
Firmware Emulation for
Embedded Systems

Presented by

Sri Cherukuri

Sandia National Laboratories is a multimission
laboratory managed and operated by National

Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International
inc., for the U.S. Department of Energy's National
Nuclear Security Administration under contract DE-

NA0003525.

SAND2019-10336PE



Embedded Systems

• Physical devices can be difficult to test thoroughly for faults
• Hardware required for testing

• Difficult to replicate or repeat quickly for multiple devices



Emulation

• Mimic device or chip architecture/memory structure to run programs
on virtual hardware

• Testing is dependent on sufficient processing power and memory
rather than availability of the physical system

• Difficult to detect which device failed where in a system crash



Difficulties in Emulation

• Emulating specific architectures requires heavy understanding of their
inner workings
• Not all devices of interest have documentation made available to emulated

properly

• Each device must be implemented accordingly for the system to be
emulated

• Difficult to tell if a fault occurred due to emulation fault or actual
device fault



Investigation in Device Removal

• Use known firmware and remove devices for analysis

• Use break locations in runtime to identify removed devices and their
involvement in program
• Essentially creating problems to solve one at a time rather than have several
from different devices all at once

• Find patterns device failures in system failures across known and
unknown systems
• Error found when removing a device in a known emulation could allow us to

identify similar errors in other devices



Methods

• QEMU
• open-source emulator

• Converts binary of source instructions to target instructions (ex: 32-bit ARM
binary to x64 Linux)

• Apply to known architecture (ARM)
• Use firmware and images from the QEMU advent calendar as a testing corpus



QEMU Advent Calendar

II short tale of Christmas survival_

Gumby

QEMU

Score: 0 of 28 120 De • rees Below Zero



QEMU Advent Calendar

RESET

1_1
_Ma
SAUE

L_I
Ma
LOAD
6) 19
STOP IIELP



Attempted Implementation
(pruning after initialization)

dev = qdev_create(NULL, "versatile_pci");
busdev = SYS_BUS_DEVICE(dev);
qdev_intt_nofail(dev);
sysbus_mmio_map(busdev, 0,
sysbus_mmio_map(busdev, 1,
sysbus_mmio_map(busdev, 2,
sysbus_mmio_map(busdev, 3,
sysbus_mmio_map(busdev, 4,
sysbus_mmio_map(busdev, 5,
sysbus mmio map(busdev, 6,
sysbus_connect_trq(busdev, co, stc[27]);
sysbus_connect_trq(busdev, 1, stc[28]);
sysbus_connect_trq(busdev, 2, stc[29]);
sysbus_connect_trq(busdev, 3, stc[30]);
pci_bus = (PCIBus 9qdev_get_child_bus(dev, "pci");

for(n = 0; n < nb_nics; n++) {
nd = &nd_table[n];

tf (!done_smc && (Ind->model 11 strcmp(nd->model, "smc91c111")
smc91c111init(nd, Ox10010000, sic[25]);
done 

_
_smc 1;

) else {
pci_ntc_intt_nofatl(nd, pct_bus, "rt18139", NULL);

Ox10001000);

Ox41000000);
Ox42000000);

Ox43000000);
Ox44000000);

Ox50000000);
Ox60000000);

/*
/*
/*
/*
/*
/*
/*

PCI
PCI
PCI
PCI
PCI
PCI
PCI

if (machine_usb(machine)) {
pci_create_simple(pci_bus, -1, "pci-ohci");

n = drive_get_max_bus(IF_SC5I);
while (n >= 0) {

Ist53c895a_create(pct_bus);
n--;

controller regs
self-config */
config */
I/0 */
memory window 1 */
memory window 2 */
memory window 3 */

pleoll_create(8x101f1080, ptc[12], sertal_hd(0));
p1011_create(0x101f2000, ptc[13], serial_hd(1));
p1011_create(8x101f3000, ptc[14], sertal_hd(2));
p1ell_create(0x10009000, sic[6], serial_hd(3));

sysbus_create_simple("p1080",
sysbus_create_stmple("sp804",
sysbus_create_simple("sp804",

sysbus_create_simple("p1061",
sysbus_create_stmple("p1061",
sysbus_create_stmple("p1061",
sysbus_create_simple("pl061",

