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2 | Course Outline

1. Introduction to Artificial Intelligence and Machine Learning (Ray Byrne) — 15 minutes
Machine Learning Overview (David Stracuzzi) — 45 minutes

Machine Learning Approaches and Data Considerations (Warren Davis) — 25 minutes

= ta ha

Optimization with Application to Machine Learning and Power Systems (JP Watson) — 10
minutes

5. Highlights of Artificial Intelligence/Machine Learning in Power Systems (Matt Reno/ILogan
Blakely) — 20 minutes

0. Q&A — 5 minutes
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s I Why is Artificial Intelligence a Hot Topic? @)

e

Examples of Successful Artificial Intelligence (Al) Applications:

Southwest®
Rapid Rewards’

amazon alexa

Personal assistants

~

Self-driving cars, lane
departure detection, etc.

Credit card fraud detection

¢ : B&XEVER JOHN PAU|
(cogito i P

. A Customer interaction Music Existing client interactions -
Conversation optimization  optimization (travel, etc.)  recommendations luxury travel concierge

amazon NETFL'X nest

Thermostat control

Product recommendations Product recommendations

R.L. Adams, “10 Powerful Examples Of Artificial Intelligence In Use Today,” Forbes, www.forbes.com.



s | Families of Al Techniques
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Huang Ling-fang, “Artificial Intelligence,” 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE), Singapore, 2010, pp. 575-578.



Al versus Machine Learning

Machine learning 1s considered a subset of artificial intelligence

Artificial Intelligence: a branch of computer science which studies building machines capable of
intelligent behavior

Machine Learning: a computer learns to perform a task, often without explicit instructions, by
studying a training set of examples

Artificial
Intelligence

K. Bakshi and K. Bakshi, "Considerations for artificial intelligence and machine learning: Approaches and use cases,” 2018 IEEE
Aerospace Conference, Big Sky, MT, 2018, pp. 1-9.
P. Louridas and C. Ebert, "Machine Learning," in IEEE Software, vol. 33, no. 5, pp. 110-115, Sept.-Oct. 2016.




7 I Machine Learning is a Subset of Al @)

Tables making comparisons are often incorrect ... since machine learning is a subset of Al every
machine learning approach has some application to Al

Machine Learning Example Al application

Image segmentation and classification to visually
identify manufacturing flaws

Linear regression to predict future samples of a
time series (e.g., GDP growth)

Natural language (text and voice) processing for
translation (e.g., Google translate) of business
documents

Pattern recognition applied to credit card fraud
detection

Product recommendations to improve customer
experience and boost online sales

Image segmentation and classification is a key
component in Al applications (e.g., humanoid
robots, etc.)

Numerous Al applications related to prediction
(e.g., motion of images in a scene for
autonomous navigation and obstacle avoidance)

Natural language processing is required for any Al
application that involves language

Pattern recognition applied to autonomous
grasping (e.g., pick up the ball not like the
others)

Product recommendations provided by an Al
assistant

In addition, there are many fields of Al that are not application specific and machine learning is not
the primary focus or methodology ... examples include research on planning and cognitive

architectures



s I Machine Learning

While there are many machine learning techniques, the basic process flow is the same for all

approaches

Machine learning
process - (truth)
data is the key!

Training
Data

Machine
Learning
Algorithm

New Data

Model

Prediction

(M)



o I Enabling Technological Advances
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Moore’s Law: the number of transistors on
an IC would double every few years.

E. P. DeBenedictis, "It's Time to Redefine Moore's Law Again,” in Computer, vol. 50, no. 2, pp. 72-75, Feb. 2017.



0 | Enabling Technological Advances (continued)

Low cost, high performance sensors, platforms

Image
Sensors

¥

LIDAR (Light Detection
and Ranging)

Application Specific Integrated Circuits (ASICs)



11 | Enabling Technological Advances (continued)

Truth data for training/validation — there ate a large number of datasets available for image |
processing, natural language processing, and audio/speech processing
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“25 Open Datasets for Deep Learning Every Data Scientist Must Work With”,
https://www.analyticsvidhya.com/blog/2018/03/comprehensive-collection-deep-learning-datasets/



2 I A Brief History of Al — The Turing Test @
Proposed by Alan Touring in 1950

Three players
° A — computing machine

° B — human being

o C — interrogator

All communication 1s through a textual device A - computer "7 .—.
(e.g., keyboard)

Can the interrogator identify the human and

computer?

. _ . C - interrogator
Turing predicted that a computer could convince

~33% of the judges after 5 minutes of
questioning by the year 2000

June 2014, A chatbot called Eugene Goostman,
which simulates a 13-year-old Ukrainian boy,
convinced 30% of the judges

S. Guccione and G. Tamburrini, "Turing's Test Revisited," Proceedings of the 1988 IEEE International Conference on
Systems, Man, and Cybernetics, Beijing, China, 1988, pp. 38-41.



13 ‘ A Brief History of Al — the Dartmouth Workshop

The term ““artificial intelligence” was first coined by John McCarthy, Marvin
Minsky, Nathaniel Rochester, and Claude Shannon in 1956

They proposed a summer workshop on artificial intelligence at Dartmouth

College
Topics included:

Automatic Computers — “If a machine can do a job, then an automatic calculator can be programmed to
simulate the machine. The speeds and memorii1 capacities of present computers may be sufficient to

simulate many of the higher functions of the human brain, but the major obstacle is not the lack of
machine capacity, but our inability to write programs taking full advantage of what we have.”

o How Can a Computer be Programmed to Use a Language — “It may be speculated that a large part of
human thought consists of manipulating words according to rules of reasoning and rules of conjecture.
From this point of view, forming a generalization consists of admitting a new word and some rules whereby
sentences containing it imply and are implied by others. This idea has never been very precisely formulated
nor have examples been worked out.”

> Neuron Nets — “How can a set of (hypothetical) neurons be arranged so as to form concepts.
Considerable theoretical and experimental work has been done on this problem ...”

