SAND2019- 10336PE

Firmware Emulation for
Embedded Systems

Presented by
Sri Cherukuri

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-
NA0003525.

Embedded Systems

* Physical devices can be difficult to test thoroughly for faults
* Hardware required for testing
e Difficult to replicate or repeat quickly for multiple devices

Emulation

* Mimic device or chip architecture/memory structure to run programs
on virtual hardware

* Testing is dependent on sufficient processing power and memory
rather than availability of the physical system

* Difficult to detect which device failed where in a system crash

Difficulties in Emulation

* Emulating specific architectures requires heavy understanding of their
inner workings
* Not all devices of interest have documentation made available to emulated
properly
e Each device must be implemented accordingly for the system to be
emulated

e Difficult to tell if a fault occurred due to emulation fault or actual
device fault

Investigation in Device Removal

* Use

e Use
invo

<nown firmware and remove devices for analysis

oreak locations in runtime to identify removed devices and their

vement in program

e Essentially creating problems to solve one at a time rather than have several
from different devices all at once

* Find

patterns device failures in system failures across known and

unknown systems

* Error found when removing a device in a known emulation could allow us to
identify similar errors in other devices

Methods

* QEMU

* open-source emulator

e Converts binary of source instructions to target instructions (ex: 32-bit ARM
binary to x64 Linux)

* Apply to known architecture (ARM)

e Use firmware and images from the QEMU advent calendar as a testing corpus

QEMU Advent Calendar

oS F QEMU
Score: A of 28 128 Degrees Below Zero
: B0 _TEr'1 F

+

+

QEMU Advent Calendar

Attempted Implementation
pruning after initialization

dev = qdev_create(, Bus: System

busdev = SYS_BUS_DEVICE(dev);
qdev_1init_nofail(dev);
sysbus_mmio_map(busdev,
sysbus_mmio_map(busdev,
sysbus_mmio_map(busdev,
sysbus_mmio_map(busdev,
sysbus_mmio_map(busdev,
sysbus_mmio_map(busdev,
sysbus_mmio_map(busdev, 6,
sysbus_connect_irq(busdev, sic[
sysbus_connect_irq(busdev, sic[
sysbus_connect_irq(busdev, 2, sic[
sysbus_connect_irq(busdev, 3, sic[
pci_bus = (PCIBus *)qdev_get_child_

for(n = 0; n < nb_nics; n++) {
nd = &nd_table[n];

if (!done_smc && (!nd->model || strcmp(nd->model,

smc91c111_init(nd, 1 > slcl251);
done_smc = 1;

} else {
pci_nic_init_nofail(nd, pci_bus,

}

}
if (machine_usb(machine)) {
pci_create_simple(pci_bus, -1,

n = drive_get_max_bus(IF_SCSI)

while (n) {
1s153c895a_create(pci_bus)
=g

}

ploe1l_create(pic[12], serial_hd(0)
plo11_create(f pic[13], serial_hd(1)
ple11_create(pic[14], serial_hd(2)
plo11_create(sic[6], serial_hd(3));

);
);
).

H

sysbus_create_simple(1 pic[
sysbus_create_simple(pic[
sysbus_create_simple(1 pic[

sysbus_create_simple(pic[
sysbus_create_simple(pic[
sysbus_create_simple(1 pic[
sysbus_create_simple(pic[

Dev Type: cfi.pflasho1l

Dev Type: ple41l Path:

IRQ sysbus-irq #In:
Dev Type: versatile_i2c
Bus: i2c-bus
Dev Type: ds1338 Path

Dev Type: plo31l Path:

IRQ : sysbus-irg #In:

Dev Type: plisi Path:

IRQ : (unnamed) #In:
IRQ : sysbus-irq #In:
Dev Type: plisi Path
IRQ : (unnamed) #In:
IRQ : sysbus-irq #In:
Dev Type: pl11@_versatile
IRQ : (unnamed) #In:
IRQ : sysbus-irq #In:

