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2 Milestone Descripton and Completion Criteria

• Description:
... The FY19 co-design milestone will examine the impact of network interconnects on the
performance of ASC applications. The milestone team will work with vendors to analyze
DOE workloads and applications to quantify the performance impacts of network options...

• Completion:
An evaluation of novel interconnect topologies interconnects with performance estimates for ASC
applications.

Four Specific Design Issues Addressed Here
• Dependence on workload
• Dependence on topology/routing
• Scaling question from CTS (1000 nodes) to ATS (16000 nodes)
• Insight into performance differences from performance counters



3 Interconnect design is driven by geometry: what topology and
routing mechanisms work best for ASC traffic patterns?
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4 Interconnect design is driven by both local and global geometry
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• Each switch has to make routing decisions locally
• Each switch has to satisfy global constraints

• Bisection bandwidth limited
• Virtual channel and deadlock issues

• Routing is better if it can be based on
global congestion information
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• Arrangement of switches and ports
determines topology properties
• Bisection bandwidth
• Locality

• Choice of macrosca(e global geometry can
affect microsca(e routing requirements



5 Candidate #1 : Fat tree is mature data center topology which
with tunable bisection bandwidth and some locality

• Can be full or tapered bisection bandwidth
• Divided into leaf, aggregation, and core switches
• High path diversity for sending from leaf->leaf and agg->agg switches
• Single virtual channel, all traffic flows in "same" direction
• High diameter (max 6 hops)

Diameter = 6 with
adaptive routing



6 Candidate #2: Dragonfly topology has high path diversity,
strong locality, and tunable bisection bandwidth

• Full bisection bandwidth
• Low diameter (max 3 hops)
• All-to-all groups connected with long-reach

global links between groups
• High path diversity for adaptive routing
• Many virtual channels required for most

sophisticated routing
• Progressive adaptive (PAR)

Diameter = 5 with
adaptive routing
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7 Candidate #3: Dragonfly+ topology sacrifices some locality for
simpler routing and larger groups

.,

"Fat tree"
groups

• Hybrid of fat-tree and dragonfly
• Full bisection bandwidth
• Medium diameter (max 4 hops)
• Fat-tree groups connected with long-reach

global links between groups
• High path diversity for adaptive routing
• Fewer virtual channels required for most

sophisticated routing (2 needed)
• Progressive adaptive (PAR)

Diameter = 5 with
adaptive routing



8 Candidate #4: HyperX provides path diversity, locality reduces
bisection "pressure"
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Dimensions

• Full bisection bandwidth
• Low diameter (max 3 hops)
• High path diversity for adaptive routing
• Many virtual channels required for most

sophisticated routing (6 needed)
• Variable dimension progressive

adaptive (PAR)
• Locality can reduce bisection pressure

with uniform random traffic

Diameter = 6 with
adaptive routing



9 Broad survey over the interconnect design space covers
different workloads and range of scales

4 Topologies
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3 Scales

• CTS: 1K nodes
e.g. Serrano

• "Small" ATS:
4K nodes
e.g. Sierra

• "Big" ATS:
16K nodes
e.g. Trinity

4 "Environments"

1/4, No Background

1/4 + Halo Background

1/4 + FFT Background

Full System

4 "MPI Modes"

• MPI + OpenMP:
1 rank/node

• Mixed
4 ranks/node

• Mixed
16 ranks/node

• MPI-Only
64 ranks/node



CTS scale (I K nodes) shows room for improvement with all
topologies and fat tree consistently the best

MPI+OpenMP usage with 1 rank/node
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11 CTS scale (IK nodes) story mostly consistent when used with
MPI-only communication patterns
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12 Inefficient use of the network primarily manifests in three
performance counters on network ports
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13 Ideal performance counter use case (and brief introduction to
violin plots showing density distributions)

Ports mostly active,
activity limited to
"minimal" paths

xmit active

Very few ports idle, all
bandwidth in network
doing useful work

xmit_idle
PerfCtr

Very few ports stalling
due to congestion

xmit stall



1 4 Performance counters provide a deeper insight into origins of
the performance differences: active, idle, stall

MPI+OpenMP Halo3D with 1 rank/node
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15 I MPI-only usage mode tells similar story as
MPI+OpenMP traffic injection
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16 CTS-scale (I K nodes) Fat Tree is reliable choice and Dragonfly
looks like a strong alternative

