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All Models are Wrong, But Some are Useful |

- George Box

“Modelling in science remains, partly at least, an art. Some principles do exit, however, to guide the I
modeler. The first is that all models are wrong; some, though are better than others and we can search for

the better ones. At the same time we must recognize that eternal truth is not within our grasp.”
- McCullagh and Nedler (1989)

simplification and idealization. The idea that complex physical, biological or sociological systems can be

exactly described by a few formulae is patently absurd.”
- Cox (1995)

“... it does not seem helpful just to say that all models are wrong. The very word model implies |

“A model is a simplification or approximation of reality and hence will not reflect all of reality.”
- Burnham and Anderson (2002) I

“In general, when building statistical models, we must not forget that the aim is to understand
something about the real world. Or predict, choose an action, make a decision, summarize evidence,
and so on, but always about the real world, no an abstract mathematical world: our models are not the

reality”
- Hand (2014)

* All above quotes were pulled from the Wikipedia page for “All models are wrong” on 2019/09/01 I
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All Models are Wrong, But Some are Useful |

- George Box

“Modelling in science remains, partly at least, an art. Some principles do exit, however, to guide the I
modeler. The first is that all models are wrong; some, though are better than others and we can search for

the better ones. At the same time we must recognize that eternal truth is not within our grasp.”
- McCullagh and Nedler (1989)

simplification and idealization. The idea that complex physical, biological or sociological systems can be

exactly described by a few formulae is patently absurd.”
- Cox (1995)

“... it does not seem helpful just to say that all models are wrong. The very word model implies |

“A model is a simplification or approximation of reality and hence will not reflect all of reality.”
- Burnham and Anderson (2002) I

“In general, when building statistical models, we must not forget that the aim is to understand
something about the real world. Or predict, choose an action, make a decision, summarize evidence,
and so on, but always about the real world, no an abstract mathematical world: our models are not the
reality”

Hand (2014 Why do we even bother then?

* All above quotes were pulled from the Wikipedia page for “All models are wrong” on 2019/09/01 I



Dorian: Hurricane Trajectory Projections B

6 as of 9:00AM EDT on Monday 09/02/2019

Cone of Uncertainty IV @ RelelE 9:00 AM EDT
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* https://www. weather.com/amp/storms/hurricane/news/2019-09-02-
hurricane-dorian-labor-day-bahamas-florida-georgia-carolinas.html
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* https://www. weather.com/amp/storms/hurricane/news/2019-09-02-
hurricane-dorian-labor-day-bahamas-florida-georgia-carolinas.html

Historical Data

* https://oceanservice.noaa.gov/news/historical-hurricanes/
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* https://www. weather.com/amp/storms/hurricane/news/2019-09-02-
hurricane-dorian-labor-day-bahamas-florida-georgia-carolinas.html

Where p,v, T, p, k, and ¢, respectively denote the density,
velocity, temperature, pressure, thermal conductivity, and
specific heat of air

* Smith, Uncertainty Quantification: Theory, Implementation, and Applications, SIAM,
2014. page: 2
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..but...How do we know a model is “Useful”? I

We consider a model “useful” if: i

It provides enhanced insight into a problem.

It provides a means to test theory/hypothesis
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..but...How do we know a model is “Useful”?

We consider a model “useful” if:

It provides enhanced insight into a problem.

> It provides a means to test theory/hypothesis

How do we determine if a model is “useful”?
Traditional Methods: Validation and Verification
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..but...How do we know a model is “Useful”?

We consider a model “useful” if:

It provides enhanced insight into a problem.

It provides a means to test theory/hypothesis

How do we determine if a model is “useful”?
Traditional Methods: Validation and Verification

Validation: “describes the process of determining the accuracy with which mathematical models
quantify the physical process of interest”|[1]

Verification: “refers to the process of quantifying the accuracy of simulation codes used to
implement mathematical models” [1]

[1] Smith, Uncertainty Quantification: Theory, Implementation, and Applications, SIAM, 2014.
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The following introduction to Uncertainty Quantification (UQ) is a summary of what is provided by Dr. Ralph Smith in his 2014 SIAM
publication, Uncertainty Quantification: Theory, Implementation, and Applications. [1] I

Experiments I

Model Calibration
& Validation

Models _ Numerical Simulations

Verification

Quality of Interest (Qol)

“Output of a simulation model or
experiment that provides information
necessary to make conclusions or decisions

about the process”

[1] Smith, Uncertainty Quantification: Theory, Implementation, and Applications, SIAM, 2014.



14 | What is Uncertainty Quantification!?

“Uncertainty quantification is both a new field and one that is as old as the disciplines of probability

and statistics.”
-Smith (2014)

Uncertainty Quantification: “[in the context of predictive science] uncertainty quantification is the

science identifying, quantifying, and reducing uncertainties associated with models, numerical
algorithms, experiments, and predicted outcomes or quantities of interest.”

Multi-disciplinary Field: Areas of Research Interest:

» Probability
 Statistics

» Analysis

* Numerical Analysis

[1] Smith, Uncertainty Quantification: Theory, Implementation, and Applications, SIAM, 2014.

