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History of Sandia Energy Programs

Sandia was born as a nuclear
weapons (NW) engineering
laboratory with deep science
and engineering
competencies

Our core NW
competencies
enabled us to

take on
additional

large national
security

challenges
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Device Modeling/Testing
Hydrofoil Design/Analysis

Cavitation

Hydro-Acoustics

Materials & Coatings
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Coupled Device-Array
and Environmental
Analysis
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Class Goals
• Familiarize participants with the Delft3D modeling suite

O Basics of Delft3D flow module (FLOW)

O Grid generation (RGFGRID, QUICKIN)

• Describe current energy conversion (CEC) enhancement

0 SNL-Delft3D-CEC enhancement for turbine modeling

• Develop hands-on experience with Delft3D example models

O Straight channel and San Francisco Bay site examples

• Identify gaps/challenges for meeting CEC
application/research goals

• Feedback on class structure and tools

ttp: energy.sandia.gov sn - e t •-cec/ 5



Delft3D

Hydrodynamic and Environmental Evaluations

• Description
1:1 World leading 3D modeling suite to

investigate hydrodynamics, sediment

transport, morphology, and water quality

for fluvial, estuarine, and coastal

environments

• rt.aLms. uul iu
O Delft3D FLOW, MOR, and WAVE are open

source as of 2011

1:1 A historically trusted code that is well

respected and validated

https://oss.aeltares.nl/web/delft3d/about
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SNL-Delft3D-CEC Website

• General software description
- Links to Deltares software and

Delft3D

• Link to source code (GitHub)
▪ https://github.com/SNL-

WaterPower/SNL-Delft3D-CEC 

• Three self-guided tutorials
• Getting started
• Straight channel model build
• San Francisco Bay model build
• Case Files for all builds

Sandia
National
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0 Sandia National Laboratories Energy & Cl i rnate Secure dr Sustainable Energy Future

Stationary Power , Climate & Earth systems Transportation Energy , Energy Research About EC

SNL-Delft3D-CEC Home / Stationary Power / Energy Conversion Efficiency / Water Power /

Market Acceleration & Deployment / SNL-Delft3D-CEC

SNL-Delft3D-Ca.
Sandia National Laboratories
enhancements to Delft3D for simulating
the effects of Current Energy Converters
on the marine environment.

Cabscoot Bay rezionabseak finnan; with an inset showing a nfined

dannnn anntnd Prnposed 1000h016 of the Ocean Renewable Power
Company (01K dneloped TodGentM hdal turbans.

The SNL-Delft3D-CEC code incorporates a state of the art current energy conversion (CEC) module within

the structured grid version of the open-source Delft3D-FLOW software developed by Deltares. In

partnership with Deltares, Sandia modifications include a CEC Module that simulates energy conversion

(momentum withdrawal) by marine hydrokinetic (MHK) turbine or turbine-like devices including

commensurate changes in turbulent kinetic energy and turbulent kinetic energy dissipation rate. The

ntent of the software is to facilitate detailed analyses needed to guide the layout design of CEC arrays

n order to maximize array power production and minimize environmental effects. it is hoped that

application of the tool will help address regulatory concerns about site-specific environmental

responses to user-defined CEC array designs, thereby accelerating environmentally responsible

Stationary Power

< Energy Conversion Efficienc,

< Solar Energy

< Wind Energy

< Water Power

< Technology Development

< Market Acceleration Sr

Deployrnent

CEC Array Modeling

I SNL-Delft3D-CEC

SNL-SWAN (Sandia National

Laboratories— Simulating

WAves Nearshore)

Hydropower

< Resource Characterization

http://energy.sandia.gov/snl-delft3d-cec/



SNL-Delft3D-CEC

CEC Array Environmental Effects & Performance
• Objectives

n Develop and demonstrate SNL-Delft3D-CEC: A tool for

balancing CEC efficiency and environmental effects.
o Maximize power and minimize potentially harmful

environmental effects

o Address CEC array-power performance and
environmental concerns over large-scale development.