> Theory of the Size of Calculation — you have to understand the size of the calculation to measure the
efficiency of an algorithm

o Self Improvement — a truly intelligent machine will carry out self-improvement
> Abstractions — machine methods of forming abstractions from sensory and other data
> Randomness and Creativity — conjectured that creative thinking involves some randomness

J. McCarthy, M.L. Minsky, Nathaniel Rochester, and C.E. Shannon, “A proposal for the Dartmouth summer research project
on artificial intelligence”, submitted to the Rockefeller Foundation, August 31, 1955.

1 0 L e B " T LLEEEEEREREREREREST



14 ‘ A Brief History of Al - Timeline

2015 I
Google DeepMind’s
Al Winter: period of significantly reduced research funding. One AlphaGo beats |
. . . . human champion
cause was outlandish claims that were impossible to meet.
2011
1997 IBM’s Watson
IBM’s Deep ~2006 beats two
1950 1958 1974-80 Blue defeats Al for image legendary
Alan Turing proposes LISP Al Winter Garry processing humans at
“Turing Test” developed Funding Cuts Kasparov takes off Jeopardy
1956 1965 1981 1987-93 2008 2014
Dartmouth First Expert First Al Winter Google’s speech Chatbot Eugene
Workshop System Commercial Funding Cuts recognition app Goostman passes
Expert System on iPhone “Turing Test”
| 2011
. S Siri released with
SIRI was spun out of the DARPA funded CALO (Cognitive iPhone 45

Assistant that Learns and Organizes) project, 2003-2008. I




15 I Research in Machine Learning Applied to Energy Systems
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Figure 2. The growth in the number of articles during the past two decades.

A. Mosavi, M. Salimi, S. F. Ardabili, T. Rabczuk, S. Shamshirband, and A. R. Varkonyi-Koczy, “State of the Art of Machine
Learning Models in Energy Systems, a Systematic Review,” Energies, vol. 12, no. 7, Apr. 2019.



16 | Limitations of Machine Learning

Performance of a ML algorithm can be very good 1if the characteristics of the training data match the
observed data

If the characteristics of the data change over time, and this 1s not captured in the training data, the
performance of the ML algorithm can vary widely

Training
data

Characteristics
change



17 I Limitations of Machine Learning

For some problems, there 1s a known non-machine learning solution that 1s efficient, elegant, and

robust

Is machine learning the best fit for my problem?




18 I Course Outline

1. Introduction to Artificial Intelligence and Machine Learning (Ray Byrne) — 15 minutes
Machine Learning Overview (David Stracuzzi) — 45 minutes

Machine Learning Approaches and Data Considerations (Warren Davis) — 25 minutes

= ta ha

Optimization with Application to Machine Learning and Power Systems (JP Watson) — 10
minutes

5. Highlights of Artificial Intelligence/Machine Learning in Power Systems (Matt Reno/ILogan
Blakely) — 20 minutes

0. Q&A — 5 minutes



Machine Learning Overview
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David J. Stracuzzi (djstrac@sandia.gov)
September 9, 2019



20 | Artificial Intelligence

“The automation of

activities that we
associate with
human thinking ...”
(Bellman, 1978)

“The art of creating

machines that
perform functions
that require
intelligence when
performed by
people.”
(Kurzweil, 1990)

“The study of the
computations that
make it possible to
perceive, reason,
and act.”
(Winston, 1992)

(@)

Knowledge
Representation

Learning .
Perception

|

Action &
Execution

Inference &
Reasoning

Planning &

,, . Problem Solving




21 ‘ What is Machine Learning!?

Machine I earning coined 1in 1959 by Arthur Samuel while trying to
use data to improve performance of a checkers playing program.
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Samuel, A.L. (1959). Some
studies in machine learning
using the game of checkers.
IBM Journal of Research and
Development.
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2 I What is Machine Learning!? @

A computer program is said to learn from

experience E with respect to some class of

tasks T and performance measure P
if its performance at tasks in I, as measured by P,

Improves with experience E.

— Tom Mitchell, Machine 1 earning, 1997



23 I Many Types of Tasks and Methods

Tasks:

Supervised vs Unsupervised
Classification

Clustering

Regression

Anomaly Detection

Time Series Analysis

Policy Learning

Transfer Learning

Methods:

Decision Trees
Rule-Based Methods
Neural Networks
Inductive Logic

Support Vector Machines
Bayesian Methods
Genetic Algorithms
Statistical Algorithms

Ensembles



24 I Example Problem: Handwriting Recognition (@)

Task (T): Recognizing and classifying handwritten numbers within images
Performance measure (P): Percent of numbers correctly classified

Experience (E): Database of handwritten numbers with given classifications

0] 23956289

labei 0 label 1 label 3 labei 3 label 4 label 5 label 6 Tabel 7 label 8 label 5

Ol 23456 F 849 ~

label. 0 label 1 labet 2 label 3 label 4 label 5 label 6 label 7 label 8 label. 3

0 ) #2396 46 1684

labei 0 labei 1 labei 2 label 3 label 4 labei 5 label 6 labei 7 label 8 labei 9

o\ 237862 §F 9

—r —y — hei 3 label 4 abet 5 —y label 7 label 8 label 9

0123456529 |
Example adapted from Tom Mitchell, Machine I earning, 1997 Data from MNIST database, http://yann.lecun.com/exdb/mnist/ E



25 ‘ How Does Machine Learning Work!?

X = {Xq, X9, «0ey X}

f(x) =01x1 +0,x5 + -

— Fisk estimate aithout congdesing
uncertanty on hiesed and fragiity

Pdf of risk estimate

=09 (f (x;) —

0.00E<0 5.00E07 LOCE-08 LS0EC6 200806 2.50E-06 3.00E-06 350606 4.00E-06 450605 5.006-06

Annual probability of exceeding damage state




26 | Learning Example : Decision Trees

\,
Taske: Decermine i Billvil piay | NOUGORIeTpE NG a M Ny e

tennis given weather observations D1 Sunny Hot High Weak No
Performance Metric: Prediction D2 Sunny Hot High Strong No
accuracy D3 Overcast Hot High Weak Yes
Experience: Past observations B4 Ran Mild High Weak 1o
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 sunny Mild High Weak No |
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Example from Mitchell, T.M. (1997). Machine Learning.



27 I Learning Example: Data Preprocessing and Feature Engineering

* Many learning algorithms take a set or sequence of vectors as input
o Raw data needs to be encoded in this format

> PFor many data types, there are existing encoding conventions

* Feature engineering uses domain knowledge to create these encodings
° Highly manual and time consuming

° Quality of learned model often dependent on feature encodings

Example: Play Tennis?

