future
salad gnd research mange helps Me power gnd nrn more efIltrendy and reyably

GEIRI North America

Global Energy IntercconectIon Research Instaute North America (GEIRI Nonh

Amen. or GEIRINA). previously named as SGRI North Arnenca Inc., is a

subsidiary of GEIRI Beijing Much is an insatute focusing on doe research and

development of cutting-edge technologies tor a smarter electric power grid.

GEIRI Beijing is affiliated to State Gnd Corporation of Chkna (SGCC) wlech is

the largest electric uhlity company at Me world and was ranked 2nd on 20t6

Fortune Global 500.

Research Areas

Graph Computing & Grid Al 8 System Analytics

Modernization

Advanced Computing & Data Smart Chips

intelligence

Key question is whether such methods can be extended from reliability to resilience contexts,
and beyond minute-scale look-ahead
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Highlights of Artificial
Intelligence/Machine Learning in
Power Systems

Matthew Reno (mjreno@sandia.gov)

Logan Blakely (lblakel@sandia.gov)

September 9, 2019



76 I Power System Applications of Artificial Intelligence

Power Systems is an ideal field for applications of Artificial Intelligence due to the complex
systems and large amounts of data.

AI/ML algorithms were recently made possible due to:
0 Advances in computing power for real-time learning and decision making

• Massive computing power even at the grid edge in advanced inverters and Real-Time
Automation Controllers (RTAC)

0 Additions of new sensing equipment such as smart meters and PMU

• 2000 PMU and 70 million smart meters in the U.S.

• Synchronized and real-time communication

New Artificial Intelligence algorithms to handle large datasets, the advent
of transferable learning, and physics-based algorithms

These slides include several examples of AI successes in Power
Systems and future research directions.
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77 I Al for Model Calibration

Use measured data to estimate distribution system parameters and state
o AI algorithms can provide insight into distribution systems and distributed energy resources by leveraging
and integrating high-fidelity sensors and multiple data sources

o Ingest data from AMI, SCADA, iiPMU, etc. and use data analytics and machine learning methods to estimate
system parameters (phase, meter-transformer pairing, line lengths, etc.) and do state estimation

Meter to Transformer
Pairing

Parameter Estimation

Phase Identification

Behind-the-meter PV
Parameter Estimation

L. Blakely, M. J. Reno, and W. Feng, "Spectral Clustering for
Customer Phase Identification Using AMI Voltage Timeseries,"
Power and Energy Conference at Illinois, 2019.



78 Al for Resilient Response

Grid Resilience and Intelligence Platform (GRIP) aggregates data, anticipates
disruptions, validates control options, and reduces recovery time from extreme events
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https://gmlc.doe.gov/sites/default/files/resources/1.5.01_GRIP_Fact%20Sheet_8-30-18.pdf



79 I Al for Protection Applications

Neural Networks for Fault Identification and
Fault Location
0 AI and Machine Learning can improve resilience by aiding
grid operators during fault events
Using AI for relay-less protection schemes
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Z. Bie, Y. Lin, G. Li, and Li Furong, "Battling the Extreme: A Study on the

Power System Resilience7 Proc. IEEE, vol. 105, no. 7, pp. 1253-1266.
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A. C. Adewole, R. Tzoneva, and S. Behardien, "Distribution Network Fault Section Identification and Fault Location Using Wavelet Entropy and
Neural Networks," Appl. Soft Comput., vol. 46, pp. 296-306, 2016.



80 I Al in Protective Relays

Adaptive Model Driven Protective Relay with AI/Machine Learning
° AI can provide grid resilience with adaptive, smart relays using multiple data streams and autonomous
model-based analysis

o Integrate ML into relays for resilience to loss of communication or cyber attacks

Identify bad settings or miscoordination between devices

0 Learn appropriate settings, reclose patterns, system events, and backup protection
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81 Al for Controls Applications

Reinforcement learning can operate in real-time using rewards to develop new
controls applications

Control of devices, such as Megawatt Scale Grid Storage for frequency regulation

° Grid control for Resilience - avoid instability, respond to failures, and prevent cascading outages
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S. Zarrabian, R. Belkacemi, and A. A. Babalola, "Reinforcement Learning Approach for Congestion Management and

Cascading Failure Prevention with Experimental Application," Electr. Power syst. Res., vol. 141, pp. 179-190, 2016.