• Backeround
n High-fidelity CFD codes (LES or URANS) are

computationally expensive for large domains.
, Some lower fidelity CFD-RANS codes incorporated

vegetative resistance/losses, but were not CEC specific.
, SNL developed the Delft3D CEC Module through DOE

sponsorship.

• Tool (Leverage Well-Respected Code)
. Delft3D—

o Originally developed by Deltares, supported by SNL

since 2015

o Flexible mesh (CEC modeling not yet included)

o Coupled-equation solution (mass, momentum,

TKE...)
, CEC module in addition to advanced sediment dynamics,

and water-quality routines.

Sandia
National
Laboratories
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Current Energy Capture (CEC)

• Economic Concerns
• Startup costs

• Operation/maintenance costs

• Power generation efficiency

• Environmental impact

• Ecological Concerns
• Water elevation/wake

• Volumetric flow/tidal range

• Sediment dynamics

• Water quality

Sandia
National
Laboratories
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CEC Energy Absorption Module
• CEC device energy removal is

manifest as:
Decreased momentum

▪ Altered (usually increased) turbulent
kinetic energy (TKE)

▪ Increased turbulence dissipation
rate (turbulent length scale)

• Momentum and K-sare advected
and dispersed downstream

Sandia
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CEC Module Example: Single Device
11E Sandia

National
Laboratories

•SNL-Delft3D-CEC simulates the effects of CEC-devices on flow
•Laboratory data sets (turbines and actuator disks)
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,

—>
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CEC Module Validation: Multiple Devices
•CEC series data set (Mycek et al., 2014) using scaled turbines
•Shear and wake interactions are observed and simulated
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Example Site Model: San Francisco Bay
•Delft3D simulates flow for large sites
•San Francisco Bay bathymetry from USGS, 2012
•Movie: depth averaged velocity, duration = 2 days

Sandia
National
Laboratories
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San Francisco Bay: Georeferenced

Depth

Sandia
National
Laboratories

Depth-averaged Velocity

"San Francisco Bay" 37°51'25.60"N and 122°05'18.88 W. Google Earth.

http://energy.sandia.gov/snl-delft3d-cec/ 14



San Francisco Bay Model
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Now... On to the Training
Sandia
National
Laboratories
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Exceptional service in the national interest
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Outline

• Delft3D Development History.

• Delft3D Capabilities.

• Delft3D Flow Hydrodynamics.

• Transition to Sandia CEC Module

(SNL-Deflt3D-CEC).

http://energy.sandia.gov/snl-delft3d-cec/
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Delft3D Software Suite

• Delft3D (FLOW, MOR, WAVE) is a public-
domain surface-water modeling system
incorporating fully integrated gri▪ d generation,
hydrodynamics, waves, sediment dynamics,
and water quality (all GUI driven).

• Delft3D can be used for 2D and 3D unsteady
simulations of rivers, lakes, estuaries, and
coastal regions.

http://energy.sandia.gov/snl-delft3d-cec/ 19



Delft3D Development History

• Developed by Deltares, an independent
institute for applied research in water
resources in the Netherlands.

• Pubic-domain version was released in 2011
(flow, morphology, and waves modules).

• Currently used internationally: US,
Netherlands, Hong Kong, Singapore,
Australia, Venice, etc.

Sandia
National
Laboratories
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Delft3D Capabilities
• Delft3D resolves circulation and transport in

complex environments
• Estuaries, rivers, lakes, and coastal waters

• Delft3D Simulates:
• Scalar transport:

Dye-tracer
Temperature
Particles
Water-quality variables

• Density stratification due to:
Salinity
Temperature
Sediment concentration

Sandia
National
Laboratories

NEMER 
$0 $11 ;0

Courtesy of Deltares

iiettares
Enabling Delta Life
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Delft3D Capabilities

• Directly coupled sediment and contaminant
fate and transport models with multiple
sub-model options.

• Simulates wetting and drying of flood
plains, mud flats, and tidal marshes.

• Coupled morphology modeling.

