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What does the submarine Arctic environment look like?
(simplified)
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+ 1 How much do we know about these!?

(blue — database)
2-D maps of:

(Green - algorithms)
Known physics
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seafloor
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Geologic Parameter

(in order of importance)

Gas Fraction

Porosity

Grainsize

Grain Type:
Fraction Clay
Terrigenous-Biogenous
Granitic-Basaltic
Calcareous-Siliceous

Temperature

Pressure

Salinity

\_

Low Frequency
(< IkHz) “Effective
Medium” theory
(Dvorkin-Nur, 1999)

Grain and Fluid
properties as function
of BT (Mavko 2008)

\_

V.

Bottom Loss &
Backscatter (function
of angle & frequency)

*

Simulated Acoustic
Propagation

Y *

High Frequency
(> IkHz) “Squirt”
theory (Biot-Stoll,

1989) »

Geoacoustic Parameter

Soundspeed, Density,
Attenuation, Backscatter
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s I How much do we know about these!?

(blue - database)
2-D maps of:

(Green - algorithms)
Known physics
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Porosity

Grainsize

Grain Type:
Fraction Clay
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We have some geological maps, created by
hand-drawing contours based on sparse
observations.

We have a good idea for T, P, S on the seafloor
—— from oceanographic models. . .. But function

Salinity

of depth would require heat flux

measurements.

)

Order of importance

\_ J




We have geospatially sparse data.....
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What we have: geospatially sparse




7 1 We have geospatially sparse data.....
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What we have: geospatially sparse ‘

What we want:

geospatially extensive prediction



* 1 BASIC MACHINE LEARNING — |

What we have: geospatially sparse ‘

In a “geologic

predictor space”, this

data may not actually

be sparse at all! |

Basic ML
algorithms

geospatially extensive prediction



1 BASIC MACHINE LEARNING - KNN

What we have: geospatially sparse

Nearest neighbor: Finds the sample
already measured that came from the
most geologically similar
environment — Not the
geographically closest!
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predictor space”, this
data may not actually
be sparse at all!

In a “geographic |



BASIC MACHINE LEARNING - KNN

What we have: geospatially sparse

] |
In a “geographic

predictor space”, this

data may not actually

be sparse at all!

“dense” predictors:
water depth, bottom current,
dist. from river mount

Pros: No binning, no fitting of models,
virtually no adjustments, statistically
rigorous — Black Box

“The last time | saw a sediment:
at this water depth, with this
bottom current, this far from a
river mouth, (etc.) the bearing

bR

strength was _x_.

Cons: The model space must be well
sampled. The system can only predict
what it has seen before.

AN




To get Predictands, we need Predictors. ..

Published grids
(Elevation, Crustal Models, remote
sensing, previous predictions, etc.)

Distance to; coastline, ridge, trench,
transform, river mouth, etc.

Also statistics; Mean, and absolute
deviation over various radii.

SEAFLOOR SLOPE



21 To get Predictands, we need Predictors...

Here are 16 out of about 4000, NRL has generated at Ix| arc degree pitch




s 1 Validation & Estimating Uncertainty

How well can we

. . 20
predict some withheld
observations!?

| I | ] | I I I ] I | l I ] I I

10-fold validation

Predicted values were
obtained for each
withheld point using
the set of remaining
points as potential B
nearest neighbors. !

Predicted
o
|

Error (predictive skill) 0 o I1()] | 20

can give you an ohoe ey
estimate of uncertainty.




“ 1 What determines seabed acoustic properties!?

(blue - database)
2-D maps of:
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Observed Seafloor Porosity




s I What determines seabed acoustic properties!?

(blue - database)
2-D maps of:
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(blue - database)
2-D maps of:
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7 I What determines seabed acoustic properties!?

(blue - database)
2-D maps of:
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s I What determines seabed acoustic properties!?

(blue - database)
2-D maps of:
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Lee, et al., Biogeochemical Cycles, 2019

We started by using total organic carbon as a proxy to

predicting likelihood of free gas.
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(blue - database)
2-D maps of:
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) | You may look at the validation, and think,“That
Doesn’t Look So Good. ..

(blue - database)
2-D maps of:
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seafloor Lee etal,Biogeochemical Cycles, 2019
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) ‘ You may look at the validation, and think,“That m
Doesn’t Look So Good. ..
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2 I What determines seabed acoustic properties?

(blue - database)
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We started by using total organic carbon as a proxy to

predicting likelihood of free gas.



» I What determines seabed acoustic properties? —
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(blue - database)
2-D maps of:

seafloor
Observed Seafloor Total Organic Carbon
4 ) :

Geologic Parameter
(in order of importance)
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Porosity
Grainsize
Grain Type: s, | |
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Terrigenous-Biogenous
Granitic-Basaltic

Calcareous-Siliceous We starte g total organic carbon as a proxy to
Temperature predicting ] d of free gas.
Pressure
Salinity Let’s try to actually model it, using a hybrid GML +

physical modeling technique!