Outlook: {sunny, overcast, rain} or
{sunny, partly cloudy, mostly cloudy, cloudy, drizzle, rain, downpour} or
RGB image from TennisCam

Temperature: {hot, mild, cool} or
fhot, warm, mild, cool, cold} or
{-20F, -19F, ..., 114F, 115F} or
continuous



%8 ¥ Learning Example: Decision Trees

General Approach:
* Split the data based on No
information theory (entropy) No
* Entropy measures the Yes
distribution of positive and Yes
negative examples in each block Yes
* Greedy seatch through No
attribute (feature) space Yes
Gain < ENtropy _ Sum of Entropies M
AN = all data after split Yes
Yes
Yes
Yes
Yes
No

G=0.247 G=0.029 G=0.152  G=0.048




29 | Learning Example: Decision Trees

(Day 15) What will happen on a sunny, cool, humid, windy day?

2

’ Overcast

$
%

Many design decisions affect performance:

* Training data
(number and quality of examples)

* Which variables describe the data

o

* Splitting criterion

g
S

* Binary versus multivariate splits

* What to do with numeric variables

* Stopping criterion



30 I Decision Tree Hypothesis Space

sunny, cool, high, strong ~

| |
\ : I
—— — | |
.gf) : + ; o g)
=~ —_— | [ o
T | + I b
> - ! | 7
= I |
E — i — . — T E
| I
2 = b ! g
S | | <
g -+ | [ + 8
I + 1
2| 7 | L+ =
| |
| |
] ]
Sunny Overcast Rain
Outlook

Note: Original data was in 5 dimensions. Only showing 3 here compressed into 2.
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2 | Learning Example: Image Analysis

Task: Classity pixels as tree, grass, roof, water, concrete, or boat
Performance Metric: Accuracy

Experience: Labeled pixels

Labels

RGB Color



33 I Learning Example: Image Analysis

As we develop an application, we need to

ask:

* How else might we formulate the problem?

* What input variables might provide the most
information?

* How good are my labels?

What is the most appropriate knowledge

representation?
What is the most appropriate performance metric?

Given the task and the data, what learning
algorithms are likely to perform well?

Labels
Color Only (78%)



34 | Evaluation

Performance (Loss) Metrics

Accuracy = (TP + TN)/n
* Precision = TP / (TP+FP)

* Recall (Sensitivity) = TP / (TP+FN)
Validation Data * F-score = (P*R) / (P+R)

e (Confusion Matrices

Learning Process

* LogLoss = _712?[:1 Y1 vij % log(pi))
* ROC Curves: calibrate classification
thresholds
* P-R Curves: similar to ROC; lots of negatives
* Regression metrics:
* Root Mean Squared Error
* Mean Absolute Ertror

What makes evaluation hard?

* Many ways to formulate error and performance metrics +  R2— vasiance explanation

* Highly dependent on the data, task, and goals
All of these can be applied with cross validation,

* Extrapolation ability is difficult to evaluate , e
random resampling, and stratification

* Hard to determine if/when we are extrapolating




35 | Learning Example: Time Series Application

Task: Change detection Performance Metric: No Ground Truth!!

_ , Internal distance metrics only
Want to know, as precisely as possible,

when the signal first arrived Experience: Waveform data,
containing both signal and noise

Model the noise l Model the signal

Optimize fit; Models
meet at change point

24 26 28 30 32 34




36 I Uncertainty

Measurement
Errors

Regularization
Effects

f(x) =01x1 +03x3 + -

Inference
Errors

s[4}
of"d™) 0y
elol"
—
— X = Dateltil natie {seth
tels of"d") 0}
if o

_1¢n ) — Y.
€=~ D=0 9 (f(x1) = 1i) \ Model Form

Uncertainty




7 I Uncertainty Example: Seismic Onset Detection

Noise-Signal Onset Search Window Noise-Signal Onset Search Window
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| |
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—— High/Low Filtered Seismic Data
-600 =— A.l.C. for AR(2) “ - Raw Seismic Data

A.1.C. for ARMA(1,1) —— A.L.C. for ARMA(2,2)
—— A.LC. for ARMA(1,3) —— A.LC. for AR(4)
-60

0 50 100 150 200 0 50 100 150 200
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3¢ I Uncertainty Example: Seismic Onset Detection

data
s Analyst Mode

MOde Of .“. J :-- Autf)m:ated Mode
Analyst Picks | '

. |
. - il N - \ y . N # % 4 % / L N | | # | ' | | 4

Mode of v
Automated Picks

Analyst
Picks

—

Automated
Picks

1100 1150 Sampl_e Time (40hz) 1200 1250



39 I Domain Knowledge

« Variable selection
Representative data

Structural
knowledge

f(x) =01x1 +0,x5 + -

£= Yo g(f(x) — 1))

Domain
constraints




Interactions Between Domain Theories and Machine Learning

https://www.facebook.com/help/cookies/?ref=sitefooter
L L N
HostName Path Parameters
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4 | Outline

* Factors in deciding upon a machine learning approach

= Classes of Machine Learning
= Supervised Learning
= Unsupervised Learning
= Semi-Supervised Learning

= Reinforcement Learning

= Information Representation

1)



s I Deciding Upon a Machine Learning Approach

What problem are you trying to solve?
° Predict a category
° Predict a value
> Group data

° Find anomalies

o

Find correlations

> Optimize parameters

What data is available?
o Numerical

o Categorical
° Images/Audio/Video
o Text

O

)



46

Supervised Learning @
Iris Data (subset)

length | width | length | width P

Tasks 5.1 3.5 1.4 setosa
. . 4.9 3 1.4 0.2 setosa
> Regression (continuous response) i - s 0
. . . : setosa
° Classification (discrete response) 46 31 15 0.2 P
° Binary (2 classes) 5 3.6 1.4 0.2 setosa
° Multiclass (>2 classes) 7 3.2 4.7 1.4 versicolor
6.4 3.2 4.5 1.5 versicolor
Experience (data) 69 31 49 15  versicolor
> Regression: input-output pairs D - - Lo |k ey
. . . 6.5 2.8 4.6 1.5 versicolor
° Classification: feature-label pairs 3 - . ) s —
: : . virginica
5.8 2.7 5.1 1.9 irgini
Performance measures . : s . vireinica
) : s . virginica
° Many different methods 6.3 2.9 5.6 1.8 virginica
6.5 3 5.8 2.2 virginica
L J\ J
I |
Features Label