• Coupled wave modeling.

http://energy.sandia.gov/snl-delft3d-cec/
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Delft3D Capabilities
• Simulates hydraulic control structures
such as dams and culverts.

• Simulates wave boundary layers and
wave-induced currents.

• Pre- and post-processing software
through the Delft3D-GUI.

http://energy.sandia.gov/snl-delft3d-cec/ 23



Example of Peer-Reviewed Delft3D Applications

• Rivers — Allier River (FR), Rhine River (DEU),

Yellow River (CH), Pearl River (MS), East River (NY).

• Lakes — Lake Markermeer (NL), Lake Geneva (SW), El-Burullus

Lake (EGP), Lake Marken (NL), Taihu Lake (CH), Poyang Lake

(CH), Eastern Lake Ontario (CAN), Lake Egirdir (TRK),

Lake Baikal (RUS).

• Estuaries — Rhine Delta (DEU), Mossy Delta (CAN), Scheldt River

Basin (BEL), Patuxent River (VA), Teign Estuary (UK).

• Coastal — Egmond (NL), Hong Kong (CH), Maasmond Area (NL),

Coastal Carolina (NC), Dutch Coast (NL),

Wadden Sea (NL).

Sandia
National
Laboratories
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Basic Delft3D Structure

Waves --- Hydrodynamics

Sandia
National
Laboratories

Flow fields

Scalar Transport
Particles, Dye

Sediment
Dynamics

Water
Quality

http://energy.sandia.gov/snl-delft3d-cec/



Channel Flow
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San Francisco Bay

GIS is typically
used to define
shorelines and
bathymetry for
complex grid
development.

Sandia
National
Laboratories
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San Francisc. RnIl
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With accurate boundary conditions, a well calibrated
model reproduces the hydrodynamics of the system.
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Flexible Grids (CEC in progress)

Unstructured
grids can be
used to more
accurately
represent
systems.

Sandia
National
Laboratories
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Delft3D Hydrodynamic Module

• Fully 3D, with 2D options.

Sandia
National
Laboratories

• Mesh type: Boundary-fitted curvilinear, Cartesian, or

flexible.

• a-level or stretched bathymetry-following grid in the
vertical or Z-grid.

• Includes an algebraic turbulence model, k-L, k-sor,
LES turbulence options.

• Alternating-direction implicit flow solution.

http://energy.sandia.gov/snl-delft3d-cec/ 30



Delft3D Hydrodynamic Module - Vertical r4-‘1
In Delft3D, the sigma (uor stretched) transformation
is used to develop a "bottom following" grid.

1
0

= —1

http://energy.sandia.gov/snl-delft3d-cec/



Delft3D Hydrodynamic Module - Vertical
Sandia
National
Laboratories

In Delft3D, a Z-grid is also available. This is appropriate
when simulating horizontal density interfaces
(isopycna Is) in regions with steep bottom slopes.

z = —11(x,y)

http://energy.sandia.gov/snl-delft3d-cec/ 32



Delft3D Hydrodynamic Module - Vertical

The acoordinate is defined as:

a
z c z c

d+c H

Sandia
National
Laboratories

z = 0

a = 0

a = —1
z = —h
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Delft3D Physical Phenomena
Sandia
National
Laboratories

• Free-surface gradients (barotropic effects).

• Coriolis forces.

• Density gradients (equations of state).

• Horizontal pressure density gradients (baroclinic effects).

• Turbulence-induced mass and momentum fluxes.

• Tidal forcing at open boundaries.

• Spatiotemporal wind shear stresses, including cyclones.

• Spatiotemporal atmospheric pressure at the water surface.

• Spatially varying bottom stresses.

• Time-varying sources/sinks (e.g., river discharges).

http://energy.sandia.gov/snl-delft3d-cec/ 34



Delft3D Physical Phenomena
• Drying and flooding of tidal flats.

• Heat exchange through the free surface.

• Evaporation and precipitation.

• Tide-generating forces.

• Effects of secondary flows on depth-averaged momentum
equations.

• Lateral shear stresses at walls.

• Vertical exchange of momentum due to internal waves.