# 1 What determines seabed acoustic properties?
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(blue - database)
2-D maps of:
seafloor
4 Geologic P . ~N Methane and gas hydrate stability:
eologic Parameter
in order of importance
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Need a thermodynamic numerical model for this...
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I Sandia National Laboratories
2 U.S. Naval Research
Laboratory

3 University of Texas at Austin

o |ysaaum| & TEXAS

LABORATORY The University of Texas at Austin

orecasting Marine Sediment Properties On and Near the
Arctic Shelf with Geospatial Machine Learning

Jennifer M. Frederick!, Warren Wood? Michael Nole', Ben Phrampus?, Hugh Daigle®, Hongku Yoon', Brian Young', and
Ken Sale'

Forecast seafloor conditions via a novel integration of geospatial
machine learning and physical models:

Feature Selection & Validation

<

Global Observations (data)

\ ‘ Geospatial Machine Learning Algorithm
N 0| 3 ; . | Based on sparse known
% o N | Find'Correlations data andhordreds ol
N NI T vector of vector of dense calculated predictors,
; observed values predictor values GML produces continuous

“1 maps of desired seafloor
<1 quantities, such as porosity,
sediment type, total organic
carbon content, etc.

Only use the best predictors, based on
individual predictive skill via 10-fold
validation. Predictors must perform better
than random noise.

Collect and use all known data on seafloor,

organized as a gridded dataset. Data outside
of the Arctic can and should be used! )

GML produces estimates of

seafloor quantities and
their uncertainty, which is
based on prediction error.
A well sampled parameter
space will reduce
parameter uncertainty.
GPSM:

ntegrate physical models to produce predictions of : , ——, = Global

- = Z A e
seafloor geo-acoustic and geo-mechanical properties. X — e Predictive
e a ey Seafloor Model
[T r—— Better estimates of sediment grain size
and thermal properties will help map
methane gas phase diagrams.

Rock physical models
can use GML-predicted
seafloor parameters to
map geo-acoustic and

geo-mechanical
sediment properties.

U.S.NAVAL
ESEARC

= LABORATOR¥

| Uncertainty results can be

used to guide future data
acquisition campaigns.
Increasing observations
where prediction error
(uncertainty) is high will
benefit predictive skill
globally.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. SAND No. 2019-4278 M



g‘ Resulting in Probabilistic Maps

These maps will provide the best calculated
estimates of continuous seafloor properties to date. ‘

areas with high
uncertainty tell us
where we need
more data




> 1 Applying the Framework L

Observed Value Predicted value (predictand)
* e.g.permeability * e.g.permeability

° Probabilistic maps quantify
uncertainties in the seafloor

parameters we are interested Geaspatlal Machine Leaming Algorithm il S —

1 Find Correlations > «;”' SR . o1 hundreds of

n g 4 dense calculated predictors,
«&si | GML produces continuous
maps of desired sea oor
quantities, such as porosity,
sediment type, total organic
carbon content, etc.

vector of vector of
observed values predictor values

Ex.

> How do these uncertainties
propagate downward?

<

GML produces estimates of

2 sea oor quantities and
: x their uncertainty, which is
{ based dicti :
> What can confidence intervals pased on prediction eror
on e.g. seafloor temperature, 3. Vi space wil reduce

parameter uncertainty.

seafloor depth, seafloor .
organic carbon content, or 4. dist
heat flux tell us about the
likelihood of shallow gas ot
gas hydrate?

Global
Predictive
> Sea oor Model

‘ U.S.NAVAL \
ESEARC

LABORATORY

= 2= Uncertainty results can be
) .| used to guide future data
acquisition campaigns.
7| Increasing observations
where prediction error
(uncertainty) is high will
bene t predictive skill
globally.

5. etc.

We need thermodynamic models
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Applying the Framework

Petascale reactive multiphase flow and transport code
Open source license (GNU LGPL 2.0)
Object-oriented Fortran 2003/2008

> Pointers to procedures
> Classes (extendable derived types with

member procedures)

Founded upon well-known (supported) open source libra:
° MPI, PETSc, HDF5, METIS/ParMETIS/CMAKE

Demonstrated performance
> Maximum # processes: 262,144 (Jaguar supercomputer)
° Maximum problem size: 3.34 billion degrees of freedom

o Scales well to over 10K cores

Wall-Clock Time per Time Step [sec]

256

128 -

64

32+

16

8_

PFLOTRAN 270 M dof
Ideal

——

4 L
1024 2048

4096 8192
Number of Cores

16384 32768
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> I Applying the Framework
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. | Applying the Framework: IODP 372
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Applying the Framework: IODP 372

Gas hydrate was observed at ~150 mbst. What can
we say about the system and how it might be
trending in the future?

Contractional 1 Extensional TAN1114-10b
f/ ’ deformation | deformation
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Applying the Framework: IODP 372
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Applying the Framework: Sampling

Parameter Distribution Current
(aPP"OX )

Seafloor Uniform
Depth (m)

Seafloor Uniform I 8 6
Temperature

©)
Geothermal Uniform 0.005 0.05 0.038

Gradient
(°C/km)

Sedimentation  Log-uniform Ix10-> Ix10-2 8x104
Rate (mm/yr)

Seafloor Uniform 3x1073 Ix102 unknown
Organic

Carbon

Fraction (%)

Rate of Log-uniform Ix10-1> Ix10-!3 unknown
Methanogenes

is (s7')




Applying the Framework: Responses of Interest

> Hydrate saturation
> (Gas saturation

° Temperature

° Pressure

o Dissolved methane concentration

Simulate to 100 kyrs




Within Landslide

400 PFLOTRAN simulations
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Sediment Depth [m]

Beneath Landslide

400 PFLOTRAN simulations

400 PFLOTRAN simulations
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hyd_sat

Beneath Landslide: | 50mbsf
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* 1 Beneath Landslide: 1 50mbsf
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Only two simulations formed a free gas phase at |50 mbsf
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