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Motivation



41 Framework of Rational Thermodynamics

First law of thermodynamics

p6= pr—V •q+o- :

Second law of thermodynamics
r

110 -19T +V • (c—IT) > O

3. Helmholtz free energy

vi _ vi ( 7-5 8 _ sie, e) 81If
x=p

04:

Combine with several standard assumptions to obtain

Otif Ai/
1Dth _ 

T
q . v 7- > 0

s = — 
OT 

o-=p
88

Dille =o- : tie — X • e > 0



51 Framework of Rational Thermodynamics

Many ways to enforce dissipation inequality

Dme = cr : tie — X • 4: 0

a. Maximize mechanical dissipation

. fo of
min(—Dme + A f) tie = A — and e = — A

Off Ox

Construct a dissipation potential, g
g must be convex or a homogeneous function of degree n

ie = w Lg and e = _w ag
ao- ax

6. Everything is derived from a Helmholtz free energy and a yield
function (or a dissipation potential).
a. Forces you to stay organized.

b. Every internal state variable has a conjugate driving force.



6 Attempt to Fit MD Model into Framework

1. Helmholtz free energy and dynamic yield functions

1lif = 
2 
_ (8 

- 
8vp) : C : (8 — 8vp) + iiihd WI-)

'
fSS = a__ es(ps) = 0

ftr = cr — hwtr) — cotr(ktr)

Transient

h(e)

-AMC
gotr(ktr)

= 0

Steady-State

coss(kss)

L cr



7 Attempt to Fit MD Model into Framework

2. Turn crank to obtain
vp = (ktr + pa&s)

1 ao-
kss = ,pss-1 (ar)

tr tr-1
8 = 40 

(6_ hWr))

2. Compare to existing MD equations

ss
E =

3

i=0

Ei k
ss i - \

CT)

E =
tr {

exp l‹(c7r)(1 E-tr )21 — 1  8
ss

tr*(c-r)

3. What is the hardening conjugate to e?

alfr/*V) = p 
iatr



81 Stress Drop Experiments
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Figure 3 — Creep Experiment at 100 oC with Different Stress
Drops. Sample ASSE 8/6.1.

Hunsche, U. 1988. Measurement of creep in rock salt at small strain rates. Proceedings of the 2nd Conference on the Mechanical
Behavior of Salt. Pg. 187-196 (Modified)



91 Triaxial Compression / Extension Cycling
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Mellegard, K., DeVries, K., and Callahan, G. 2007. Lode angle effects on the creep of salt. Proc. 6th Conference on the Mechanical
Behavior of Salt. Pg. 9-15 (Modified)



10 I Bauschinger Effect
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Yahya, O., Aubertin, M., and Julien, M. 2000. A unified representation of the plasticity, creep and relaxation behavior of rocksalt. international Journal of
Rock Mechanics and Mining Sciences. Vol. 37. No. 5. Pg. 787-800 (Modified)



11 Munson-Dawson Predictions of CSR Tests
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121 Closer Look at Munson-Dawson CSR Behavior
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Model Formulation



141 Top Level Formulation

Strain Decomposition

Isotropic, Linear, Hypoelasticity

Associated Flow Rule

Equivalent Viscoplastic Strain Rate

Equivalent Viscoplastic Stress

= tel tvp

tor = tel

C=(K-2G/3)1®1+2GI

A5_vp
• vp
8 = E

vp
E = Hsr

Oo-

- vp )He

h

(rate independent hardening ignored)

- b) (o-d b)

Yahya, O., Aubertin, M., Julien, M. 2000. A unified representation of the plasticity, creep and relaxation behavior of rocksalt. International Journal of Rock
Mechanics and Mining Sciences. Vol 37. No 5. Pg. 787-800



151 Equivalent Viscoplastic Stress

sor- vp 
(o-d — b) : (o-d — b)

if 0-d and b aligned

crvp = 5_ b

= ▪ C▪ rd

b= AAb:b

- Plane

I ...........

