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Sandia background
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1940s: World War Irs Manhattan Project

o 1945: Z Division of Los Alamos

o 1950s: Sandia National Lab created. Takes charge
of engineering and manufacturing efforts

o 1960s: Pulsed Power program initiated

o 1962: Co-inventor of laminar flow clean room

1975: Fab for radiation-hardened CMOS

o 1996: ASCI Red, world's fastest computer at 1
teraflops

o 2006: Created Center for Integrated
Nanotechnologies facility

O 2018: Astra supercomputer. Fastest ARM-based
machine on TOP500



I Vanguard Program:Advanced Architecture Prototype Systems

• Prove viability of advanced technologies for DOE integrated codes, at scale

• Expand the HPC ecosystem by developing emerging unproven technologies

• Is it viable for future ATS/CTS platforms — Trinity & Sierra

• Increase technology AND integrator choices

Buy down risk and increase technology and vendor choices for future platforms

• Ability to accept higher risk allows for more/faster technology advancement

• Lowers/eliminates mission risk and significantly reduces investment

• Jointly address hardware and software challenges

• First prototype platform targeting ARM



Where Vanguard Fits
5

Test Beds Vanguard ATS/CTS Platforms

111   

Greater Stability, Larger Scale

Higher Risk, Greater Architectural Choices

Test Beds

• Small testbeds

(-10-100 nodes)

• Breadth of

architectures

• Brave users

Vanguard
• Larger-scale experimental

systems
• Focused efforts to mature

new technologies
• Broader user-base
• Demonstrate viability for

production use
• NN SA Tri-lab resource

ATS/CTS Platforms

• Leadership-class systems

(P e ta s c al e , Exascale, ...)

• Advanced technologies,

sometimes first-of-kind

• Broad user-base

• Production use
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Demonstrate viability of ARM for U.S. DOE Supercomputing I

2.3 PFLOPs peak

885 TB/s memory bandwidth peak

332 TB memory

1.2 MW



Remote Sensing

Limitations to classic approaches to remote sensing
o Growth of sensor technologies outpacing communication

bandwidth

• Limited onboard processing capability

o Rad hard design

o Need for alternative approaches

Pixel Data
Scene

Understandin

•Scene
Segmentation
(i.e. clouds,
land, water,
etc.)
•Track scene
movement
across time

Event Detection

•Time and space
localization of
events of
interest
•Time
segmentation of
event duration

Traditional ala
Architectures 115i
• Sophisticated & comm.
Serial CPUs Bottleneck

• Binary Processing
• 'Always on'

Signal
Reconstruction

•Extract
underlying
signal from
noise
•Overcome pixel
saturation
•Generate
human-
understandable
signatures

Traditional Processing
• Requires Link to Ground
• High Bandwidth
• Slow

Signal
Classification

.natormino if
signal is of
interest or is a
confuser
•Reduce
communication
bandwidth by
rejecting false
alarms

• Communicate
Results



I Why not just continue what we've always done?
Dennard scaling

As transistors get smaller, their power density remains constant

Unfortunately ended 10-15 years ago

Cannot run CPUs at faster speeds

Emphasis on multi-core

Need for new paradigm of computing

10
7

10
6

10
5

104 r

10
3

10
2

10
1

10
0

•

.

.

•

Transistors
(thousands)

Single-thread
Performance
(SpecINT)

Frequency
(MHz)

Typical Power
(Watts)

Number of
Cores

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, 0. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore



Neural-inspired computing

1940 1960 1980 2000 present
Pavlov & Gantt, 1K8;
Skinner, 1933; Hubel & Wiesel, Neher et al , O'Keefe & Recci, Dan & Poo. 2004:
Baernstein & Hull, 1931 Hebb, 1949 1959 1978 1993 Bo den et al., 2005

learning

Neuroscience &
Psychology

Artificial
Neural
Nets McCulloch

& Pitts,1943

James et al., BICA 2017

neuron
representations

Cognitron -
Fukushima, 1975

Perceptron -
Rosenblatt, 1958

Statistical
Machine
Learning

Decision Trees -
Hunt et al., 1966

temporal
coding %

Hopfield Nets -
Hopfield, 1982

Barron &
Barron,1988

Bayesian Nets -
Pearl. 1986

Reservoir Computing -
Jaeger. 2001;
Maass et al. 2002

•

LeCun et al ,
1998

• ,

SVMs - Cortes
& Vapnik,1995

Dynamical
Machine r r d

s 
•Co-Cc

Learning Reinforcement Learning - Markov Models - Sutton. t t, t2
Minsky. 1961 Rabiner, 1989 1998 Dynamic Bayesian Nets -

