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Energy Exascale Earth System Model (E3SM)

Motivation

> Model built to perform on future exascale machines
> Finer resolution and multiresolution meshes

> regions of interest
> coastal refinement
> coupling to tidal estuary models

> Model for Prediction Across Scales - Ocean (MPAS-O)

> High-Order Methods Modeling Environment
(HOMME) -Atmosphere

> Coupling Approaches Next Generation Architectures
(CANGA)

Challenges
> Time-stepping becomes bottleneck as resolution

becomes finer

> Explicit Methods - CFL
» Implicit Methods - Global Communication
> Efficiency per time-step is key — Time-to-solution

> Error is dominated by spatial error

> Long term intergation: stability, conservation
properties, statistics

> Physcial Fluxes between models

E?SM

Energy Exascale
Earth System Model

~
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Time-Stepping Solutions in MPAS-O

Exponential Time-Differicing

Time Stepping in HOMME

Model Coupling

High Resolution Model Spin-up



Multi-layer shallow water model

Model and solution variables
> L layers with uniform
densities p;, I =1,...,L
> Bottom topography b
> Layer thickness

hy = f_'l/ + Ahy
» Layer velocity u; (along

isopycnal)

> Layer interfaces
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Mutli-layer Rotating Shallow Water Equations (MLRSWE)

Typically models use 60 to 100 layers
Layers coupled through gravity and pressure terms

ohy .
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g-A=0o0n INVI=1,2...,L

> Kinetic energy: K; = |j[2/2
» Potential vorticity: q;(hy, @) = (k- V x @+ f)/h
» Forcing: F(h, @) - wind, drag, diffusion,...

> Gravitational acceleration g, coriolis force parameter f, bottom topography b,
unit vector in z direction k

» Mimetic TRiSK scheme is used in space discretization



Multiple Time-Scales: Barotropic vs. Baroclinic
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Consider red term in matrix form (couples layers through pressure term)
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For p; = p, R has one large eigenvalue— gravity wave (barotropic mode)
Densisty range in ocean 1025 < p < 1028

Linearize at resting state V = (f_r, O)T. Eigenvalue problem in vertical for three
layers
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Multiple Time-Scales: Barotropic vs. Baroclinic
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Figure: Vertical n = h — b modes and velocity modes and corresponding wave speeds.
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The Split-Explicit Method?
Fastest mode is the barotropic mode (variables (h, u))
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Define single-layer barotropic components
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Barotropic Equations (Fast)
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The Split-Explicit Method

Resuting Algorithm

v

Explicity 3d solve: Large baroclinic time step At

v

Explicity 3d solve: Subcycle barotropic Time Step At/J from t" to
"2 =" 4 2At, J=2m+1

Average bartropic solution and define at t"1 = t" + At

v

» Combine barotropic and baroclinic components

Pros

> Time step increase by factor of ~ 30 in MPAS-0

> Avoid costly global communications (layers a stacked on each processor)

Cons
> Small sub-steps require communication at every step (halo update)
> Must solve BT equations for 2At intervals

» Performance gain from solving 2d equations is reduced by latency

[inline] Ask Phil about time-step gain, what is BT and BC TS and how many
subcylces? effecientcy gain?



The Split-Explicit Method: Possible Solutions

Use Less Explicit Time steps

Less BT time steps means less communication
Filtering

> Perform quadrature on BT time steps on smaller interval than 2At
> Siddhartha Bishnu (LANL - FSU), Mark Peterson (LANL)

> Results in less barotropic time steps - Less communication

Local Time Stepping

> Multi-resolution time step are bound by smallest cells

> Thi-Thao-Phuong Hoang (AU), Wei Leng (CAS), Lili Ju (USC), Zhu Wang (US),
Konstantin Pieper (ORNL)

> Results in less barotropic time steps - Less communication
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The Split-Explicit Method: Possible Solutions
Take Larger BT time step

Possibly reduced amount of communication
Must perform global-reductions
Implict BT time step
> In recent years, cost of global reductions and lack of efficient preconditioners has
turned MPAS-O away from fully implicit method

> Recent developments on preconditiors and reduced cost of glocal communication
has sparked interest

> Phil Jones (LANL), Katherine Evans (ORNL), Postdoc? (ORNL)

Performance Gain

> Preconditioned Krylov methods

> Matrix-vector multiplications and dot products (global reductions), for large time
step

» Many halo updates for explicit methods

» Can you beat explicit with good preconditioner for implicit method — Yes!