Ox10130000, pic[17]);
Ox181e2080, ptc[4]);
Ox101e3000, pic[5]);

Ox101e4000, pic[6]);
Ox181e5080, ptc[7]);
Ox101e6000, pic[8]);
Ox101e7000, ptc[9]);

*/

= 0)) {

Bus: System
Dev Type: cft.pflash01 Path: plachtne/unattached/device[29]
Dev Type: p1041 Path: /machtne/unattached/device[28]
IRQ : sysbus-trq *In: 0 *Out:1

Dev Type: versattle_t2c Path: /machine/unattached/device[26]
Bus: t2c-bus

Dev Type: ds1338 Path: /machine/unattached/device[27]
Dev Type: p1031 Path: /machtne/unattached/device[25]
IRQ : sysbus-trq #In: 0 *Out:1

Dev Type: p1181 Path: /machtne/unattached/device[23]
IRQ : (unnamed) #In: 0 SOut:2
IRQ : sysbus-irq #In: 0 #Out:2

Dev Type: p1181 Path: /machtne/unattached/device[21]
IRQ : (unnamed) #In: 0 NOut:2
IRQ : sysbus-irq #In: 0 #Out:2

Dev Type: p1110_versattle Path: /machtne/unattached/device[20]
IRQ (unnamed) #In: 1 *Out:0
IRQ : sysbus-irq #In: 0 #Out:1

Dev Type: p1061 Path: /machtne/unattached/device[19]
IRQ : (unnamed) #In: 8 #Out:8
IRQ : sysbus-irq #In: 0 #Out:1

Dev Type: p1061 Path: /machtne/unattached/device[18]
IRQ : (unnamed) Inn: 8 #Out:8
IRQ : sysbus-irq

Dev Type: p1061
IRQ : (unnamed)
IRQ : sysbus-irq

Dev Type: p1061
IRQ : (unnamed)
IRQ : sysbus-trq

Dev Type: sp804
IRQ : sysbus-irq

Dev Type: sp804
IRQ : sysbus-irq

Dev Type: p1080
IRQ : sysbus-trq

Dev Type: plan

#In: 0 #Out:1
Path: /machtne/unattached/device[17]
#In: 8 #Out:8
#In: 0 #Out:1
Path: /machine/unattached/devtce[16]
#In: 8 #Out:8
#In: 0 *Out:1
Path: /machtne/unattached/devtce[15]
#In: 0 #Out:1
Path: /machtne/unattached/device[14]
#In: 6 #Out:1
Path: /machtne/unattached/device[13]
#In: 0 #Out:1
Path: /machtne/unattached/devtce[17]

IRQ : sysbus-trq #In: 0 *Out:1
Dev Type: p1011 Path: /machtne/unattached/devtce[11]
IRQ : sysbus-trq #In: 0 *Out:1

Dev Type: plan Path: /machtne/unattached/device[10]
IRQ : sysbus-trq #In: 0 *Out:1

Dev Type: p1011 Path: /machine/unattached/devtce[9]
IRQ : sysbus-trq #In: 0 *Out:1

Dev Type: versattle_pct Path: /machtne/unattached/devtce[6]
IRQ : sysbus-trq #In: 0 *Out:4
Bus: PCI

Dev Type: IstS3c895a Path: /machtne/unattached/devtce[8]
Bus: SCSI

Dev Type: scst-dtsk Path: /machtne/unattached/devtce[8]/scst.O/legacy[2]
Dev Type: versattle_pct_host Path: /machtne/unattached/devtce[7]

