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Motivation




+1 Framework of Rational Thermodynamics

1. First law of thermodynamics
pe=pr-V-q+o:¢€

2. Second law of thermodynamics
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3. Helmholtz free energy

y=y(T,6-8°%¢) x=p2%
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4. Combine with several standard assumptions to obtain
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5| Framework of Rational Thermodynamics

5. Many ways to enforce dissipation inequality
D™ =g :6°-x-£>0

a. Maximize mechanical dissipation
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b. Construct a dissipation potential, g
I. g must be convex or a homogeneous function of degree n
. ie ag 89
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6. Everything is derived from a Helmholtz free energy and a yield
function (or a dissipation potential).

a. Forces you to stay organized.
0. Every internal state variable has a conjugate driving force.




s | Attempt to Fit MD Model into Framework

1. Helmholtz free energy and dynamic yield functions
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71 Attempt to Fit MD Model into Framework

2. Turn crank to obtain
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2. Compare to existing MD equations
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3. What is the hardening conjugate to g'9
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Stress Drop Experiments

Hunsche, U. 1988. Measurement of creep in rock salt at small strain rates. Proceedings of the 2" Conference on the Mechanical
Behavior of Salt. Pg. 187-196 (Modified)




9‘ Triaxial Compression / Extension Cycling
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Mellegard, K., DeVries, K., and Callahan, G. 2007. Lode angle effects on the creep of salt. Proc. 6th Conference on the Mechanical
Behavior of Salt. Pg. 9-15 (Modified)




Bauschinger Effect

Yahya, O., Aubertin, M., and Julien, M. 2000. A unified representation of the plasticity, creep and relaxation behavior of rocksalt. International Journal of
Rock Mechanics and Mining Sciences. Vol. 37. No. 5. Pg. 787-800 (Modified)




1| Munson-Dawson Predictions of CSR Tests
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12‘ Closer Look at Munson-Dawson CSR Behavior
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Model Formulation




141 Top Level Formulation

Strain Decomposition

|sotropic, Linear, Hypoelasticity

Associated Flow Rule

Equivalent Viscoplastic Strain Rate

Equivalent Viscoplastic Stress
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(rate independent hardening ignored)

Yahya, O., Aubertin, M., Julien, M. 2000. A unified representation of the plasticity, creep and relaxation behavior of rocksalt. International Journal of Rock
Mechanics and Mining Sciences. Vol 37. No 5. Pg. 787-800




15‘ Equivalent Viscoplastic Stress
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16‘ Rate-Dependent Yield Function
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17‘ Bauschinger Effect

Stress vs. Strain - Plane
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18 | Triaxial Compression to Triaxial Extension Creep |

Stress and Strain Histories
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19‘ Creep with Stress Drop

Stress and Strain Histories
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20‘ Isotropic Hardening

Evolution Equation 0.20
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(rate independent hardening and thermal recovery ignored)




21‘ Kinematic Hardening

Evolution Equation

. 2 .
b = B (—gvp — _2 é"p)

50

3 bs

Hardening Saturation
(precisely defined later)

h® = h3 (&)

104
— 1075¢™1
— 106 g1

107 s1
— 10 8¢
— 10 9s1

Analytical Solution
(constant strain rate)

B, &P )] —— P (%)

= rslq ~
b_bl1 exp( B

(thermal recovery and secondary backstress ignored)




22‘ Secondary Creep

Hardening Saturations
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First Calibration Attempt




24 | Calibrate Model Against Each Constant Strain Rate Test
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25‘ Equivalent Strain Rate vs. Saturation Stress
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26‘ Comparisons Against Test Data
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27| Summary

1. Rational thermodynamic framework helps keep models
organized.

2. Kinematic hardening allows one to capture the Bauschinger
effect and transient creep phases during non-proportional
loading.

3. Kinematic hardening may be important during:

a. Initial room closure

b. Compaction of engineered barriers

c. Rubble pile compaction

d. Cyclic loading of liquid and gas storage caverns

4. Model calibration is challenging
a. Must distinguish between isotropic and kinematic hardening

b. Difficult to match both constant strain rate and constant
stress tests
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29‘ Examples of Thermal (Static) Recovery
Aluminum 1100 at 300°F
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Thermal (Static) Recovery

1. Add a term to hardening evolution equations

h=H, (-Vp—hﬂévp) H, h'te

or

h
h = H, (-Vp - é"p) Hy (h — hS)'e

2. Internal state variable conjugate to h is no longer &'

3. Responsible for higher secondary creep rate above 80°C ?




311 Lode Angle Around Room D (MD Model)
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22| Lode Angle Around Room D (MD Model)
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131 Lode Angle Around Room D (MD Model)
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s | Lode Angle Around Room D (MD Model)
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51 Lode Angle Around Room D (MD Model)
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1 Lode Angle Around Room D (MD Model)
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