Performance Gain

What is accuracy cost of smoothing fast scale?



Another Solution: Exponential Runge-Kutta methods ( Exponential
Time-Differicing - ETD)?
Solve linear part "exactly” (stiffness is contained in linear part)

ETD Methods approximation gives control of energy dissipation
> split the forcing term in linear part and remainder

8V = F(V)
= AV + [F(V) — AV]
= F(Va) + A(V — Vi) + [F(V) = F(V,) — A(V — V)]

Linear approximation Residual R(V)

> Variation of constans formula

¢+l
V() = Ve + [ ew(AA)(F(V(D) + A(V(D) - V(7)) dt
e
» Exponential RK2 method (for A # F'(V,))
VI = Vo 4+ At (AtA)F(Va) "“Exponential Euler”
Vo1 = VI + Atpa(AtA)R(VY) “Second order correction”
» p-functions:

vo(z) = exp(2),  w1(2) = (exp(2) = 1)/z, 2(2) = (exp(z) — 1~ 2)/2°,

2hochbruck2010exponential.




Choice of the linear operator
Splitting of the forcing term at step n

F(V) = F(Va) + An(V — V,)

> Wave operator approximation:
linearize at V' = (h,0) for a reference heights h, zero velocities

» Hamiltonian formulation

F(V):J(V)g—c
/ oy 0H 8?H
FIV) = V)55 + W50
2 2
FI0) = S0 30 4 JO) 0 = I i

Multilayer rotating wave equation

ath: 7V . (/_7u)

oV = AV ~
Otu=—gVRh+fkXu



Reduction to barotropic mode (similar to split-explicit scheme?)
> Fastest mode is the barotropic mode (variables (h, u))

h
h —&
2k e

(hBT,/) —c (h
UBT,I u

> corresponding left inverse with GTG = Id
@=-<()
u u

p = GaGt

UBT k R U, hpT & k=1,...,L

» corresponding Ansatz3

> barotropic projection

> replace multilayer operator A by projected version

PAP = G GtAG Gt
=A

3Konstantin Pieper; K. Chad Sockwell; Max Guznburger; 2019.
“Higdon; 2002.



Construction of the projection

v

general Ansatz/parameterization:

()= ()

for any V = (h, u), find PV and V = GV by

v

PV = GGV = GV
where V = argmin ||V — GV/|| 524
vV Se—m

reconstruction error
in energy norm

v

Gt has a closed form solution that can be computed in each cell/edge stack

(since MEH diagonal)

6V2

v

for G the barotropic Ansatz, similar Gt appears in split-explicit scheme



Barotropic method

» consider ETD-methods based on A = J(V)‘SV2 with
0V =F(V)=PAPV +r(V)
> barotropic projection P = GGt
23

> Linear operator retains structure A = GTAG = J ‘fwz

8%H = GT§%H(V)G
J=ctyvyehT

> can be tweaked to be either mass or volume conserving

» computation of the ¢-functions
1
s(AtPAP) = = (1d — P) + Gos(AtA)GH
s!

» Barotropic exponential Euler (B-ETD)?

