-
() Sandia o NSPETT—
W ﬂ\l National

Kokkos and SNAP work in
support of EXAALT and
LAMMPS

ks
......

Stan Moore
2019 CoPA All-Hands Meeting
Santa Fe, NM

— @ENERGY NISA

2 I Recent Performance Work

2x improvement of small Lennard-Jones systems (~1000 atoms) on a
single V100 GPU

2x improvement of PPPM long-range electrostatics on a V100 GPU (to
be released soon)

5x improvement of SNAP potential on V100 GPUs (regular CPU version
is also over 2x faster on CPUs than before)

Improved OpenMP threading performance by adding Kokkos

ScatterView data duplication option (helped several pair styles, from
Lennard-Jones to ReaxFF)

@)

" Small Lennard-Jones Systems

When comparing LAMMPS Kokkos package to CUDA version (GPU
package) as well as other MD codes (e.g. OpenMM) noticed large
performance gap for small L] systems

Needs for small systems: expose more parallelism and fuse kernels to

reduce launch latency

Lennard Jones, 1 V100 GPU + 1 MPI rank
30

Better 25 —GPU Package

-m-Kokkos

N
o

million atom-steps/s
(e
(0]

1000 2000 4000 8000
atoms

*1 Optimizations for Small Systems

1. Added team threading over neighbors in addition to atoms when system size 1s
16K atoms or less (slower for large systems due to overheads)

2. When running on 1 MPI rank, fused 12 communication buffer pack and unpack
kernels into 2 kernels

3. Reduced data transfer for small systems by reducing the “extra” amount allocated
for atom data, but also growing exponentially by a constant factor

4. Collapsed two scalar views into a single view which got rid of a deep copy

5. Run periodic boundary kernel on host CPU if comm is already on the host,
avoids GPU data movement and one kernel launch

6. Only copy force on ghost atoms from GPU to CPU if using newton option
And more...

*Tried fusing Verlet integrator initial and final kernels for intermediate timesteps.
Also fused force zeroing kernel with pair compute. Gives good speedup, but breaks
modularity of LAMMPS. Is this tradeoff worth it?

(M)

Results

2.3x speedup for 1000 atoms

Can’t use fused comm with more than 1 MPI rank, use Cabana method instead?

Lennard Jones, 1 V100 GPU + 1 MPI rank
512

256 |
Better

[N

N

(0]
I

()]
H
T

——Kokkos NEW
- Kokkos OLD

w
N

[EEY
(93}

million atom-steps/s

1000 8000 64000 512000
atoms

(B

6 L] L]
Performance comparison with GPU package
Kokkos uses special fused MPI comm kernel when running on a single GPU
Integrator is running serially on CPU for GPU package
Performance penalty for moving atom data between GPU and CPU
Double precision only
Lennard Jones, 1 V100 GPU + 1 MPI rank Lennard Jones, 1 V100 GPU + 1 MPI rank
- 400
Better s [350 || —=Kokkos
% <300 -o-Kokkos, fix/nve and comm on CPU
;% 20 § _— —4+—GPU Package
& @
815 § 200
© ©
s £ 150
:é_? 9 -a—Kokkos :;:’
E £ 100
L 4 -e—Kokkos, fix/nve and comm on CPU -
—4—GPU Package f
0 | 0 1 1 1
1000 2000 4000 8000 1000 8000 64000 512000
atoms atoms

T ' e

\
1
|

7 I Multiple MPI ranks per GPU @

Using multiple MPI ranks/GPU can help when parts of the code are not Kokkos-
enabled

MUST use CUDA MPS with multiple MPI ranks per GPU to get good

performance
Lennard-Jones, 1 V100 GPU, 32K atoms
140
120
" —Kokkos, 1 MPI rank/GPU
> .
2100 r --Kokkos, fix nve and comm on CPU
=]
Better E —+GPU package
o 80
®
5
= 60
£
3
40
20
1 2 4 8 16

MPI ranks

* I Performance comparison with GPU package

Full Summit node (6 V100 GPUs)
Using multiple MPI ranks/GPU closes most of the performance gap

Using pinned memory may help Kokkos with integrator and comm on host CPU

Lennard-Jones, 6 V100 GPUs, 1M atoms

720
620 | \
Better §520 -
g‘ 420 .
S
© L
< 320
= —Kokkos, 1 MPI rank/GPU
£ 220
—-eo—-Kokkos, fix nve and comm on CPU
1200 1 —+GPU package
20 1 1
1 2 3 4 5 6 7

MPI ranks/GPU

! FFTs for Long-range Electrostatics

3 options for FFTs on GPUs:

1. Run MPI-distributed on host CPUs: FFTs not GPU-accelerated, lots of
data movement between CPUs and GPUs

2. Gather all the data to 1 or a few GPUs on a node and perform entire
3D FFT using cuFFT (not MPI-distributed): faster because FFTs are

GPU-accelerated but problem size is limited to what can fit on a few
GPUs

3. Run MPI-distributed but perform 1D FFTs (pencil decomposition)
using culFF'T on GPUs, in theory can run huge FFTs on thousands of
GPUs

Option #1 currently in LAMMPS Kokkos package. Implemented option #3
in LAMMPS (will be released soon) and got a ~2x speedup on the 32K
atom Rhodopsin benchmark. Option #2 also being investigated.