Fisher, 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics. 7 (2): 179-188.
Anderson, 1936. The species problem in Iris. Annals of the Missouri Botanical Garden. 23 (3): 457-509.



s | Examples of Supervised Learning

“Linear Regression

“Support Vector Machines

“Naive Bayes

*Decision Trees / Random Forests
“Neural Networks

"k-Nearest Neighbor

petal width < 1
YES NO

@ petal length > 5

YES NO

| yi=Bo+bizi+e
12} y:X_IB+€

08

0.6 -

maximum-margin hyperplane

support vectors

N

/

maximum margin

(4]

support vectors



4 | Neural Networks

Brain has neurons that communicate with other neurons
through electrical impulses.
o Approximately 100 billion in human brain

Connections strengthen with experience

Neural networks are mathematical models inspired by

the connectionist model of the brain




49 ‘ Artificial Neural Networks

Sepal
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Example feed-forward neural network




50

Advanced Neural Networks

Convolutional/Deep Networks
> Convolutional networks take advantage of local dependencies
> Deep networks capitalize on the power of deeper networks to encode/represent higher level, latent features
> Deep convolutional networks revolutionized the processing of images, sounds, and video

> Applicable to other modalities

Recurrent Neural Networks
o Takes data of varying length

o Useful for temporal and sequential data (e.g,, text, signal processing)

Autoencoders/Generative Adversarial Networks

> Autoencoders create compressed representations of the original data
° Useful in anomaly detection, compression, domain feedback

° Variational autoencoders can generate new data

> Generative Adversarial Networks pit two models (usually neural networks) against each other
o Generator creates new Samples
o Discriminator learns to tell original samples from generated samples
o Generator and Discriminator co-evolve

° ”Battle-tested” generator produces high quality new samples



51

k-Nearest Neighbor

Input: £ closest instances (nearest neighbors) in feature space

Output

° Regression: average values of £ nearest neighbors

> Classification: majority class of £ nearest neighbors

|
]
Class 1
3
|
u
&
@
Class 2
= [

https://www.quora.com/How-is-the-k-nearest-neighbor-algorithm-different-from-k-means-clustering

kNN: example of instance-based learning

Function only approximated locally
Computation deferred until prediction

)



Unsupervised Learning G

Iris Data (red=setosa,green=versicolor,blue=virginica)

Tasks . :._.4::.:; ﬁé' i ,.*“ :
° Clustering (grouping) -fa:-::"- Lo ; e :E' A :
> Dimensionality reduction T i Py
° Anomaly detection i :,.i:._t.:’.%;?._:.‘: S 5- }ﬁ"' f ;éf'!‘-“
° Association L ik R Sl

T —
° Generative modeling ; Fﬁ" ‘f.ﬁ e athl.."!:'g
Experience (data) shba . et - -

25

o Instances are unlabeled Sl ;ﬁ: jé‘
&

1.5
° ,;a.:
¥

¥

Performance measures
° Challenging due to lack of labels/known solutions

rrrrr

° Validation often leverages labeled data sets (labels only used in testing)

Fisher, 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics. 7 (2): 179-188.
Anderson, 1936. The species problem in Iris. Annals of the Missouri Botanical Garden. 23 (3): 457-509.

I 0 L e B "



53 ‘ K-means Clustering

Task
> Group data instances by distance into K groups

° Data instances are points in a multidimensional feature vector space

Standard Algorithm
1. Initialize cluster centroids randomly

2. Iterate until convergence
a)  Assign each instance to the cluster whose centroid is “closest”

b)  Update the centroids given the current cluster assignments

cluster centroid =
arithmetic mean of
the points in the
cluster

Q @
Q’x 'X
Qx ©O% o eXx @ o
Q o Q e o Y
©
OQ Xa . X e
Q o ® e
° o ® o

Centroids (x) and cluster Assignment of instances

assignments (color) at start of iteration

to cluster with closest centroid

Update centroids based
on new cluster assignments

(@)

T B ' e



54 ‘ K-means Clustering

Task
> Group data instances by distance into K groups

° Data instances are points in a multidimensional feature vector space

Challenges
> What value to use for K?
> Most often chosen by the user/analyst/subject matter expert
> How to initialize the centroids?
> Random instances as centroids vs. random cluster assighments
> How to compute distances?
> Buclidean distance often used
° Often data- and problem-dependent
> When to stop iterating?

° Assignment stagnation often used

> K-means clustering is equivalent to local minimization

(@)



55 | Other Partitional Clustering Methods

K-medoids

> K-means like algorithm using medoids (median values of cluster points) instead of means for assignments

Fuzzy K-means

° Fuzzy set membership for observations

DBSCAN

> density-based clustering with outlier detection and no predetermined number of clusters

Gaussian Mixture Models

> K-means like algorithm with Gaussian distribution assumptions & probabilistic assighment

Spectral Clustering

> Useful for exploiting affinities (e.g., connections, similarities), in data points, regardless of Cartesian
proximity

=

"



56 ‘ Hierarchical Clustering (@)

Clustering Approaches
> Agglomerative
> Merging from bottom to top
° Divisive

o Splitting from top to bottom

Metric
> Distance between data points

1 Linkage Criteria
b —— - o Distance between sets
2 ° Single: minimum

> Complete: maximum

> Average
4
b — — — Number of clusters g
6 ° Choose a level to cut dendrogram I
Dendrogram Clusters ‘

Gan, et al., Data Clustering: Theory, Algorithms, and Applications. SIAM, 2007.



s7 I Semi-Supervised Learning

Tasks

° Supervised Learning Tasks

Experience (data)
> Small amount of labeled data
> Mostly unlabeled data

Performance measures

° Supervised Learning measures

Training model
° Train a model using labeled data
> Use model to predict labels for unlabeled data
> Add (some) unlabeled data and predicted labels to labeled data

> Repeat

Co-training
°> Multiple classifiers working in tandem

> Requires independence between classifiers

@®

T ' 5
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Reinforcement Learning

Tasks

> Take the best action based on current state (i.e., information available)

Experience (data)

° Interactions with the environment/system

° State of environment/system

Performance measures
o Maximize reward

o Minimize risk

Agent

P

State Reward Aﬂtiﬂl’l

Environment

Reinforcement Learning: State-of-the-Art. Eds. Wiering and van Otterlo, Springer-Verlag, 2012.