Vi1 = Vo + At(Id — P)F(V,) + At Go1 (AtA)GTF(V,)

5Konstantin Pieper; K. Chad Sockwell; Max Guznburger; 2019.
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Krylov-methods for ¢-functions of skew-symmetric operators

> fix A and b: build the optimal polynomial pyx with
ps(AtA)b =~ py (AtA)b

> Krylov space
Kk(A, b)={A*b| k=0,...,K}

> Arnoldi-process: orthogonal basis Vi of Kk (A, b) (cost quadratic in K)
V){ AV = Hy € RKXK
> dense evaluation of ¢s(AtHk) (cost independent of Nyof)
skew-symmetry of A = J(V/)%%
MyA=—AT My for My = M&H(V)

» skew-Lanczos process with respect to the My inner product (cost linear in K)

> Hy tri-diagonal and skew-symmetric



Number of Krylov vectors

> fix A and b: build the optimal polynomial px to approximate
ps(AtA)b = p(AtA)b
> interpolates s(z) on the eigenvalues of Hy (imaginary, due to skew-symmetry)

V)l AVk = Hyc € RKXK
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Figure: Real part of px(z) for K = 70, K = 80, and K = 90
Corresponding minimum number of substeps for RK4: 4 - Ny pstep = 100



Performance

3 Layer Sequential Test Case

With 3rd Order B-ETD method At = 12.5Atgrks = 34.5AcFL, 56 Krylov Vectors per
s evaluation (3 in total)

5 times speedup against standard RK4, expected to increrase with number of layers
Parallelization is required for fair comparison to split-explicit method

Hope that preservation of high frequencies is worth cost

Improvements

Perform Domain Decomposition and Krylov iteration is local
Combine local time stepping and Domain Decomposition
Could splitting be better? | would expect 60Acg, if splitting was perfect

Could a more physical or geometrical approach give better splitting?



Time Stepping in HOMME
Hydrostatic Model

> p varies more than in the ocean. Wave-speed difference in factor of 3
> Vertical advection is stronger than in the ocean

> This leads to Horizontal-Explicit Vertical-Implicit methods (HEVI)- No
communication required for solves — IMEX methods

Non-Hydrostatic Atmosphere

» Vertical Acoustic waves become fastest wave

> IMEX methods with HEVI-type splitting- No communication required for vertical
solves®

» Exponential Time-Differing Methods for vertical vertical component (Andrew
Steyer (SNL), Cassidy Krause (SNL)), ( Sara Calandrini (FSU), Konstantin
Pieper (ORNL), Max Gunzburger (FSU))

Semi-Lagrangian Tracer Transport’

> Mitigate CFL by solving remappnig problem
» Shape preseration, positivity, range perservation

» Minimize communication

SAndrew Steyer (SNL); et al. 2019.
" Andrew Bradley; et al. 2019.



Model Coupling

Coupling Approaches for Next Generation Architectures (CANGA)

Currently Coupling is similar to one-step alternating Schwarz.
Time InteGration for Greater E3SM Robustness (TIGGER)

Pavel Bochev (SNL), Kara Peterson (SNL), Paul Kuberry (SNL), Nat Trask (SNL), K.
Chad Sockwell (SNL)

How to non-intrusiviely coupling model components

Enforce BC's with Lagrange multipliers

Desires

Open question: Unconditionally stable, conservative coupling scheme

Ideally works with any choice of time-integrators across compoents, and for differently
sized time-steps

Question

Could vartiational viewpoint give more insight into coupling, even if methods must be
intrusive? Conservation and (conditionally) stability are a must



Model Spin-up

Ocean Equilibration

Developing high resolution initial condition for ocean - Grand Challenge
Bad initial condition leads to transients which are not from the forcing
Deep ocean currents have slow response to forcing

Roughly 1000 year spin-up to equilbrate the ocean

Possible Solutions

Developing Structure-Preserving reduced order model (K. Chad Sockwell (SNL), Luke
Van Roekel (LANL), Andy Salinger (SNL) ,Konstatin Pieper (ORNL), Max
Gunzburger (FSU))

Find solution space where equalibrated solution lives
Pose as optimal control problem

Could more physically inspired methods lead to solution?



Questions

Where do variational discretizations fit into climate models?
Are they efficient enough?
What advantages do they bring?

ROM for variational discretizations instead of ROM for mimetic discretizations?



