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Sandia's Lab-Directed R&D Approach:

Three Integrated Thrusts
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Thrust 1

Vulnerability Assessment
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Environments

Coupling

R&D

Failure
Analysis}

• Large scale coupling modeling with

significant number of unknowns

• Component response and failure

estimation to EMP waveforms

Thrust 2

Material & Device Innovation

Avalanche
Breakdown in a
Wide Band-Gap

diode

EMP hardened assets

100

above Its': ooeMner
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thermal conduction tn solid

below LCST: poor thermal
conduction in liquid phase
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% Polymer

Design New Component Materials

to Withstand EMP Effects 

Thrust 3

Optimal Resilience Strategies

Optimized Technology
Investment

Restoration Modeling

Interdependent
Infrastructures Model

EMP Effects and Optimized
Operational Mitigations

Modular Multi-Layered Modeling

Approach

R&D

• Develop Wide Band-Gap EMP arrestor

• LCST Polymers for thermal management
during E3/GMD

R&D

• Baseline assessment of EMP Effects w/ Large

Scale Stochastic, AC Dynamic Optimization

Risk mitigation by Tech Deployment,

Operational Mitigation & Optimal Restoration

3



• Openly available curve
from IEC and Mil-Spec

• Polarization must be
assumed
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Mitigations Technologies
as Applicable HPC Modeling
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Transformer Oil Polymer Additive
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Effectiveness of Surge Arrestors Including Parasitic
Inductance
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• Single line (equivalent conductor)

• Multiple lines (3-phase systems)

• Substation transition

• Tower impact

• Corona damping

• Instrumentation cable coupling

• Shield wire impact

• Line sag

• Insulator flashover/breakdown

• Substation meshed ground modeling

estigated Work

Ongoing or Future
Work
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EMP Coupling to Transmission Lines
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Coupling Sensitivity Analysis Results

Induced Voltage vs Ground Resistivity
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1 Coupling is sensitive to many variables, which are often not precisely known 1



Finding Risk of Dielectric Failure to HV

Transformers Caused by HEMP
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1. Develop High Frequency Winding
Model, then Find Winding Voltage Due
to HEMP

2. ABB will Calculate Dielectric Stress
on Winding Insulation

3. Test to find Probability of Dielectric
Failure of Paper-Oil Insulation
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IEEE RTS-96 Grid System

Purpose: Identify System Effects

• Used by the NERC Cascading Outage Study Team

• Provides a Point of Comparison With Published Study Results

• Shows the Combined System Effects Expected From E1 and E3
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HEMP Events Above the RTS 96 Grid Model and

Coupled Voltages
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Failure of relay due to terminal voltage

Relay failures caused by the 1

induced voltage from a 0.9
HEMP at the relay's input
terminal

Data from recently released
EPRI report and DTRA
report.

With more data, similar
figures will be made for
other components.
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Once a relay fails, the component it is protecting does not trip offline
immediately, and is not a constant time for all relays.

For this reason, the component trip time is varied, t=0 is the time the EMP
voltage hits the relay. Component trip varies from t=0 to t=1 second based on
a gamma distribution.
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• Report Will Include:

Voltage Coupling Calculations

Test Results

Insulation Withstand Test Results

Impedance Test Results at High Frequencies

Material EMP Withstand Test Results

Limited Component EMP Withstand Test Results

HV EMP Arrestor Design Information

Transformer Polymer Oil Additive Information

System Analysis Methods and Results

Effects of Combined Failure Modes

• Effects of System Mitigation Technologies

• Optimal Planning and Operations Methods to Enhance EMP Resilience
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• Modeling Methodologies That Will:

Identify Failure Probabilities for Key Components

Calculate Voltage Stresses Inside Large Power Transformers

Incorporate El and E3 Failures into Dynamic System Simulations

Broadly Identify System Response to a HEMP

Identify Key System Vulnerabilities

• Critical Test Results

Impedance Testing for PTs and Power Transformers

Probabilistic Dielectric Withstand Tests for Paper-Oil

Combined Test-Analytic El Vulnerability Assessments for Large Power Transformers

Limited Component Testing for El

• New Technologies

LCST Polymer Oil Additives for Thermal Management of Transformers

EMP Sub-Nanosecond Surge Arrestors

• New Analytic Methods

Methods to Calculate EMP Coupling, Shielding, and Shield Grounding Effectiveness

Methods to Apply Limited Test Results Across Broad Populations
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