* ! Connections between CoPA & EXAALT &
LAMMPS

EXAALT ECP project seeks to extend accuracy, length, and time scales of
material science simulations for fission/fusion reactors

Uses classical models like SNAP via LAMMPS, and quantum models
(DFTB) via LATTE (also a CoPA emphasis)

EXAALT wants to run millions of small MD replicas (1K to 1M atoms) via
ParSplice as fast as possible (not one large simulation with billions of
atoms)

SNAP Potential

* Machine-learned MD potential that seeks for quantum-chemistry accuracy

* Neighbors of each atom are mapped onto unit sphere in 4D

(90>, 1) = (G5 /10y c08™(z/r), tan™" (/%))

* Density around each atom is expanded in a basis of 4D hyperspherical harmonics

* Bispectrum components of the 4D hyperspherical harmonic expansion are used as the geometric
descriptors of the local environment

* Preserves universal physical symmetries

* Invariant to rotation, translation, permutation

* Size-consistent

* SNAP uses linear regression to fit coefficients to DFT data

Wy = U2 00,000+ > fulra)wiU2, (00,0, 0)

T’LZ, <Rcut

B . .= N H s
J1,J2,) — hmlml/ um m/ um m!
Jamamy gty 2,MMa

ml,m1:_.71 m27m2:_32 m,m’/=—j

T ' e

SNAP Force Calculation

Function Calc_.dBdR(z,j):
for (m,m1,m2) in GetBispectrumlIndices() {
vaTh,szm =0
for (u=0;p < myput++) {
for (p' = 0; 4" < m; p'++) {
VB mm += Zpe (Vju,)"
b}

ATy A R TR
for (u1 = 05 1 < My pa++) {
for (p3 = 0;) < my; puy++) {
VB mom += I% ‘i]’l";ﬁ}” (V uﬂ -ﬁl)*
b}
for (po = 052 < my; pat++) {
for (pp = 05 py < mg; po++) {

) n+1 #2#2 T2 *
V_?BTFLTI?:Tf + T +1 ZTI”- 1172 (v H“E “2)

b}

* Deeply nested loops
* Loop structure not regular

* Loop bounds relatively small

I I s (e

* 1 SNAP Performance Improvements

OLCF GPU Hackathon

Aidan Thompson (Sandia) took the SNAP CPU code out of LAMMPS =
TestSINAP stand-alone (realistic) force kernel, includes correctness check

Idea from Nick Lubbers (LANL) = Aidan made algorithmic improvements that
reduced FLOP count and eliminated some intermediate storage -2 ~2x speedup on

SNAP effort part of the NESAP NERSC-9 (Perlmutter) program at NERSC and a
CPUs

Aidan reduced memory use by collapsing multidimension arrays into compact lists
Rahul Gayatrt (NERSC):
1. wrote a CUDA/OpenACC version of TestSNAP

2. broke up the one monster kernel into many smaller kernels, reduces register pressure and
allows tailoring launch parameters for each kernel, but blows up the memory

3. inverted loops and changed data layouts to improve memory access

Also had help from Sarah Anderson (Cray) and Evan Weinberg (NVIDIA)
These improvements were ported to Kokkos SNAP in LAMMPS by Stan Moore

1 SNAP Benchmarking on Summit

On Summit node, run 6 GPU + 1 CPU (36 cores) replicates for EXAALT
EXAALT benchmark uses 205 bispectrum coefficients, tungsten crystal
2018 LAMMPS on CPUs: 59.9 seconds

New LAMMPS on CPUs: 24.7 seconds: 2.4x faster

2018 LAMMPS on 1 V100: 39.6 seconds

New LAMMPS on 1 V100: 7.2 seconds: 5.5x faster

(M)

s 1 SNAP GPU Performance Over Time

| v | T |
TestSNAP CUDA
I3} ‘é N
Q
o
B
T 10F LAMMPS Kokkos . OLCF GPU
g [i / Hackathon
H - -
_3 — ¢ b
ﬁ B -
L - 1
O
Q.
2 I\’
1 [1 | 1 | =

May June July
2019 Date

T ' e

<« EXAALT FOM/KPP Projection for Summit

Mira IBM BG/Q) FOM baseline: 0.182 Katoms-steps/s/node * 49152
Mira nodes

2018 LAMMPS performance on Summit: 33.7 Katom-steps/s/node * 4608
Summit nodes: projected 17.4x faster than Mira baseline

New LAMMPS performance on Summit: 175.1 Katom-steps/s/node *
4608 Summit nodes: projected 90.2x faster than Mira baseline

Recently ported energy minimization in LAMMPS to Kokkos, which 1s
needed by ParSplice

Danny Perez (LANL) planning to validate these projections with large-scale
Summit run soon

I I s (e b 0 I eem = T

71 SNAP Benchmarking on Summit

More improvements discovered during GPU hackathon and implemented
in TestSNAP, but not yet in LAMMPS:

* Transpose data layout part way through the algorithm to optimize access patterns
(easy)

* Write code in a way to convince compiler to use 128 bit memory read/writes for
complex data types (medium hard)

Rahul has been learning Kokkos and is still working on improving SNAP

More speedup to come!

T T

* ! Looking Forward to FY20

LAMMPS Kokkos package only supports double-precision (FP64)

Single (FP32) and mixed precision (FP32 for intermediate calculations and
FP64 for accumulation) can significantly improve performance on both
GPUs and CPUs (when reduced accuracy can be tolerated)

Kokkos host views for atom data are aliased to legacy host data structures
(LayoutRight, FP64). If a non-Kokkos style 1s invoked, atom data is
transferred down to CPU, calculation is performed, and data is transferred
back up to GPU

Want to use FP32, LayoutlLeft views on GPUs for better performance: add
transpose and cast as an intermediate step when syncing between
host/device views in Kokkos DualView

Adding single/mixed precision support not a trivial undertaking but gives
significant benefit and is necessary for LAMMPS Kokkos performance to
be competitive with other MD codes