• Influence of waves on bed shear stress.

• Wave-induced (radiation) stresses and mass fluxes.

• Flow through hydraulic structures.

• Transport of salt, heat, and other scalars.

Sandia
National
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Delft3D Atmospheric Forcing

• Wind stresses (including tropical cyclones) can drive fluid

motion (mixing and transport).

• Atmospheric pressure affects water-surface elevation.

• Atmospheric coupling drives heat exchange:

• Convective heat exchange tsensible)

• Net incident solar short-wave radiation considering cloud

cover (incoming and reflected)

• Net incident atmospheric (long-wave) radiation

(incoming and reflected)

• Evaporative cooling (forced and free latent heat)

http://energy.sandia.gov/snl-delft3d-cec/ 36



Delft3D Hydrodynamic Module
• Three-dimensional continuity (Cartesian):

H = d + c

84' +8(HU) +a(Hv) 

at ax ay

Sandia
National
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Discharge or
withdrawal by
precipitation or
evaporation
o

Q= f(qin-1 qout)do- + P — E

• With U and V the depth-averaged velocities:

1 c 
o

U-
H 
f udz = .1 uda
d —1

1 C 
0

V= .1 vdz f vda
H d 

—1
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Delft3D Hydrodynamic Module
Conservation of momentum - x component (Cartesian):

Accumulation

Ou

Ot
+

1
Px

Po
Pressure
gradient

Advection Coriolis

uOu vOu w Ou
 + +  
Ox Oy H 0 a

+F.x.+

fv

Sandia
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Vertical eddy viscosity

Horizontal
Reynolds Vertical momentum diffusion
stress

+M
x

External
momentum
source
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Delft3D Hydrodynamic Module
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Laboratories

• Vertical velocity, w, in the a-coordinate
system is computed from the continuity
equation (Cartesian):

Accumulation

ac
at
+

Advection

0 (Hu) 0 (HO Ow
+ +

a Oy 0 a-

Source/sink

H (qin q.ut )
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Delft3D Hydrodynamic Module
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• The "physical" vertical velocity, w, in the
Cartesian coordinate system are not
involved in the model equations, but are
calculated in post-processing:

( OH 04'
u a +  +v
a a /

( o_ OH 
+
04'

ay ay )
( OH 04"
+ a +

Ot Ot i

• Where co, is the velocity at
iso a-surfaces associated with upwelling
or downwelling motions.
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Hydrostatic Pressure Assumption

• Vertical accelerations due to buoyancy
effects and sudden variations in bottom
topography are neglected:

OP
gpH

Oa
• After integration, the hydrostatic

pressure is: 0
P Path,+ gH .1 p(x,y,o-',t)do-'

a
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Hydrostatic Pressure Assumption

• For constant water density and
atmospheric pressure:

1 
P
xPo

1 
P

Po Y

04" 1 OP
g ±  atin 

ay po ay

Oc 1 aptyyl
g ±  uuiii 

ay Po ay
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Hydrostatic Pressure Assumption

• For variable water density due to
temperature and salinity gradients:

Barotropic

1 
P

Po x

1 
P
)Po

Baroclinic

a‘

g
a

Oc
g

Oy

H °f( Op Op Oo- t
+g ± , 

po 0.x Oa Ox i

H ° ( Op Op 0o-'
+g— is —+  

Po a aY a 0- 
, 
ay i
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do'
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Delft3D Hydrodynamic Module

• Pressure changes due to floating structures are
allowed.

• Rigid-lid computations are allowed.

• Reynolds stresses include the product of:

• (flow) x (spatially variable eddy viscosity) x
(corresponding components of the mean rate-of-
deformation tensor)

These differ between 2D and 3D.