Murphy. 2002

population
representations

Deep Learning -
Hinton & Salakhutdinov.
2006

♦
Random Forests -
Breiman. 2001
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12 Impacting Broad Areas of Computation

Linear Algebra

Xp

Pattern Matching

Optimizations

winner-take-all

WHETSTONE

e01

• mg

Context Modulated Deep Learning

Parti

Circuit per walker

Scientific Computing
Density

Circuit per position

siindivrity layer

x1 • p1(t)

n,

pi(t)

ni

P  • At) 

np

Machine Learning

Intelligent Storage

Lt 4

Adaptive Deep Learning



13 Spilcing neurons are a more powerful version of classic logic gates

High fan-ii7

A Spiking
\40

Spiking threshold gates provide high
degree of parallelism at very low power

Based on a simple McCullogh-Pitts model:

Outputs a 1 if and only if: wo + 6.0 WiXi a 0

FRe)-svreptit
rOleuronsi

Compute more
powerful logic functions

Incorporate time
into logic



14 SNL has produced a number of spiking numerical algorithms

Cross-correlation

Severa et al., ICRC 2016

SpikeSort, SpikeMin, SpikeMax, etc

Verzi et al., Neural Computation 2018

SpikeOptimization

. Verzi et al., IJCNN 2017

Sub-cubic (i.e., Strassen) constant depth matrix multiplication

Parekh et al., SPAA 2018



I Spiking Temporal Processing Unit (STPU)

Implemented on FPGU, STPU is composed of a set of leaky integrate and fire neurons.

Each neuron has an associated temporal buffer such that inputs can be mapped to a neuron with a time delay.
W(t) is the neuronal encoding transformation which addresses connectivity, efficacy and temporal shift.

Mimics functionality of biological neurons.

neuron

soma

_-4(c
axon

Elift)wkit) -
k

.,//1 411
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I W h et stone
Whetstone provides a drop-in mechanism for

tailoring a DNN to a spiking hardware

platform (or other binary thresh(

platforms)
c Hardware platform agnostic.
• Compatible with a wide variety of IM
oNo added time or complexity cost at i
- Simple neuron requirements: Integrat(
• https://github.com/SNL-NERL/Wh

WHETSTONE

Keras
Model

L

L

CUDA

Spil<ing Platform
(N2A)

Adaptive
Sharpener
Callback
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Problem
N euromorphic platforms offer substantial (100x-
1000x) performance improvements but are
inaccessible
Algorithms remain undeveloped; Multiple
incompatible frameworks exist; Algorithms cannot
interface with one another or hardware

Technical Approach
Developing a framework for linking existing
spiking neural networks and expanding to solve
scientific computing problems
Independent of the hardware that runs the neuron
computation
Collaboration: LANL, LLNL

Goal

Find a destination
on a map within a
vehicle's range.

Spiking Graph

`Scaffold'
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I Large collection of neuromorphic hardware

Enables researchers to explore the boundaries of neural computation

Consists of a variety of neuromorphic hardware & neural algorithms providing a testbed facility for
comparative benchmarking and new architecture exploration