Dev Type: plo6l Path:

IRQ : (unnamed) #In:
IRQ : sysbus-irq #In:

Dev Type: pleél Path:

IRQ : (unnamed) #In:
IRQ : sysbus-irq #In:

Dev Type: pleél Path:

IRQ : (unnamed) #In:
IRQ : sysbus-irq #In:

Dev Type: pleé6l Path:

IRQ : (unnamed) #In:
IRQ : sysbus-irq #In:

Dev Type: sp864 Path:

sysbus-irq #In:

sp8e4 Path:

sysbus-irq #In:
Dev Type: plese Path
sysbus-irq #In:

: ploil Path:

sysbus-irq #In:

: plei1 Path:

sysbus-irq #In:

Dev Type: ploil Path:

IRQ : sysbus-irq #In:

Dev Type: ploiil Path:

IRQ : sysbus-irq #In:
Dev Type: versatile_pci
IRQ : sysbus-irq #In:
B PCI
Dev Type: lsi53c895a
Bus: SCSI

Path: /machine/unattached/device[29]
/machine/unattached/device[28]
0 #0ut:1

Path: /machine/unattached/device[26]

: /machine/unattached/device[27]
/machine/unattached/device[25]

0 #0ut:1
/machine/unattached/device[23]

0 #0ut:2

0 #0ut:2

: [/machine/unattached/device[21]

0 #0ut:2

0 #0ut:2

Path: /machine/unattached/device[20]

1 #0ut:0

0 #0ut:1
/machine/unattached/device[19]

8 #0ut:8

0 #out:1
/machine/unattached/device[18]

8 #0ut:8

0 #Out:1
/machine/unattached/device[17]

8 #0ut:8

0 #0ut:1
/machine/unattached/device[16]

8 #0ut:8

0 #0out:1
/machine/unattached/device[15]

0 #out:1
/machine/unattached/device[14]

0 #0ut:1

: /machine/unattached/device[13]

0 #0ut:1
/machine/unattached/device[12]

0 #0ut:1
/machine/unattached/device[11]

0 #out:1
/machine/unattached/device[10]

6 #0ut:1
/machine/unattached/device[9]

0 #Out:1

Path: /machine/unattached/device[6]
0 #out:4

Path: /machine/unattached/device[8]

Dev Type: scsi-disk Path: /machine/unattached/device[8]/scsi.®/legacy[2]
Dev Type: versatile_pci_host Path: /machine/unattached/device[7]

Dev Type: ple50_mouse Path
IRQ : sysbus-irq #In:
Dev Type: ple50_keyboard

IRQ : sysbus-irq #In: ©

Dev Type: versatilepb_sic
IRQ sysbus-irq #In:
IRQ : (unnamed) #In:

Dev Type: pl190 Path
IRQ : sysbus-irq #In:

: /machine/unattached/device[5]

0 #0ut:1
Path: /machine/unattached/device[4]
#0ut:1

Path: /machine/unattached/device[3]
6 #0ut:32

32 #0ut:0@
: /machine/unattached/device[2]

0 #0ut:2

Potential Alternative
(start from scratch)

e Start with base avatar CPU in question
* Manually implement processor board

* Implement connected devices with desired memory mapping such that
startup removal is easier to configure

Successful Implementation
blacklist initialization

mapped
mapped
WED
mapped
skipped
mapped
mapped
mapped
mapped
mapped
mapped
mapped
mapped
mapped
mapped
mapped
mapped
mapped
mapped
WED
mapped
mapped
mapped
mapped
mapped
mapped
mapped
WEDE
Could not init “oss' audio driver
mapped

interrupt
Interfa

-urther Investigations
Jsing Device Blacklist

* Find patterns in device failures

e Automate identification of minimum system requirements

» Test generated blacklists to find which devices can be removed without
system failure

Presented By |
Christopher Wright |

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-
NA0003525.