Sandia
National
Laboratories

http://energy.sandia.gov/snl-delft3d-cec/ 44



Delft3D Horizontal/Vertical Mixing

• For 3D, the horizontal eddy viscosity coefficient, vE, >> vv, is the
superposition of:
1. Sub-grid scale (SGS) turbulence, VsGs.
2. 3D turbulence, vv.

b
3. Reynolds-averaged shallow-water equations, -vH

ackground

background
VH vsGs + 1 / v + V H

• Vertical mixing is the sum of:
1. Water kinematic viscosity, vmoi
2. The greater of the computed mixing coefficient from the 3D

turbulence-closure model or the spatiotemporal user-defined
ambient or "background" mixing.

v 
background

v V + max v Vmoi ( 3D 1 v

Sandia
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Delft3D Turbulence Options
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• Because turbulence processes are "sub-grid" scale, the primitive
variables are space and time averaged and require appropriate
closure assumptions.

• Four turbulence-closure models are available to determine the
vertical eddy viscosity (vv) and vertical eddy diffusivity
coefficient (Dv):

1. Constant coefficient (user defined).

2. Algebraic Eddy viscosity closure Model (AEM).

3. k-L turbulence closure model.

4. k-sturbulence closure model (3D only).

• Each model calculates the turbulent kinetic energy (k), and its
dissipation rate (s) or mixing length (L) differently

http://energy.sandia.gov/snl-delft3d-cec/ 46
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DeIft3D-FLOW Solution Scheme
The transport equations are solved on a staggered computation
"C" grid using finite differencing.

The velocities are face centered on each cell and then c(i.e.,
water surface elevation) is solved at the cell center (i.e., node).

+ water level (() / density (p) point
velocity point (n, v or tu)

http://energy.sandia.gov/snl-delft3d-cec/
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DeIft3D-FLOW Solution Scheme
For computational efficiency, the solution of the transport equations
uses a mode-splitting technique common in oceanographic models.

The theory is based on the difference in movement of fast-moving
external gravity waves and slower moving internal waves in a system.

Two sets of transport equations are used to obtain a numerical solution:
, External - Vertically integrated momentum equations are solved more

frequently (-1-100 time steps) to obtain an average horizontal velocity
and water-surface solution (solved on a column of water).

O Internal - Vertically resolved momentum equations are solved at the
completion of each external solution to resolve changes in the vertical
structure of velocity and other water column properties (solved across
model sigma layers).

The mode-splitting technique provides a robust and
efficient solution for the hydrodynamics.

http://energy.sandia.gov/snl-delft3d-cec/ 48



SNL-Delft3D-CEC
SNL-Delft3D-CEC is an
upgrade of Delft3D for
predicting the effects of current-
energy-capture (CEC) devices.
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Basic Delft3D Structure

Waves --- Hydrodynamics
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Flow fields

Scalar Transport
Particles, Dye

Water
Quality
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CEC Modeling
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Current Energy Capture (CEC)

• Economic Concerns

• Startup costs

• Operation/maintenance costs

• Power generation efficiency

• Environmental impact

• Ecological Concerns

• Water elevation/wake

• Volumetric flow/tidal range

• Sediment dynamics

• Water quality

Sandia
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CEC Energy Extraction Representation
• CEC energy extraction manifests as:

• Decreased momentum, Q

• Altered turbulent kinetic energy
(usually increased), k

• Increased turbulence dissipation rate, c

• These sources of momentum, turbulent
kinetic energy, and turbulence dissipation
are included in the conservation equations

Momentum Sink 

=
1
CTAc

E 
cU2

2
SQ

1 A
PCEC CT PICEC PU3

2

K-c Modifications 
1

Sk =— 
2 
CT AcEC

Empirical
constants
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CEC Module Validation: Single Device

•SNL-Delft3D-CEC simulates the effects of CEC-devices on flow

• Laboratory data sets (turbines and actuator disks)

IFREMER

Sandia
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CEC Device 

111111111
Simulated as

momentum sink only 

Simulated as
momentum sink AND
source of TKE and its

dissipation rate

0.8

0.6

0.4

0.2

•

• IFREMER data
— IFREMER model
• SAFL data
— SAFL model
0 Chilworth CT = 0.86
 Chilworth validation (scaled)

.... ..... •
.......................................... •. •

I 41111 9 I I ............. ZiT)

5 10

Normalized device diameter (—)