(@)

T B ' e
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Information Representation is Key to Machine Learning
Success

Aforementioned examples assume that the data is already in the correct form to solve the problem

Knowledge Elicitation
> Gaining knowledge from Subject Matter Experts

Feature engineering / Data wrangling
o Getting the data in a form useful for answering the pertinent questions

o Often an iterative process

Feature selection
° Some features may be irrelevant

> Many algorithms are robust to this, but irrelevant features can degrade performance or cause machine learning methods to take
longer than desired

Data properties
o Are the relevant features included?

o Is there enough of the data?

o Is the data drawn from the correct distribution?



s | Technical References

Tools
> Scikit-learn
° https://scikit-learn.org/
> PyTorch
° https://pytorch.org

o Tensorflow

° https://www.tensorflow.org

Data
> UCI Machine Learning Repository:

° https://archive.ics.uci.edu/ml/index.php

> Kaggle:
° https://www.kaggle.com/datasets




Optimization with Application to
Machine Learning and Power
Systems

I 20202 T

Jean-Paul Watson (jwatson@sandia.gov)

September 9, 2019



, | What Do We Mean By “Optimization™? @

(“Standard” form: )
Linear programming (LP) argmin ¢’ x
argmin ¢’ x st. Ax=b
: x>0
st. Ax<b o’
X €
xe" % J

Classic example: Linear Assignment Problem (LAP)

, We generally assume that an
argfnm ZZCUxU algebraic description of the
A underlying problem is available
S.t. inj =1 Vj eN

ieN

Y x,=1 VieN Popular extensions:

o  Mixed-integer programming
, _ » Non-linear programming

x,20  VieN,jeN « Stochastic programming

» Robust optimization



Machine Learning and Optimization (1)

Linear regression is an optimization problem

Find 1;1151 Q(a, B), for Q(a,B) = Z Z — = ,Bmg)2
; i=1

T

Slope-intercept
parameters of a line

100 200 200

Non-linear regression is still an ®
optimization problem - you just shift _ = B
from linear programming to non-

linear programming models and
methods

. e A v
-—— =
G =T
C

1 0 L e B "



¢« I Machine Learning and Optimization (2)

Thirty-sixth International Conference on

ICML | 2019
“The interplay between
OPTIMIZATION optimization and machine
FOR MACHINE LEARNING learning is one of the most —_
| important developments in
| | modern computational e
| | science. Optimization
| formulations and methods
| . . .
| are proving to be vital in
| , designing algorithms to
’ extract essential knowledge
| from huge volumes of data.”
A word doodle of accepted papers at
@NeurlPSConf -- Learning is more than
deep.
ai ... berkeley brain california carnegie ch
lumbia deep deepmind .. faceboo
MIT Press generative, google lab
learning 7 . mellon
microsoft mit models na networks
neural | for
science stanftord tsinghua UC

wang

Show all »

Wed Jun 12th 04:00 - 04:20 PM @ Room 103 Oral
Linear C of in

Bugra Can - Mert Gurbuzbalaban - Lingjiong Zhu In Convex Optimization
Video »

Wed Jun 12th 04:20 -- 04:25 PM @ Room 103 Oral

SGD Rates for Convex F

Dheeraj Nagara| - Prateek Jain - Praneeth Netrapalll in Convex Optimizati
Slides » Video »

Wed Jun 12th 04:25 - 04:30 PM @ Room 103 Oral

On the C: of App Bar

Alexey Kroshnin - Nazaril Tupitsa - Darina Dvinskikh - Pavel Dvurechenskil - Alexander Gasnikov - Cesar Uribe Convex Optimization
Slides » Video »

Wed Jun 12th 04:30 — 04:35 PM @ Room 103 Oral

for Ci O

Andrei Kulunchakov - Julien Mairal Conm Optimization
Slides » Video »

Wed Jun 12th 04:35 - 04:40 PM @ Room 103 Oral

A F on

Michael Muehiebach - Michael Jordan In Com Optimization
Slides » Video »

‘Wed Jun 12th 04:40 -- 05:00 PM @ Room 103 Oral

Random Shuffling Beats SGD after Finite Epochs

Jett HaoChen - Suvrit Sra in Convex Optimizatior
Slides » Video »

Wed Jun 12th 05:00 - 05:05 PM @ Room 103 Oral

First-Order Algorithms Converge Faster than O(1/k) on Convex Problems

Ching-pei Lee - Stephen Wright In Convex Optimization
Slides » Video »

Mt Lo AP AEAE A4 DAL S B 403

\

rogram Highlights »

Many talk sessions at major machine

learning conferences would be at
home at optimization conferences



s I Machine Learning and Optimization (3)

— This is even before the deep

Journal of Machine Learning Rcsuurchh (2006) 1265-1281 Submitted 7/06; . .
learning revolution...