. - ..•.. • r ••••
. • ..•. ..•. • ••..._ . ..•-,_ _0-0• -.... ..•. ..

..........

f (o- , kvP) =0



161 Rate-Dependent Yield Function

6 = Fisr
- vp )He

f(cr, pp) = &yip h

h

( pip \1 /He

Hsr
= 0

if crd and b aligned

prp \ 1 /He

f , PP) = - b — h   = 0
risr

- Plane
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171 Bauschinger Effect
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18 Triaxial Compression to Triaxial Extension Creep
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191 Creep with Stress Drop
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20 I Isotropic Hardening

Evolution Equation 0.20

h = Hr (PP — h eP)
hs

Hardening Saturation
(precisely defined later)

hs = hs(VP)

Analytical Solution
(constant strain rate)

Hi

h

(M Pa)

— N exp ( Fir \11° )1
hs 1 \ hs 1 i

0.18

0.16

1 2 3 4
ep (%)

10-4 s-1
— 10-5 s-1

10-6 s-1

10-7 s-1

10-8 s-1

10-9 s-1

(rate independent hardening and thermal recovery ignored)



211 Kinematic Hardening

Evolution Equation

(2b = Br — tvP — b kvP
3 bs

Hardening Saturation
(precisely defined later)

hs 
= 

hs (kvp)

Analytical Solution
(constant strain rate)

b = bs [1 — exp ( Br!vP VI
bs LI

1 O-4 s-1
10-5 s-1
10-6 s-1
10-7 s-1
10-8 s-1
10-9 s-1

(thermal recovery and secondary backstress ignored)



221 Secondary Creep

hs
(cis _ bs)

( ep \ 1 / He

Hsr

Hardening Saturations

- s ) Be

( 

ep )1 l Ae

bs = B c — Crs = Ac arcsinh (i
Ac tisr

Equivalent viscoplastic strain rate at saturation

(
-
0-

vp ) He
pip = Li

1 !sr
hs

0-d and b aligned at saturation
o_vp = cr _ bs

Put all together to obtain

o_s )iAe

pip = Asr sinh
Ac

1
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First Calibration Attempt



24 I Calibrate Model Against
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251 Equivalent Strain Rate vs. Saturation Stress
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26 I Comparisons Against Test Data
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271 Summary

Rational thermodynamic framework helps keep models
organized.

2 Kinematic hardening allows one to capture the Bauschinger
effect and transient creep phases during non-proportional
loading.

3 Kinematic hardening may be important during:

a. Initial room closure

b. Compaction of engineered barriers

c. Rubble pile compaction

d. Cyclic loading of liquid and gas storage caverns

4 Model calibration is challenging
a. Must distinguish between isotropic and kinematic hardening

b. Difficult to match both constant strain rate and constant
stress tests
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Extra Slides



29 _ Examples of Thermal (Static) Recovery
Aluminum 1100 at 300°F
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Munson, D.E. and Dawson, P.R. (1982). Transient creep model for salt during
stress loading and unloading. Sandia National Laboratories. SAND82-0962

Wang, T. T. and Onat, E. T. (1968). Nonlinear mechanical behavior of
1100 aluminum at 300F. Acta Mechanica, vol. 5, pg. 54-70



30 I Thermal (Static) Recovery

Add a term to hardening evolution equations

r 
hkvp - kvp - 11 hHteh = H
hs 

"tr

or

h Hr 
E h(vp _ 

kvP) - Fitr (h — hs)Hte
hs

. Internal state variable conjugate to h is no longer eP

3. Responsible for higher secondary creep rate above 80°C ?



311 Lode Angle Around Room D (MD Model)
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321 Lode Angle Around Room D (MD Model)
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331 Lode Angle Around Room D (MD Model)
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34 Lode Angle Around Room D (MD Model)
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351 Lode Angle Around Room D (MD Model)

t = 1000 d
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361 Lode Angle Around Room D (MD Model)
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