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Sandia’s Lab-Directed R&D Approach: @) ==,
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HEMP Characterization
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Transformer Oil Polymer Additive
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Effectiveness of Surge Arrestors Including Parasitic ).
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Coupling Physics of Interest

* Single line (equivalent conductor)
* Multiple lines (3-phase systems) —Investigated Work
* Substation transition
* Tower impact

) Ongoing or Future
* Corona damping T Work

* Instrumentation cable coupling
e Shield wire impact

* Line sag

* Insulator flashover/breakdown

e Substation meshed ground modeling
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1. Long lines have little affect on coupled voltages
2. Terminating Impedance has a large effect on coupled voltages
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Coupling Sensitivity Analysis Results
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Coupling is sensitive to many variables, which are often not precisely known




Finding Risk of Dielectric Failure to HV

Transformers Caused by HEMP

S! )\Q 1. Develop High Frequency Winding
Model, then Find Winding Voltage Due
to HEMP

2. ABB will Calculate Dielectric Stress

on Winding Insulation

3. Test to find Probability of Dielectric
Failure of Paper-Qil Insulation

CDF(Failure | Voltage)

Sandia
National
Laboratories

Prediction of
Transformer Failure
Due to HEMP Event

Voltage Coupled




Sandia
National _
Laboratories

™

IEEE RTS-96 Grid System
Purpose: Identify System Effects

» Used by the NERC Cascading Outage Study Team
» Provides a Point of Comparison With Published Study Results

» Shows the Combined System Effects Expected From E1 and E3
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HEMP Events Above the RTS 96 Grid Model and

Coupled Voltages
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Relay failures caused by the ' - T ————
induced voltage from a 0o | NO damage area  + /f’ = _
HEMP at the relay’s input (normal .
terminal 0.8 T . “
o7 | operation) )
0.6 * T _
%/ ail area
Data from recently released o5} 7 e |
EPRI report and DTRA v (permanent damage)
report. 047 ’/
0.3 e ]
° ° ° 0.2 i ‘/”_‘*’_ T
With more data, similar [% M
figures will be made for 01} / * Latch area 1
other components. " (malfunction) 1

0 20 40 60 80 100 120 140 160 180 20

Induced Voltage,VHEMP , at Relay PT Input [kV]




Sandia
National
Laboratories

Delay of Component Trip

Once a relay fails, the component it 1s protecting does not trip offline
immediately, and is not a constant time for all relays.

For this reason, the component trip time 1s varied, t=0 is the time the EMP
voltage hits the relay. Component trip varies from t=0 to t=1 second based on

a gamma distribution.
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* Report Will Include:
* Voltage Coupling Calculations
* Test Results
* Insulation Withstand Test Results
* Impedance Test Results at High Frequencies
* Material EMP Withstand Test Results
* Limited Component EMP Withstand Test Results

* HV EMP Arrestor Design Information
* Transformer Polymer Oil Additive Information
* System Analysis Methods and Results

* Effects of Combined Failure Modes

* Effects of System Mitigation Technologies
* Optimal Planning and Operations Methods to Enhance EMP Resilience
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Outcomes at the End of the Project

* Modeling Methodologies That Will:
* ldentify Failure Probabilities for Key Components
* Calculate Voltage Stresses Inside Large Power Transformers

* Incorporate E1 and E3 Failures into Dynamic System Simulations
* Broadly Identify System Response to a HEMP
* |dentify Key System Vulnerabilities

e Critical Test Results
* Impedance Testing for PTs and Power Transformers
* Probabilistic Dielectric Withstand Tests for Paper-Qil
* Combined Test-Analytic E1 Vulnerability Assessments for Large Power Transformers
* Limited Component Testing for E1

* New Technologies
* LCST Polymer Oil Additives for Thermal Management of Transformers
* EMP Sub-Nanosecond Surge Arrestors

* New Analytic Methods
* Methods to Calculate EMP Coupling, Shielding, and Shield Grounding Effectiveness
* Methods to Apply Limited Test Results Across Broad Populations
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Thank You

Ross Guttromson

Sandia National Laboratories
505-284-6096
rguttro@sandia.gov