Dev Type: plOSO_mouse Path: /machtne/unattached/device[S]
IRQ : sysbus-irq #In: 0 *Out:1

Dev Type: plOSO_keyboard Path: /machine/unattached/device[4]
IRQ : sysbus-irq #In: 0 *Out:1

Dev Type: versattlepb_stc Path: /machtne/unattached/devtce[3]
IRQ : sysbus-irq #In: 0 8Out:32
IRQ : (unnamed) #In: 32 #Out:0

Dev Type: p1190 Path: plachtne/unattached/devtce[2]
IRQ : sysbus-trq uln: 0 #Out:2



Potential Alternative
(start from scratch)
• Start with base avatar CPU in question

• Manually implement processor board

• Implement connected devices with desired memory mapping such that
startup removal is easier to configure



Successful Implementation
(blacklist initialization)

/*
/*
/*
/*
/*
/*
/*

Memory map for Versatile/PB: */
6x10000000 System registers. */
6x16061O66 PCI controller config registers. *

6x16062O66 Serial bus interface. */
6X10003060 Secondary interrupt controller. *

DX10004006 AACI (audio). */
DX10065060 MMCIO. */

Ox10000000

Ox10140000

Ox10003000

Ox10006000

Ox10007000

Ox10001000

mapped
mapped
mapped
mapped
skipped
mapped

/* Ox1OD66D6O KMID (keyboard). */ Ox41000000 mapped
/* Ox1OD67D6O KMI1 (mouse). */ Ox42000000 mapped
/*
/*
/*

Dx16OD8OD6
Ox1OD69D6O
Dx160DaOD6

Character LCD Interface.
UART3. */

Smart card 1. */

*/ Ox43000000

Ox44000000

mapped
mapped

/* Ox1OD6bO6O MMCI1. */ Ox50000000 mapped
/* DX10010060 Ethernet. */ Ox60000000 mapped
/* Dx1DO2DODD USB. */ Ox101f1000 mapped
/* DX10100000 SSMC. */ Ox101f2000 mapped
/*
/*
/*

Dx1011DODD
Ox101200DO
Ox101300DO

MPMC. */
CLCD Controller. */
DMA Controller. Ay

cnolf3000
Ox10009000

mapped
mapped

/* Ox101406DO Vectored interrupt controller. Ox10130000 mapped
/* 6x1D1dDO6D AHB Monitor Interface. */ Ox101e2000 mapped
/* 6x1D1eDO6D System Controller. */ Ox101e3000 mapped
/* 6x1D1e166D watchdog Interface. */ Ox10ie4000 mapped
/*
/*
/*

6x101e2O6D
6x101e3O6D
6x1D1e4O6D

Timer 6/1. */
Timer 2/3. */
GPIO port D. */

Ox101e5000

Ox101e6000

mapped
mapped

/* 6x1D1e5O6D GPIO port 1. */ Ox101e7000 mapped

/* 6x161e6O66 GPIO port 2. */ Ox10120000 mapped
/* 6x161e7O66 GPIO port 3. */ Ox10005000 mapped
/*
/*
/*

6x161eBO66
6x161f6O66
Ox101f166O

RTC. */
smart card O. *

UARTO. */

ox1000000
Ox101e6000

mapped
mapped

/*
/*

Ox101f266O
Ox101f366O

UART1. */
UART2. */

Ox10002000

audio: Could
mapped

not init -oss' audio driver
/* 6x161f4O66 SSPI. */ Ox10004000 mapped
/* 6x34066O66 NOR Flash */ Ox34000000 mapped



Further Investigations
Using Device Blacklist

• Find patterns in device failures

• Automate identification of minimum system requirements
• Test generated blacklists to find which devices can be removed without
system failure



Presented By

Christopher Wright

Sandia National Laboratories is a multimission
laboratory managed and operated by National

Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International
inc., for the U.S. Department of Energy's National
Nuclear Security Administration under contract DE-

NA0003525.