15 20
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CEC Module Validation: Multiple Devices

3
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* 0

-2

•CEC series data set (Mycek et al., 2014) using scaled turbines
•Shear and wake interactions are observed and simulated
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CEC Module Validation: Multiple Devices

3

-2

•CEC series data set (Mycek et al., 2014) using scaled turbines
•Shear and wake interactions are observed and simulated
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San Francisco Bay Model
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• Array A

• Array B
o Array C
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Flow Through Array A
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Flow Through Array B
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Flow Through Array C
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San Francisco Bay Model
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Power Generation
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CEC Implementation
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The CEC device acts as a momentum sink and
source of k-s in the 2D and 3D momentum and
turbulence equations whether the device spans single
or multiple grid cells in the vertical (z) or lateral (n)
directions.

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

n/z-supergrid n-sub/z-supergrid z-sub/n-supergrid

O

n/z-subgrid
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CEC Implementation
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The CEC device is modeled as a flat actuator disc with negligible thickness in the
streamwise direction. It is assumed that the grid is locally oriented such that cell
boundaries align with the lateral direction (n) of the device. Position is assigned with
(x,y) coordinates with orientation given by the angle a between the turbine axis and
the positive x/latitude-coordinate axis ("east"). The orientation defines both the
general orientation of the tidal turbine and the direction of positive flow through the
turbine, i.e. a indicates which direction the turbine is facing with incoming flow
defined as positive.

Note that the grid and
flow-facing area of the
CEC device are
assumed to be aligned.
A warning will be issued
if not.

turbine axis

positive flow:-
direction

orientation a

x
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CEC Implementation
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Implementation considers uneven bed levels and unequal
water-surface levels in the lateral (n) direction. Although
greatly exaggerated in the figure below, it is possible for the
number of impacted layers to vary between grid cells. Slopes
of a planes are neglected.  
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CEC Implementation
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The area of each cell occupied by the CEC device is explicitly
calculated.

http://energy.sandia.gov/snl-delft3d-cec/ 67



CEC Implementation
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• A scalar velocity is needed to query the thrust curve although it must
have a sign to indicate whether flow hits the turbine from the primary or
reverse side. The local normal velocity cannot be used because it is
influenced by the presence of the turbine. Instead, the velocity vector at
the (vertical) level of the turbine axis in the centers of the corresponding
grid cells at two locations X number of turbine diameters away from the
turbine along the turbine axis (where X is given by the NDiaDist4Vel
keyword) are determined. If both of these point in the same direction, the
upstream value is used (otherwise the average is used) as the
"reference velocity" to query the thrust and power tables.

• This algorithm has not yet been implemented for spherical coordinates.
Also, it is assumed that the points of the "reference velocity" are located
inside the grid and that the bed level does not change to such a degree
that the turbine axis is below the bed or above the water level at either
one of these points.

http://energy.sandia.gov/snl-delft3d-cec/ 68



CEC Implementation

"Reference velocity" locations
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CEC Implementation
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Using the reference velocity, the analytical thrust is computed
as:

Fthrust
1 A 1 - 7-2

refCT _zicEc pLi
2

where ACEC is the turbine area ('TED2) and p is the water
density (assumed 1000 kg/m3).

The analytical power is computed as:

3P = 
1
2 CPACEC PUref

These quantities area available in the trih output file.
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CEC Implementation
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The actual energy loss in the simulation (the effective
simulated thrust) depends on the loss coefficient CL and the
local velocity. To match the actual energy loss in the
hydrodynamic simulation to the analytical thrust acting on the
turbine, the loss coefficient is computed as

2 CT zi-CEC pU2ref

2

n,k

The simulated thrust deviates from the analytical value
because the energy loss term is included implicitly. Ultimately,
the simulated thrust is computed as:

CT =CL,p1 nk
n,k
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Turbines.ini Inputs
ame er