Parameter Selection

Surrogate Model Construction

Local & Global Sensitivity Analysis
Quantification of Model Discrepancies
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Experimental Uncertainties and
Limitations

« Limited or incomplete data
» Limited accuracy or resolution of
Sensors

Experiments

Model Calibration
& Validation

Models T

Verification

Numerical Simulations

Numerical Errors and Uncertainties

Model and Input Uncertainties
Round off, discretization, or

Model errors or discrepancies

approximation errors
Bugs or coding errors
Bit-flip and hardware failures

Input uncertainties due to uncertain
parameters, forcing functions, and
initial & boundary conditions

[1] Smith, Uncertainty Quantification: Theory, Implementation, and Applications, SIAM, 2014.
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Experimental Uncertainties and
Limitations

« Limited or incomplete data

» Limited accuracy or resolution of

Sensors

Experiments

“Essentially, all models
are wrong, but some

are useful” Models -

-Box

Verification

Model and Input Uncertainties
Model errors or discrepancies

Input uncertainties due to uncertain
parameters, forcing functions, and
initial & boundary conditions

[1] Smith, Uncertainty Quantification: Theory, Implementation, and Applications, SIAM, 2014.

Model Calibration
& Validation

Numerical Simulations

Numerical Errors and Uncertainties

Round off, discretization, or

approximation errors
Bugs or coding errors
Bit-flip and hardware failures
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Experimental Uncertainties and
Limitations

“Experimental results are believed by I

« Limited or incomplete data everyone, exgept fcz’r I PR Ve
ran the experiment

» Limited accuracy or resolution of Gunzburger
Sensors ]

Experiments

Model Calibration
& Validation

Models T

Verification

Numerical Simulations

Numerical Errors and Uncertainties
Round off, discretization, or
approximation errors '
Bugs or coding errors

Bit-flip and hardware failures

Model and Input Uncertainties
Model errors or discrepancies

Input uncertainties due to uncertain
parameters, forcing functions, and
initial & boundary conditions

[1] Smith, Uncertainty Quantification: Theory, Implementation, and Applications, SIAM, 2014. I
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Experimental Uncertainties and I
Limitations

« Limited or incomplete data
» Limited accuracy or resolution of
Sensors L

Experiments ) .
Computational
Model Calibration FE‘SL_JltS are
& Validation believed by no

one, except the
person who wrote

Numerical Simulations the code”
-Gunzburger

Models T

Verification

Numerical Errors and Uncertainties
Round off, discretization, or
approximation errors '
Bugs or coding errors

Bit-flip and hardware failures

Model and Input Uncertainties
Model errors or discrepancies

Input uncertainties due to uncertain
parameters, forcing functions, and
initial & boundary conditions

[1] Smith, Uncertainty Quantification: Theory, Implementation, and Applications, SIAM, 2014. I
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Aleatoric (Statistical, Stochastic, or Irreducible Uncertainty): I

“Uncertainty inherent to a problem or experiment that in principle cannot be reduced by
additional physical or experimental knowledge.”

Epistemic (Systemic Uncertainty):
“Uncertainty due to simplifying model assumptions, missing physics, or basic lack on knowledge.”

[1] Smith, Uncertainty Quantification: Theory, Implementation, and Applications, SIAM, 2014. I
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“Consider parameters and measurement errors to be random variables whose statistical properties or
distributions we wish to infer using measured data”

Frequentist:

“Probabilities are defined as the frequency with which an event occurs if the experiment 1s
repeated a large number of times”

Bayesian:

“treats probabilities as a distribution of subjective values, rather than a single frequency, that are
constructed or updated as data is observed” I

[1] Smith, Uncertainty Quantification: Theory, Implementation, and Applications, SIAM, 2014. I
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Probability Space: A probability space (Q, F, P) is comprised of three components:
(): sample space is the set of all possible outcomes from an experiment

F: 0- field of subsets of () that contains all events of interest
P: F — [0,1]: probability or measure that satisfies the postulates
P(@)=0
P(Q) =1

If Ai € F and Ai ﬂA] — @, then
P(UiZ1 Ai) = Xi=1 P(A)

Random Variable: a univariate random variable is a function X: ) = R with the property that

{w € Q|X(w) < x} €F for each x € R; i.e. it is measurable

Realization: the value

x =X(w)

of a random variable X for an event w € () is termed a realization of X.
[1] Smith, Uncertainty Quantification: Theory, Implementation, and Applications, SIAM, 2014.
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Cumulative Distribution Function (cdf):
Fy: R - [0,1]
Fy(x) =P{w € Q| X(w) <x}
Fy(x) = P{X < x}
Probability Density Function (pdf):

For a continuous random variable X the cdf can be expressed as,

Fy(x) = jx fx(s)ds, x €ER

" dFy .
where the derivative fy = d_; is the pdf.

Probability Mass Function (pmf):
The pmf of a discrete random variable X is given by fx(x) = P(X = x)

[1] Smith, Uncertainty Quantification: Theory, Implementation, and Applications, SIAM, 2014.
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E(X™) = j X" fi (x)dx

R

Mean (Expected Value): Density central location

u=J xfe(x)dx

Variance: Density’s variability or width

a? = [ (x — W) fr(x)dx

Skewness: Density’s symmetry about y

Kurtosis: Magnitude of tail contributions

[1] Smith, Uncertainty Quantification: Theory, Implementation, and Applications, SIAM, 2014. I
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Cone of Uncertainty IV @ RelelE 9:00 AM EDT
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* https://www. weather.com/amp/storms/hurricane/news/2019-09-02-
hurricane-dorian-labor-day-bahamas-florida-georgia-carolinas.html
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