13



Contributions

• Systemization of Knowledge
• Working examples with multiple tools

• Summarizing Emulation Challenges

• Loop Analysis
• LLVM using RetDec

• Angr

• Ghidra

• Escapes Analysis
• Ghidra



Overview

• Background and Motivation

• Tools

• Decompilation

• Analysis

• Future Work



Why Emulation?

• System Migration/Testing

• Bug Finding

• Reverse Engineering

• Verification



Emulation Challenges

• Pre Emulation

• Emulation
• Setup
• Execution

• Post Emulation



Overview

• Background and Motivation

• Tools

• Decompilation

• Analysis

• Future Work



Tools

• QEMU

• SIMICS

• AVATAR

• PANDA

• RetDec

• angr

• IDA PRO

• GHIDRA



Tools

QEMU

• Machine Emulator (Hardware Virtulization)
• CPU Emulator

• Emulated Devices(VGA, Hard Disk)

• Generic Devices (Network Devices)

• Machine Descriptions

• Debugger

• User Interface

EMU



Tools

RetDec — Retargetable Decompiler

• Current Support:
• 32-bit: Intel x86, ARM, MIPS, PIC32, PowerPC
• 64-bit: x86-64

• ELF, PE, Mach-O, COFF, AR, Intel HEX, raw

• LLVM-IR



Tools

angr — Because binary analysis makes you angry

• Python Framework

• Static and Dynamic symbolic analysis
• Control flow graph

• ROP chains

• Binary hardening

• Uses
• CLE, archinfo, PyVex, Claripy

• angr analysis suite
• BB level



Tools

Ghidra — NSA Reverse Engineering Tool

• IDA Pro competitor

• Partially open-sourced, >1M code lines for the framework

• Disassembly, assembly, decompilation, scripting, graphing, etc.

• Java or Python (Jython)

• Intermediate code is PCODE
• Simple, very limited number of instructions

• Relatively easy to add more architectures to the lifter

GHIDRR



Overview

• Background and Motivation

• Tools

• Decompilation

• Analysis

• Future Work



Analysis

• Using LLVM
• Relies on RetDec I

• Angr
• Static analysis

• Dynamic

• Using Ghidra
• Uses Ghidra decompiler

• Can plugin IDA Pro if you have access

1



Analysis (LLVM)

• Decompile with RetDec

• Function pass
• Find loops

• Get condition instruction

• Check if infinite loop
• Essentially get def-use chains for condition instruction, modified analysis on any

instruction in the loop that can taint any of those instructions

• Failures
• Only works if RetDec works in correct predictable manner



Analysis (angr)

• Use angr built-in disassembler (Uses Capstone)

• BB level analysis
• Harder to do instruction level analysis

• Finding loops was simple
• I failed to integrate dynamic analysis/symbolic execution after finding loops

• Requires providing initial state or running from the beginning of an executable
• Would not work well for a larger firmware



Analysis (Ghidra)

• Loop Analysis
• PCODE analysis as well as assembly instruction level analysis

• Small issues with either, though both worked well enough is our use cases

• Simplified Loop Finding
• 2 Approaches:

• Find conditional branching instructions and if target address was smaller, it was end of a loop

• BFS on the instructions

• After Loop found
• Convert loop to PCODE, do a backward analysis from the branching condition on loop,

check modification of any variable in active set



Analysis (Ghidra)

• Escapes Analysis
• Function analysis

• Check each instruction in the function
• If it is Persistent and Address Tied, then it escapes the function

• Not perfect either, but gets most cases

• If we only care about persistent, all functions return a persistent value

• If we only care about address tied, it will use Ghidras Unique() values that are really just locals

• Requiring both gives most of what we want



Overview

• Background and Motivation

• Tools

• Decompilation

• Analysis

mk • Future Work



Future Work

• Finish Systemization of Knowledge Paper

• Combine Loop and Escapes Analysis and add auto-patching

• Add more analyses

• Emulation platforms