The Interplay of Optimization and Machine Learning Research

Kristin P. Bennett BENNEK @RPI.EDU
Department of Mathematical Sciences

Rensselaer Polytechnic Institute

Troy, NY 12018, USA

Emilio Parrado-Hernandez EMIPAR@TSC.UC3M.ES
Department of Signal Processing and Communications

University Carlos Il de Madrid

Leganés (Madrid), 28911, Spain

Editors: Kristin P. Bennett and Emilio Parrado-Herndandez

Abstract

” . . . .
The fields of machine learning and mathematical programming are increasingly intertwined. Op- — Opt] m.lzat] On prOblemS l]e at
timization problems lie at the heart of most machine learning approaches. The Special Topic on o
Machine Lr::ammg and Large Scale Optimization examines :hls mterplay. Machine learning re- the hea rt Of mOSt maCh] ne
searchers have embraced the advances in mathematical programming allowing new types of models . 3
to be pursued. The special topic includes models using quadratic, linear, second-order cone, semi- lea rn] n g p ro b lem S
definite, and semi-infinite programs. We observe that the qualities of good optimization algorithms
from the machine learning and optimization perspectives can be quite different. Mathematical pro-
gramming puts a premium on accuracy, speed, and robustness. Since generalization is the bottom
line in machine learning and training is normally done off-line, accuracy and small speed im-
provements are of little concern in machine learning. Machine learning prefers simpler algorithms
that work in reasonable computational time for specific classes of problems. Reducing machine
learning problems to well-explored mathematical programming classes with robust general pur-
pose optimization codes allows machine learning researchers to rapidly develop new techniques.
In turn, machine learning presents new challenges to mathematical programming. The special issue
include papers from two primary themes: novel machine learning models and novel optimization
approaches for existing models. Many papers blend both themes, making small changes in the
underlying core mathematical program that enable the develop of effective new algorithms.
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Machine Learning and Optimization (4)

Stochastic gradient descent (SGD) - a now standard optimization

method - is at the center of the deep learning revolution

There is still much more that optimization can do for
machine learning, e.g.,

Rigorous proofs of global optimality
Basis for adversarial machine learning
From neural net training to architecture design

Training of deep (autoencoder)
neural networks is a non-linear
optimization problem to minimize

reconstruction errors

But: SGD is a local method for solving a
non-linear optimization model

A heuristic - not a rigorous,
complete solution method
Absolutely no guarantee of
optimality

Nor any indication of how far you
are from a global optimum




&7 I Most of Power Systems Operations and Planning is
Optimization...

Decision making in power systems looks at processes ranging from very large time constants to
near real-time:
Years, Seasons, Months, Weeks: Resource adequacy, transmission and hydro resource
planning
Days: Hydro-thermal coordination, day-ahead UC of energy and reserves, intra-day UC
Hours: intra-day look-ahead processes, dynamic economic dispatch
Minutes: Economic Dispatch (ED)
Seconds: Automatic Generation Control (AGC)

Real-time

Uncertainty

Time

Every problem at the five minute and larger time scales is formulated and
solved as an optimization problem



68 ‘ ML for Power Systems Optimization: Warm Starting

The time required to solve operations problems such as commitment and dispatch can be
significantly lowered by up to 80% via “warm starting” - use historical data to fit a ML model that
predicts what are likely to be high-quality solutions for a given

¥

Learning to Solve Large-Scale Security-Constrained Unit

Commitment Problems

Alinson S. Xavier!, Feng Qiu!, and Shabbir Ahmed?

! Energy Systems Division, Argonne National Laboratory, Argonne, IL, USA. {axavier,fqiu}@anl.gov
2 School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

sahmed@isye.gatech.edu

Abstract. Security-Constrained Unit Commitment (SCUC) is a fundamental problem in power systems
and electricity markets. In practical settings, SCUC is repeatedly solved via Mixed-Integer Linear
Programming, sometimes multiple times per day, with only minor changes in input data. In this work,
we propose a number of machine learning (ML) techniques to effectively extract information from
previously solved instances in order to significantly improve the computational performance of MIP
solvers when solving similar instances in the future. Based on statistical data, we predict redundant
constraints in the formulation, good initial feasible solutions and affine subspaces where the optimal
solution is likely to lie, leading to significant reduction in problem size. Computational results on a

diverse set of realistic and large-scale instances show that, using the proposed techniques, SCUC can

-

A Distributed Framework for Solving and Benchmarking Security Constrained
Unit Commitment with Warm Start

Publisher: IEEE

LY NGLI(EYM  Yonghong Chen ; Fengyu Wang ; Yaming Ma ; Yiyun Yao View All Authors

26
Full
Text Views

Abstract

Authors

Keywords

Metrics

@ ¥ 0 = © A

Abstract:

This paper discusses several methods to improve commercial optimization solver performance on day
ahead security constrained unit commitment through warm start and lazy constraint settings. Data analytics
is performed to greatly improve the quality of the initial commitment solution and lazy constraint setting. A
distributed optimization framework is proposed to take advantage of the diversity from prevalent solvers
(GUROBI and CPLEX) and different warm start strategies. A systematic distribution profile based
benchmarking method is also proposed.

Published in: IEEE Transactions on Power Systems ( Early Access )

Related techniques hold even more promise in the context of
stochastic power systems operations problems, which are
significantly more difficult in practice

T ' 5



69 ‘ ML for Power Systems Optimization: Scenario Construction (@

i

Day-Ahead Scenarios for Bulk Load

Historical forecasts and
corresponding actuals are fed into
ML algorithms to characterize error

distributions...

]H Expected load e—e Actual load e —e Scenarios

2500

-y W N .. which are Day-Ahead Scenarios for Bulk Solar
.................... . thenusedto o
N e i construct R oo
............... probabilistic o110 JE
.............. i 5 M scenarios for e B
R LR R, operations - |

Probabilistic scenarios form the basis for stochastic power systems
operations and planning problems - and they are provided by ML



(Examples of) Machine Learning

for the North American Energy
Resilience Model (NAERM)

I 20202 T

Jean-Paul Watson (jwatson@sandia.gov)

September 9, 2019



71 I Resilience Quantification: Stochastic Models are Critical

ML is central to developing probabilistic models of threats - which are
critical inputs to resilience analysis

N

Reduced Expected Financial Consequence

n
»

Reduced Risk

Probability of Consequences [$]
Given Threat X

/ E’(!C) E(é) Consequences [$]

Resilience of System after ' .
Improvements Improvements must Baseline System
cost significantly Resilience

less than E-E’

QUADRENNIAL TECHNOLOGY REVIEW

AN ASSESSMENT OF ENERGY
TECHNOLOGIES AND RESEARCH
OPPORTUNITIES

September 2015

QUADRENNIAL ENERGY REVIEW:
ENERGY TRANSMISSION, STORAGE,
AND DISTRIBUTION INFRASTRUCTURE




72 I Resilience Analysis: Probabilistic Outage Scenarios

Historical transmission outage data associated
with extreme weather events

1.0

0.8

Density
0.6

0.4

0.0
L

[ T T T T 1

0 1 2 3 4 5
Number of Outages per Event (Log Scale)

Probabilistic outage scenarios are a pre-requisite for proactive resilience operations and investment strategies..