13

Contributions

 Systemization of Knowledge
* Working examples with multiple tools
e Summarizing Emulation Challenges

* Loop Analysis
* LLVM using RetDec
* Angr
e Ghidra

* Escapes Analysis
e Ghidra

Overview

m=) « Background and Motivation
* Tools
* Decompilation
* Analysis
* Future Work

15

Why Emulation?

» System Migration/Testing
* Bug Finding

* Reverse Engineering

* Verification

16

Emulation Challenges

* Pre Emulation

e Emulation
* Setup
e Execution

* Post Emulation

17

Overview

* Background and Motivation
m=) - Tools

* Decompilation

* Analysis

* Future Work

18

Tools

* QEMU

* SIMICS
* AVATAR
* PANDA
* RetDec
* angr

* IDA PRO
* GHIDRA

19

Tools

QEMU

* Machine Emulator (Hardware Virtulization)
e CPU Emulator
 Emulated Devices(VGA, Hard Disk)

Generic Devices (Network Devices)

Machine Descriptions

Debugger

User Interface

QEMU

20

Tools

RetDec — Retargetable Decompiler

* Current Support:
e 32-bit: Intel x86, ARM, MIPS, PIC32, PowerPC
* 64-bit: x86-64
* ELF, PE, Mach-O, COFF, AR, Intel HEX, raw

* LLVM-IR

21

Tools

angr — Because binary analysis makes you angry
* Python Framework

e Static and Dynamic symbolic analysis
e Control flow graph
* ROP chains
* Binary hardening

* Uses
e CLE, archinfo, PyVex, Claripy

e angr analysis suite
* BB level

22

Tools

Ghidra — NSA Reverse Engineering Tool
* IDA Pro competitor

* Partially open-sourced, >1M code lines for the framework

* Disassembly, assembly, decompilation, scripting, graphing, etc.
e Java or Python (Jython)

* Intermediate code is PCODE

» Simple, very limited number of instructions
* Relatively easy to add more architectures to the lifter

23

Overview

* Background and Motivation
* Tools

* Decompilation

* Analysis

* Future Work

24

Analysis

* Using LLVM
* Relies on RetDec
* Angr
 Static analysis
* Dynamic
e Using Ghidra
e Uses Ghidra decompiler
* Can plugin IDA Pro if you have access

Analysis (LLVM)

* Decompile with RetDec

* Function pass
* Find loops
* Get condition instruction

* Check if infinite loop

* Essentially get def-use chains for condition instruction, modified analysis on any
instruction in the loop that can taint any of those instructions

* Failures
* Only works if RetDec works in correct predictable manner

N

o)

Analysis (angr)

e Use angr built-in disassembler (Uses Capstone)

* BB level analysis
* Harder to do instruction level analysis
* Finding loops was simple
* | failed to integrate dynamic analysis/symbolic execution after finding loops

* Requires providing initial state or running from the beginning of an executable
* Would not work well for a larger firmware

Analysis (Ghidra)

* Loop Analysis
 PCODE analysis as well as assembly instruction level analysis
* Small issues with either, though both worked well enough is our use cases
e Simplified Loop Finding
e 2 Approaches:

e Find conditional branching instructions and if target address was smaller, it was end of a loop
* BFS on the instructions

e After Loop found

* Convert loop to PCODE, do a backward analysis from the branching condition on loop,
check modification of any variable in active set

Analysis (Ghidra)

* Escapes Analysis
* Function analysis

* Check each instruction in the function

* Ifitis Persistent and Address Tied, then it escapes the function
* Not perfect either, but gets most cases
* |If we only care about persistent, all functions return a persistent value
* If we only care about address tied, it will use Ghidras Unique() values that are really just locals
* Requiring both gives most of what we want

Overview

* Background and Motivation
* Tools
* Decompilation
* Analysis
=) « Future Work

30

Future Work

* Finish Systemization of Knowledge Paper

 Combine Loop and Escapes Analysis and add auto-patching
* Add more analyses

* Emulation platforms

31

