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> 1940s: World War II's Manhattan Project ° 1975: Fab for radiation-hardened CMOS
° 1945: Z Division of Los Alamos > 1996: ASCI Red, world’s fastest computer at 1
° 1950s: Sandia National Lab created. Takes charge teraflops

of engineering and manufacturing efforts > 20006: Created Center for Integrated

Nanotechnologies facility

(o]

1960s: Pulsed Power program initiated
o 2018: Astra supercomputer. Fastest ARM-based
machine on TOP500

o

1962: Co-inventor of laminar flow clean room



Vanguard Program: Advanced Architecture Prototype Systems

Prove viability of advanced technologies for DOE integrated codes, at scale ‘

Expand the HPC ecosystem by developing emerging unproven technologies
* Is it viable for future ATS/CTS platforms — Trinity & Sierra

* Increase technology AND integrator choices

Buy down risk and increase technology and vendor choices for future platforms

* Ability to accept higher risk allows for more/faster technology advancement

*  Lowers/eliminates mission risk and significantly reduces investment

ointly address hardware and software challenges
y g

First prototype platform targeting ARM




Where Vanguard Fits
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Test Beds
e Small testbeds
(~10-100 nodes)
* Breadth of
architectures
* Brave users

Greater Stability, Larger Scale

Higher Risk, Greater Architectural Choices

Vanguard

* Larger-scale experimental
systems

 Focused efforts to mature
new technologies

 Broader user-base

* Demonstrate viability for
production use

e NNSA Tri-lab resource

ATS/CTS Platforms
Leadership-class systems
(Petascale, Exascale, ...)
Advanced technologies,
sometimes first-of-kind
Broad user-base
Production use
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2.3 PFLOPs peak |
885 TB/s memory bandwidth peak I

332 TB memory |
1.2 MW

Demonstrate viability of ARM for U.S. DOE Supercomputing



Remote Sensing

Traditional (82 \ Py
Architectures "

* Sophisticated &

Serial CPUs aongnn?ck !"
« Binary Processing
« ‘Always on’

Limitations to classic approaches to remote SCﬂSlIlg

> Growth of sensor technologies outpacing communication

bandwidth
° Limited onboard processing capability
> Rad hard design

) :
Need for alternative approaches Traditonl Processing
* Requires Link to Ground
* High Bandwidth
* Slow

’ : Y Signal Signal Communicate
RS DR - | y Reconstruction Classification - Results
y \
B .Scene +«Time and spa : «Determine if
Segmentation localization of underlying signal is of
(i.e. clouds, events of signal from interest or is a
land, water, interest noise confuser
etc.) «Time «Overcome pixel «Reduce
eTrack scene segmentation of saturation communication
movement event duration «Generate bandwidth by
across time human- rejecting false
understandable alarms
signatures
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Why not just continue what we’ve always done!

Dennard scaling

° As transistors get smaller, their power density remains constant

Unfortunately ended 10-15 years ago 107 T
o Cannot run CPUs at faster speeds 16° SRR
> Emphasis on multi-core

, , 10°
Need for new paradigm of computing Sk
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Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore




Neural-inspired computing

1940 1960 1980 2000 present
Pavlov & Gantt, 1928; :
Skinner, 1933; | ‘Hubel & Wiesel, Neher et al.,: O'Keefe & Recci, Dan & Poo, 2004;
Baernstein & Hull, 1931 Hebb, 1949 1959 1978 ' 1993 ‘Boyden et al., 2005

learning neuron temporal population
Neuroscience & representations coding \ representations
—
Psychology SO m—)
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data-driven computing ‘Ij?eservoizroggmputing -
Cognitron - SR,

Fukushima, 1975 m Maass et al. 2002 i i

Artificial
Neural INNNEEEN

Nets McQulloch LeCun et al., Deep Learning -
& Pitts, 1943 Perceptron - Hopfield Nets - 1998 Hinton & Salakhutdinov,
Machine Rosenblatt, 1958 Hopfield, 1982 2006

i R Barron &
gning Statistical Barron.1988
Machine .
Learning Bayesian Nets -
Decision Trees - Pearl, 1986 SVMs - Cortes Random Forests -
Hunt et al., 1966 & Vapnik,1995 Breiman, 2001
Dynamical
Machine i ( IE=(LHDmme_»-o s nmm— =~ I
Lea rning Reinforcement Learning - Markov Models - Sutton,
Mlnsky, 1961 Rabiner, 1989 1998 Dynam|c Bayes.an Nets -

Murphy, 2002

James et al., BICA 2017



Breadth




12 I Impacting Broad Areas of Computation
Scientific Computing
Lmear Algebra Particle Method Density Method

Circuit per walker Circuit per position

Pattern Matching
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Context Modulated Deep Learning Adaptive Deep Learning



13 | Spiking neurons are a more powerful version of classic logic gates

Spiking threshold gates provide high
degree of parallelism at very low power

Based on a simple McCullogh-Pitts model:

_I_& Compute more
. o |5 [ powerful logic functions

tput

Outputs a 1 if and only if: W, + Eww,x, =0.
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Meurons;
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SNL has produced a number of spiking numerical algorithms

Cross-correlation
° Severa et al., ICRC 2076

SpikeSort, SpikeMin, SpikeMax, etc
° Verzi et al., Neural Computation 2018

SpikeOptimization
> Verzi et al., [JCNN 2017

Sub-cubic (i.e., Strassen) constant depth matrix multiplication
o Parekh et al., SPAA 2018



Spiking Temporal Processing Unit (STPU)

Implemented on FPGU, STPU 1s composed of a set of leaky integrate and fire neurons.