Figure: 4 paths to neighbor, 16 bisection paths
Actual: 32 paths to neighbor, 1K bisection paths

Figure: Diameter-2 dragonfly (all-to-all group
connectivity)
Actual: Diameter-3 dragonfly at 16K nodes (need
intra-group hops to global gateways)



17 Scaling to ATS (4K- I 6K nodes) system sizes dramatically
changes performance behavior
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18 In Dragonfly and HyperX ports are working hard (random
placement) or hardly working (linear) for I 6K nodes
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I The simulation methodology includes leading HPC
network topologies and communication patterns

Three network topologies

o Dragonfly (Cray)

o Fat-tree (3-level)

o HyperX

o 64-port routers

o Link speed 100 Gbps

Four communication patterns

o Communication only

o Halo3d-26 (27-point stencil)

o Sweep3d ("pencil")

o Subcom2d-coll (collectives/Qbox)

o Subcom3d-a2a (all-to-all)

• 32,768 MPI ranks*

• Adaptive routing (best)

• Using simulator TraceR-
CODES
• TraceR: MPI trace traffic
generation

• CODES: network modeling

*ALL RANKS COMMUNICATE THROUGH NETWORK (WORST-CASE
ANALYSIS)



1 Summarizing the results on halo3d-26
Fat-tree performs best for large message sizes
otherwise topologies perform similarly

Topologies and time-per-
iteration on par for smaller
message sizes of 64K, 512K

Fat-tree scales better for larger
message sizes 4M, 8M
° Followed by HyperX, Dragonfly
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I Summarizing the results on sweep3d
All topologies perform similarly

Time-per-iteration scales linearly
with message size

Topologies are on par

Insensitive to linear or random
mapping
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1 Summarizing the results on subcom2d-coll
Dragonfly is best for linear mapping while HyperX is
best for random (and Fat-tree is in-between)

Dragonfly scales best for linear
mapping

o Followed by Fat-tree, HyperX
0.8 -
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c
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1 Summarizing the results on subcom3d-a2a
Fat-tree performs best for all message sizes and
mappings

Fat-tree scales best for all-to-all
communication
o Followed by HyperX, Dragonfly

Time-per-iteration scales more
than linearly

Under random mapping HyperX
performs close to Fat-tree
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24 Worst-case traffic pedagogical example clearly shows
challenges in dragonfly implementation

Worst-case traffic sends entirely from
one group to another across "scarce"
global links
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25 Worst-case traffic pedagogical example clearly shows
challenges in dragonfly implementation

Worst-case traffic sends entirely from
one group to another across "scarce"
global links
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26 Performance counters shows dragonfly adaptive routing is
failing to find uncongested paths

Minimal has many
Minimal has idle ports and a
"long tail" of few never idle
active ports 1e13 nnode k 4096

Adaptive has more
total activity, but
clustered lower

Worst-case traffic sends entirely
from one group to another across
"scarce" global links
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27 Other features of the network could dramatically change the
landscape of performance for each interconnect design
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ngestion outing Metrics

More efficient on low
diameter AND minimal

routing

More efficient on
simpler geometry
with fewer VCs

Fat tree
Diameter=5, minimal

routing can be efficient
Single VC for
deadlock

Dragonfly
Diameter=3, multipath
routing complicates

detection

>= 3 VCs for
deadlock

More sophisticated
schemes could avoid
so many idle ports

Diameter=4, minimal
Dragonfly+ routing can be efficient

Single VC for
minimal, 2 VCs for

adaptive

HyperX
Diameter=3, multipath
routing complicates

detection

1-3 VCs depending
on implementation

More sophisticated
schemes could avoid
so many idle ports



28 Very Bayesian conclusions chosen very carefully

• If conditions match those used in simulation:
•Fat tree is both simplest and most robust, despite some extra cost
(might be mitigated with tapering)

• If using commodity IB switches with limited minimal routing AND QoS is important
•Fat tree is clear winner

• If vendor adaptive routing are effective and workloads are allocated close to "linear":
•Dragonfly becomes appealing option, particularly for CTS scale

• If all areas for improvement are combined:
•HyperX has many desirable for properties, most interesting target for optimization

• If packaging issues are not a problem:
•Dragonfly+ is an interesting middle-of-the-road option
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