LJ”
D)

Probabilistic ML models calibrated
using historical outage data

Derecho, June 29, 2012
Spatially distributed failures

Superstorm Sandy, Oct 30, 2012
Spatially concentrated failures
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... and are equally applicable in planning and real-time contexts



73 I ML for Accelerating National-Scale Grid Computation

Future El Case (ERGIS, from NREL)

Voltage (kV)

-=-- DC Line

- 765
500

----- 230-287
----- 100-161

~11K generators in entire system
* Includes two very large ISOs
« Difficult to solve in isolation, let alone in a
coordinated manner
* Major challenges for solving core operations
simulations such as commitment and dispatch

Significant technology development efforts
required to execute ERGIS cases in tractable
run times

FINREL

Time Domain Partitioning of
Electricity Production Cost
Simulations

Clayton Barrows, Marissa Hummon,
Wesley Jones, and Elaine Hale

ML methods for accelerating
commitment and dispatch
optimization model solves can
potentially vield order-of-magnitude
reductions in run times




74 ‘ ML-Based Grid Situational Awareness and Control

Significant emerging efforts in the realm of ML for
proactive power grid operations via deep ML

From Grid Eye to Grid Mind W
Prepare for The Future

-A Data-driven Autonomous Grid Dispatch Robot Based on PMU Measurements : St grid resarch nstutehelps th power grd ru more eficienty and elibly

Di Shi, Ruisheng Diao, Jiajun Duan, Bei Zhang, Zhe Yu, Zhiwei Wang, Xiao Lu”,

L, RO,

Haifeng Li", Chunlei Xu", Yar 7~ "~

LL2RPN Challenge GEIRI North America Rasearch Areas

GEIRI North America (GEIRINA

'St id Ji i - ’
ate Grid Jiangsu Electric Power ( N o 7 ; Global Energy Interconnection Research Institute North America (GEIRINorth  Graph Computing & Grid Al & System Analytics
5 Leamme to Run a Power Network throu America or GEIRINA), previously named as SGRI North America Inc., is a Modernization
April 15-17, 2 subsicary of GEIR Belfing which s an nstute focusing on the research and
of cutting-edg for a smarter eleciric power grid
GEIRI Beijing is affiliated to State Grid Corporation of China (SGCC) which is Advanced Computing & Data Smart Chips
. . the largest electric utility company in the world and was ranked 2nd on 2016 i >
Di Shi Fortune Global 500. Ll

(@ NASPI April Work G R
Team: Tu Lan, Jiajun Duan, Bei Zhang, Zhiwei ., . &y aavi -

Zhang, Ruisheng Diao, Yan Zan

Al & System Analytics
GEIRI North America (GEIRINA)

@PSERC Summer Workshop
July 16, 2019

Key question is whether such methods can be extended from reliability to resilience contexts,
and beyond minute-scale look-ahead



Highlights of Artificial
Intelligence/Machine Learning in
Power Systems

Matthew Reno (mjreno@sandia.gov)
Logan Blakely (Iblakel@sandia.gov)
September 9, 2019



76 ‘ Power System Applications of Artificial Intelligence @

Power Systems 1s an ideal field for applications of Artificial Intelligence due to the complex
systems and large amounts of data.

AI/ML algorithms were recently made possible due to:

> Advances in computing power for real-time learning and decision making

> Massive computing power even at the grid edge in advanced inverters and Real-Time
Automation Controllers (RTAC)

> Additions of new sensing equipment such as smart meters and PMU
> 2000 PMU and 70 million smart meters in the U.S.

> Synchronized and real-time communication

> New Artificial Intelligence algorithms to handle large datasets, the advent
of transferable learning, and physics-based algorithms

These slides include several examples of Al successes in Power | S _‘
Systems and future research directions. , S 3 A\

\
-

x5\ s \\4 \
e P convolution _ subsampting NG00

feature extraction classification



77 ‘ Al for Model Calibration @)

Use measured data to estimate distribution system parameters and state

> Al algorithms can provide insight into distribution systems and distributed energy resources by leveraging
and integrating high-fidelity sensors and multiple data sources

° Ingest data from AMI, SCADA, uPMU, etc. and use data analytics and machine learning methods to estimate
system parameters (phase, meter-transformer pairing, line lengths, etc.) and do state estimation

Meter to Transformer
Pairing

Parameter Estimation

’/; iﬁgi::\'\f};@ei ‘:"/r.. '
A ¥ | Phase Identification

Behind-the-meter PV L. Blakely, M. J. Reno, and W. Feng, “Spectral Clustering for
Parameter Estimation Customer Phase Identification Using AMI Voltage Timeseries,”

Power and Energy Conference at Illinois, 2019.



78 ‘ Al for Resilient Response @

Grid Resilience and Intelligence Platform (GRIP) aggregates data, anticipates
disruptions, validates control options, and reduces recovery time from extreme events

Data Platform Layer

https://gmlc.doe.gov/sites/default/files/resources/1.5.01_GRIP_Fact%20Sheet_8-30-18.pdf



79 ‘ Al for Protection Applications

Neural Networks for Fault Identification and
Fault Location

> Al and Machine Learning can improve resilience by aiding
grid operators during fault events

> Using Al for relay-less protection schemes

Methodology successfully
identifies and locates faults within
this distribution test feeder

3 ph. & zero
sequence currents WEE
Distribution DWT Feature /EPU
ﬁ - . q - ﬁ
Network Decomposition Extraction

ANN Models

Causes of Outages Worldwide

Cyber Attack

Supply Shortage 1.43%

—

Vandalism
4.299

Malfunctions
(misc)
$ 47.86%

Z. Bie, Y. Lin, G. Li, and Li Furong, “Battling the Extreme: A Study on the
Power System Resilience,” Proc. IEEE, vol. 105, no. 7, pp. 1253-1266.

Equipment
Failure
(internal cause)

Natural
Disasters

Fault Section
Identification

)

Fault Location

A. C. Adewole, R. Tzoneva, and S. Behardien, “Distribution Network Fault Section Identification and Fault Location Using Wavelet Entropy and
Neural Networks,” Appl. Soft Comput., vol. 46, pp. 296-306, 2016.