Developing benchmarking methodologies

(I-CONS 2019 Benchmarkin
Paper

Benchmark Facts

TOMIPONIer

Benchmark Facts

ommtiona
wm
Many

wmoot po
Lase

rissuohnn

•

performance gap does not
mke energy Into account

—

.'-'7P-M;;;;;;ce gap does
take energy into account

operations/byte transferred

Intel Loihi Intel Loihi

Google Coral Google
EdgeTPU

Nvidia Jetson Nvidia Jetson
TX1 Nano

SpiNNaker 48
Node Board

Inilabs DAVIS
240C DVS

GPU
Workstations

IBM TrueNorth* IBM TrueNorth Intel Neural
NS16e* Compute Stick

SNL STPU on Xilinx PYNQ
FPGA FPGA

Cognimem
CM1K

KnuPath
Hermosa

Nengo FPGA

Georgia Tech
FPAA

6kai6i
PAPA

Insawaybosmenpronnown Clnameaalaseadywrilems

*Remote access



Case study: Neural Architecture Search for
Remote Sensing



I Remote Sensing •

Neural approaches show promise:

Signal Processing

Signal Clas sification

Signal Understanding

° Moving computation onto the satellite
yields:

Reduction in required bandwidth

Improvements in response times

Potential for autonomy

Size, Weight and Power (SWaP) is the constraint!

1



I Neural Architecture Search

NAS methods seek to automate the search for neural architectures.

As a counter example, these architectures were found through grad-student descent:

LeNet-5 Inception

AlexNet ResNet

VGG-16 DenseNet

Three primary NAS approaches:
. Reinforcement learning — first approach. Works well. Takes forever.

o Evolutionary strategy — Also works well and takes forever.

o Gradient — Works well and fast.



Gradient-based NAS

smn = softmax of input vector w.r.t. n
eon
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Hardware-aware gradient-based NAS ■



I Hardware-aware PDARTS

Current work based on fork of Progressive Differential ArchiTecture Search
(PDARTS).

Progressively grow deeper networks which conform to loss terms.

Augmented with hardware-based cost loss term.
o Using number of parameters in operation as a proxy for cost.
o E.g. C(5x5 conv) > C(3x3 cony).
Hardware loss biases architecture search toward lightweight models.



MSTAR dataset
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HAPDARTS — effect of hardware cost

Three trials:
o No hardware cost

o Cost hyperparameter = 10-6

o Cost hyperparameter = 10-5

se+5

7e+5

6e+5

58+5

4e+5

3e+5

28+5

1e+5

o

Increase depth, prune
important operations

.ec.s

..i,,-1--- Nc

,
7

1.4k 1.6k 1.8k400 600 800 lk 1.2k 2k 22k 2.4k 2.6k

HW cost penalty

nalty of 10-6 x HW cost

nalty of 10-5 x HW cost

Search epoch



HAPDARTS — effect of hardware cost

Three trials
No hardware cost leads

o Cost hyperparameter =

o Cost hyperparameter =
100
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to 3.8MB model, takes 5 hours to train (green)

10-6 leads to 1.55MB model, takes 2.1

10-5 leads to 1.37MB model, takes 1.8

hours to train (light blue)

hours to train (orange)
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I Future work

HAPDARTS results above use number of bytes as the cost.

Currently extending to support cost including memory operations,
MAC operations, and latency on a given systolic architectures.

Future work will extend to support other learning algorithms (e.g.
spiking neural networks) and hardware.



29 I Conclusion

Sandia National Laboratories is pursuing neural-inspired computing as a
transformative approach to computation.

We believe codesign enabled by fast, flexible, accurate hardware
simulation and high performance computing will enable this pursuit.

Thank you!



I What is a good cost function?

"Cost" of an operation can be simple, e.g. defined as the number of bytes needed for the operation.

Let L = y1L1 + y2L2 then we can find hvperparameters where both losses are considered.

L = L 1 + L2 with yi =1.0, y2 = 0.1

80000 - 800000 -

70000 - 700000 -

60000 - 600000 -

3 50000 -

40000 -

30000 -

20000 -

0 100 200

Batch (x 100)

epoch 29/30 % finished = 0.96

300

3 500000 -

400000 -

300000 -

200000 -

L = 0.1056175 + 0.1 x 215648.88 = 21564.9941406

L2

T T

0 100 200

Batch (x 100)

Psmaii = 1.00000, Marge = 0.00000

300