CurvesFil

Name

Diameter

XYLoc

Orientation

VertPos

AxisLevel

ThrustCurve

PowerCurve

NDiaDist4Vel

Beta_p

Beta_d

Cep4

Cep5

TurbModel

-----vmi
#curves.trb#

EastRiver

2.0

588980, 4513068

180

#fixed#

-7.0

#Turbine Type 1#

#Turbine Type 2#

1.0

0.95

0.05

1.2

1.2

1

Sandia
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Explanation of the
Turbines.ini Inputs.
This example is
the turbine for the
East River Model.

http://energy.sandia.gov/snl-delft3d-cec/



Turbines.ini Inputs: CurvesFil
i

CurvesFil

Name

Diameter

XYLoc

Orientation

VertPos

AxisLevel

ThrustCurve

PowerCurve

NDiaDist4Vel

Beta_p

Beta_d

Cep4

Cep5

TurbModel

#curves.trb#

EastRiver

2.0

588980, 4513068

180

#fixed#

-7.0

#Turbine Type 1#

#Turbine Type 2#

1.0

0.95

0.05

1.2

1.2

1

Sandia
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File that describes
turbine
performance.
Specifically, the
velocity-dependent
thrust and power
coefficients.
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Turbines.ini Inputs: Name
ame er

CurvesFil

Name

Diameter

XYLoc

Orientation

VertPos

AxisLevel

ThrustCurve

PowerCurve

NDiaDist4Vel

Beta_p

Beta_d

Cep4

Cep5

TurbModel

#curves.trb#

EastRiver

2.0

588980, 4513068

180

#fixed#

-7.0

#Turbine Type 1#

#Turbine Type 1#

1.0

0.95

0.05

1.2

1.2

1

Name of the
turbine.

Sandia
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Turbines.ini Inputs: Diameter
ame er

CurvesFil #curves.trb#

Name EastRiver

Diameter

XYLoc

Orientation

VertPos

AxisLevel

ThrustCurve

PowerCurve

NDiaDist4Vel

Beta_p

Beta_d

Cep4

Cep5

TurbModel

588980, 4513068

180

#fixed#

-7.0

#Turbine Type 1#

#Turbine Type 1#

1.0

0.95

0.05

1.2

1.2

1

Diameter of the
turbine's swept
blade area.
Assumed circular
shape.

Sandia
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Turbines.ini Inputs: XYLoc

CurvesFil

Name

Diameter

XYLoc

Orientation

VertPos

AxisLevel

ThrustCurve

PowerCurve

NDiaDist4Vel

Beta_p

Beta_d

Cep4

Cep5

TurbModel

#curves.trb#

EastRiver

2.0

588980, 4513068

180

#fixed#

-7.0

#Turbine Type 1#

#Turbine Type 1#

1.0

0.95

0.05

1.2

1.2

1

(x,y) coordinates
of the center of the
circular turbine.
These coordinates
must correspond
to the model
coordinate system.

Sandia
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Turbines.ini Inputs: Orientation

#curves.trb# 
The anticlockwise

EastRiver orientation of the
2.0

XYLoc 588980, 4513068 turbine. 0° is down
Orientation 49.5 the positive x-axis
VertPos #fixed#

CurvesFil

Name

Diameter

AxisLevel -7.0 ("East"). Turbines
ThrustCurve #Turbine Type 1#

PowerCurve #Turbine Type 1# must align with the
NDiaDist4Vel 1.0 cell grid and face
Beta_p 0.95

Beta_d 0.05 into the flow. This
Cep4 1.2 flow is Southwest.
Cep5 1.2

TurbModel 1

Sandia
National
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Turbines.ini Inputs: VertPos Laboratories

Specifies whether
#curves.trb#

ame er

EastRiver the vertical
2.0

XYLoc 588980, 4513068 position of the
Orientation 180 turbine is #fixed#
VertPos #fixed#

CurvesFil

Name

Diameter

AxisLevel -7.0 or #variable#,
ThrustCurve #Turbine Type 1#

PowerCurve #Turbine Type 1# which happens
NDiaDist4Vel 1.0 when the turbine is
Beta_p 0.95

Beta_d 0.05 suspended from a
Cep4 1.2 barge.
Cep5 1.2

TurbModel 1
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Turbines.ini Inputs: AxisLevel