82 Al for Controls Applications

Deep Reinforcement Learning for Emergency Scenarios
° AI can improve grid resiliency during extreme events by providing rapid controls such as dynamic
generator brake and under-voltage load shedding

Deep Reinforcement learning

algorithm successfully learns the

dynamic generator brake task as
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shedding task, outperforming

conventional methods
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Q. Huang, R. Huang, W. Hao, J. Tan, R. Fan, and H. Zhenyu, "Adaptive Power System Emergency Control Using Deep Reinforcement Learning," IEEE Transacation Smart Grid, 2019.



83 I Future Research Directions

Many innovations in AI and machine learning have not yet been applied to the
power systems domain
- As improvements and breakthroughs happen in other domains, those concepts can be adjusted and
applied to solve power systems problems

Similarly, lessons learned from other domains can be used to avoid similar situations

> Image Processing

> Recognition

> Captioning

> Generation

> Style Transfer
> Natural Language Processing

> Translation
> Summarization

> Generation

> Autonomous Vehicles

> Game Theory
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X. Liu, Q. Xu, and N. Wang, "A Survey on Deep Neural Network-based Image Captionine Vis.

Comput., vol. 35, no. 3, pp. 445-470, Mar. 2019.



84 I Future Research Directions
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A. Karpatne et al., "Theory-guided Data Science: A New Paradigm for

Scientific Discovery from Data," IEEE Trans. Knowl. Data Eng., vol. 29, no.

10, pp. 2318-2331, 2017.

Integration of Physics-based Constraints into AI

- Leverage existing knowledge (physical laws, power flow,
etc) in AI-based algorithms

- Achieve more accurate results and faster training

- SNL LDRD — ̀ Tntegrating Physics Knowledge in Multi-S ensor
Machine Learning Models"

Explainable AI and Uncertainty Quantification

Understand why a particular prediction/decision was given
Understand the error bounds on predictions/decisions

SNL LDRD on "Opening the 13lack Box': An hxperimentally-

Real-world
action

Black Box
Agent

Validated  hxplainable Machine LearningFramework" Input Data
(Environment, Rewards)



85 I Future Research Directions
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A. Yousefpour et al., All One Needs to Know About Fog Computing and Related Edge

Computing Paradigms: A Complete Survey," J. Syst. Archit., vol. 98, pp. 289-330, Sep. 2019.

Distributed, AI-based Controls using Fog Computing
Create resilient systems in the event of communication loss

Accelerate systems with low latency because processing

happens physically close to sensors
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Smart Sensor Systems"

Semi-Supervised, Few-Shot Learning, or

Synthetically-Generated Training Data
Learn with few or no examples of critical events

Generate realistic new data from existing samples
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Learningfor Explosive Device Characterkation"
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M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan, "GAN-based
Synthetic Medical Image Augmentation for Increased CNN Performance in Liver Lesion

Classification," Neurocomputing, vol. 321, pp. 321-331, 2018
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87 I Conclusions

There are many promising applications of AI/ML in power systems.
o It is an exciting time to be at this intersection — new algorithms, large datasets, computing power

There are mapy challenging problems yet to be solved with some fascinating future research
directions in ML:
o Integration of Physics-based Constraints into AI
o Explainable AI and Uncertainty Quantification
o Distributed AI-based Controls using Fog Computing
o Semi-supervised, Few-shot learning, or Synthetically Generated Training Data

Best results require integration between ML experts and power system experts

See the included references for further reading.
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