Each neuron has an associated temporal buffer such that inputs can be mapped to a neuron with a time delay.
W(t) is the neuronal encoding transformation which addresses connectivity, efficacy and temporal shift.

Mimics functionality of biological neurons.

neuron




Whetstone >
WHETSTONE

Whetstone provides a drop-in mechanism for
tailoring a DNN to a spiking hardware
platform (or other binary thresh

platforms)
> Hardware platform agnostic.
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> Compatible with a wide variety of DN * | —¥_
°No added time or complexity cost at 1 m =

° Simple neuron requirements: Integrat CUDA

o https://github.com/SNI-NERI./Wh d |

Spiking Platform
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Goal ‘Scaffold’
s| [§| P2
Problem Find a destination = "g S 2
. . on a map within a = = [ @
> Neuromorphic platforms offer substantial (100x- vehicle’s range. = g |8 BE
1000x) performance improvements but are = 5 .
inaccessible '
> Algorithms remain undeveloped; Multiple Spiking Graph

—— HMetwork Flow Contrel
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incompatible frameworks exist; Algorithms cannot
interface with one another or hardware

Technical Approach

> Developing a framework for linking existing
spiking neural networks and expanding to solve
scientific computing problems

> Independent of the hardware that runs the neuron
computation

° Collaboration: LANL, LLNL

Neural
Backends



Large collection of neuromorphic hardware

Enables researchers to explore the boundaries of neural computation

Consists of a variety of neuromorphic hardware & neural algorithms providing a testbed facility for
comparative benchmarking and new architecture exploration

Developing benchmarking methodologies

ﬁONS 2019 Benchmarkinh Intel Loihi Intel Loihi SpiNNaker 48 IBM TrueNorth*  IBM TrueNorth Intel Neural
Paper Node Board NS16e* Compute Stick
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EdgeTPU 240C DVS FPGA FPGA
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Case study: Neural Architecture Search for
Remote Sensing




Remote Sensing

Neural approaches show promise:

° Signal Processing
° Signal Classification
° Signal Understanding

> Moving computation onto the satellite

yields:
° Reduction in required bandwidth
> Improvements in response times

° Potential for autonomy

Size, Weight and Power (SWaP) is the constraint!

Event Detection

Commumnicate Results




Neural Architecture Search

NAS methods seek to automate the search for neural architectures.

As a counter example, these architectures were found through grad-student descent:

LeNet-5 Inception
AlexNet ResNet
VGG-16 DenseNet

Three primary NAS approaches:

> Reinforcement learning — first approach. Works well. Takes forever.
° Evolutionary strategy — Also works well and takes forever.

o Gradient — Works well and fast.



I Gradient-based NAS

smy,

softmax of input vector w.r.t. n
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| Hardware-aware gradient-based NAS




Hardware-aware PDARTS

Current work based on fork of Progressive Ditferential ArchiTecture Search

(PDARTS).

° Progressively grow deeper networks which conform to loss terms.

Augmented with hardware-based cost loss term.

> Using number of parameters in operation as a proxy for cost.
> E.g. C(5x5 conv) > C(3x3 conv).

> Hardware loss biases architecture search toward lightweight models.



MSTAR dataset

ZIL131

ZSU_23_4



HAPDARTS — effect of hardware cost

Three trials:
> No hardware cost
o Cost hyperparameter = 10
° Cost hyperparameter = 10

ge+5 Increase depth, prune less
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HAPDARTS — effect of hardware cost

Three trials
> No hardware cost leads to 3.8MB model, takes 5 hours to train (green)
° Cost hyperparameter = 10 leads to 1.55MB model, takes 2.1 houts to train (light blue)
o Cost hyperparameter = 10~ leads to 1.37MB model, takes 1.8 hours to train (orange)
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Future work

HAPDARTS results above use number of bytes as the cost.

Currently extending to support cost including memory operations,
MAC operations, and latency on a given systolic architectures.

Future work will extend to support other learning algorithms (e.g,
spiking neural networks) and hardware.



29 I Conclusion

Sandia National Laboratories is pursuing neural-inspired computing as a
transtormative approach to computation.

We believe codesign enabled by fast, flexible, accurate hardware
simulation and high performance computing will enable this pursuit.

Thank you!



What is a good cost function!?

“Cost” of an operation can be simple, e.g. defined as the number of bytes needed for the operation.

Let L = y1L{ + YL, then we can find hyperparameters where both losses are considered.

L=L,+L,withy;=1.0,y,=0.1 L,
80000 4 800000 -
70000 - 700000 A
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0 100 200 300 0 100 200 300
Batch (x 100) Batch (x 100)
epoch 29/30 % finished = 0.96 Psman = 1.00000, pjzrge = 0.00000

L =0.1056175 + 0.1 x 215648.88 = 21564.9941406