80 ‘ Al in Protective Relays

Adaptive Model Driven Protective Relay with AI/Machine Learning

> Al can provide grid resilience with adaptive, smart relays using multiple data streams and autonomous
model-based analysis

> Integrate ML into relays for resilience to loss of communication or cyber attacks

° Identify bad settings or miscoordination between devices

° Learn appropriate settings, reclose patterns, system events, and backup protection

Maps real-time measurements
(or predictions) to relay settings

Sandia
National _
Laboratories

OAK
RIDGE

National Laboratory

Irradiance training data

.\ Use measured values under normal conditions and switch to

predicted values during communication failure event

Trained to predicted solar
irradiance in the case of
communications failure



81 ‘ Al for Controls Applications

Reinforcement learning can operate in real-time using rewards to develop new

controls applications
> Control of devices, such as Megawatt Scale Grid Storage for frequency regulation

> Grid control for Resilience - avoid instability, respond to failures, and prevent cascading outages

Power Network

uone}PX3

P— — — T ————— —

Reinforcement Learning
Block

S. Zarrabian, R. Belkacemi, and A. A. Babalola, “Reinforcement Learning Approach for Congestion Management and
Cascading Failure Prevention with Experimental Application,” Electr. Power Syst. Res., vol. 141, pp. 179-190, 2016.



82 ‘ Al for Controls Applications @

Deep Reinforcement Learning for Emergency Scenarios

° Al can improve grid resiliency during extreme events by providing rapid controls such as dynamic
generator brake and under-voltage load shedding

1. Prepare study cases and configuration files ]

L
[ 2.Initialize the power system simulation
module

£

-
[ 3.Create an instance of PowerDynSimEnv
and initiate it initStudyCase(*),

Deep Reinforcement learning

algorithm successfully learns the

-]
o
) = w
dynamic generator brake task as —& S =
) 4. Run power system simulation for one 'g
well as the under-voltage load (s ation step aetopbnt ) g
. . E
shedding task, outperforming e e Sl gt ) 5
conventional methods il
Y

£
c
5. Conduct RL training in RL module, multiple
algorithms are available, including Algorithm 1

=5 one episode finished?

YES

s training finished?

YES

NO

Reset Sim. Env.
reset(*)

!
I
|
!
I
I
!
I
I
I
I
I
I
!
|
I
|
|
i | Action States getEnvObversations(*)
I
I
I
|
I
I
!
I
|
I
!
|
!
I
|
I
I
I
|
I
!

—[ 6. Test the trained RL model(s) for grid control ]

Q. Huang, R. Huang, W. Hao, J. Tan, R. Fan, and H. Zhenyu, “Adaptive Power System Emergency Control Using Deep Reinforcement Learning,” IEEE Transacation Smart Grid, 2019.

T ' 5



g3 | Future Research Directions

Many innovations in Al and machine learning have not yet been applied to the
power systems domain

> As improvements and breakthroughs happen in other domains, those concepts can be adjusted and
applied to solve power systems problems

° Similarly, lessons learned from other domains can be used to avoid similar situations

————————— — ——— —— —————————— j—————————— —— — — — — — —— —

» Image Processing

» Recognition
detection
scores

» Captioning
» Generation
» Style Transfer
» Natural Language Processing
» Translation
» Summarization
» Generation

» Autonomous Vehicles 1 ]
» Game The ory region detection network localization and captioning network

&5 captions

& | bounding
boxes

X. Liu, Q. Xu, and N. Wang, “A Survey on Deep Neural Network-based Image Captioning,” Vis.
Comput., vol. 35, no. 3, pp. 445-470, Mar. 2019.
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=
wa
>

Use of Scientific Knowledge

Low

Future Research Directions (@)

2]
[7]
o)
o
=
o
]
4 .
a Theory-guided
E‘ Data Science Models
]
£
[
Data Science Models
—
Low Use of Data High

A. Karpatne et al., “Theory-guided Data Science: A New Paradigm for
Scientific Discovery from Data,” IEEE Trans. Knowl. Data Eng., vol. 29, no.
10, pp. 2318-2331,2017.

Integration of Physics-based Constraints into Al

Explainable Al and Uncertainty Quantification

Leverage existing knowledge (physical laws, power flow,
etc) in Al-based algorithms
Achieve more accurate results and faster training

SNL LLDRD — “Integrating Physics Knowledge in Multi-Sensor
Machine I earning Models”

Real-world
action

Black Box
Agent ‘

Understand why a particular prediction/decision was given
Understand the error bounds on predictions/decisions

SNL LLDRD on “Opening the ‘Black Box': An Experimentally-
Validated Explainable Machine 1 earning Framework” Input Data

(Environment, Rewards)



gs | Future Research Directions

00

Thousands
@ju| / 8J

Reliable Connectivity
Computing Power
Data Longevity

Data Storage
Reliability
Latency

¢
S5

A. Yousefpour et al., “All One Needs to Know About Fog Computing and Related Edge

Location Awareness
Mobility Support -
Geo distribution

Distributed, AI-based Controls using Fog Computing
- Create resilient systems in the event of communication loss
Accelerate systems with low latency because processing

Resporshe happens physically close to sensors

Interactive
Delay litter

- SNL LLDRD — “HEDGES: High-Security Edge Computing for

Smart Sensor Systems”

oo

Generative Adversarial Networks (GAN) for Data
Augmentation to Classify Liver Lesions

Computing Paradigms: A Complete Survey,” J. Syst. Archit., vol. 98, pp. 289-330, Sep. 2019.

Semi-Supervised, Few-Shot Learning, or
Synthetically-Generated Training Data -

Generate Classi l)flug\ Classify liver
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There are many promising applications of AI/ML in power systems.
> It is an exciting time to be at this intersection — new algorithms, large datasets, computing power

There are many challenging problems yet to be solved with some fascinating future research
directions in ML.:

> Integration of Physics-based Constraints into Al

> BExplainable AI and Uncertainty Quantification

> Distributed Al-based Controls using Fog Computing

° Semi-supervised, Few-shot learning, or Synthetically Generated Training Data

Best results require integration between ML experts and power system experts

See the included references for further reading,
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