#curves.trb# 
Vertical position of

EastRiver the center of the
2.0

XYLoc 588980, 4513068 turbine vvith
Orientation 180 respect to the
VertPos #fixed#

AxisLevel -7.0 reference
ThrustCurve #Turbine Type 1#

elevation if #fixed#PowerCurve #Turbine Type 1#

NDiaDist4Vel 1.0 or depth below the

ame er

CurvesFil

Name

Diameter

Beta_p 0.95

Beta_d 0.05 water surface if
Cep4 1.2 #variable#
Cep5 1.2

TurbModel 1

Sandia
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Turbines.ini Inputs: ThrustCurve

CurvesFil

Name

Diameter

XYLoc

Orientation

VertPos

AxisLevel

ThrustCurve

PowerCurve

NDiaDist4Vel

Beta_p

Beta_d

Cep4

Cep5

TurbModel

#curves.trb#

EastRiver

2.0

588980, 4513068

180

#fixed#

-7.0

#Turbine Type 1#

#Turbine Type 1#

1.0

0.95

0.05

1.2

1.2

1

Specifies which
thrust curve to use
from the
#curves.trb# file.

Sandia
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Turbines.ini Inputs: PowerCurve

CurvesFil

Name

Diameter

XYLoc

Orientation

VertPos

AxisLevel

ThrustCurve

PowerCurve

NDiaDist4Vel

Beta_p

Beta d

Cep4

Cep5

TurbModel

#curves.trb#

EastRiver

2.0

588980, 4513068

180

#fixed#

-7.0

#Turbine Type 1#

#Turbine Type 1#

1.0

0.95

0.05

1.2

1.2

1

Specifies which
power curve to
use from the
#curves.trb# file.

Sandia
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Turbines.ini Inputs: NDiaDist4Vel

CurvesFil

Name

Diameter

XYLoc

Orientation

VertPos

AxisLevel

ThrustCurve

PowerCurve

NDiaDist4Vel

Beta_p

Beta_d

Cep4

Cep5

TurbModel

#curves.trb#

EastRiver

2.0

588980, 4513068

180

#fixed#

-7.0

#Turbine Type 1#

#Turbine Type 1#

1.(1

0.95

0.05

1.2

1.2

1

Number of turbine
diameters
upstream to use
for the calculation
of turbine power.

Sandia
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Turbines.ini Inputs: Beta p

CurvesFil

Name

Diameter

XYLoc

Orientation

VertPos

AxisLevel

ThrustCurve

PowerCurve

NDiaDist4Vel

Beta_p

Beta_d

Cep4

Cep5

TurbModel

#curves.trb#

EastRiver

2.0

588980, 4513068

180

#fixed#

-7.0

#Turbine Type 1#

#Turbine Type 1#

1.0

0.95

0.05

1.2

1.2

1

Sandia
National
Laboratories

Turbulence
parameter (canopy
coefficient) that
must be between
0 and 1.
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Turbines.ini Inputs: Beta d

CurvesFil

Name

Diameter

XYLoc

Orientation

VertPos

AxisLevel

ThrustCurve

PowerCurve

NDiaDist4Vel

Beta_p

Beta_d

Cep4

Cep5

TurbModel

#curves.trb#

EastRiver

2.0

588980, 4513068

180

#fixed#

-7.0

#Turbine Type 1#

#Turbine Type 1#

1.0

0.95

0.05

1.2

1.2

1

Sandia
National
Laboratories

Turbulence
parameter (canopy
coefficient).
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Turbines.ini Inputs: Cep4 and Cep5

CurvesFil

Name

Diameter

XYLoc

Orientation

VertPos

AxisLevel

ThrustCurve

PowerCurve

NDiaDist4Vel

Beta_p

Beta_d

Cep4

Cep5

TurbModel

1
"Nrg'IN

#curves.trb#

EastRiver

2.0

588980, 4513068

180

#fixed#

-7.0

#Turbine Type 1#

#Turbine Type 1#

1.0

0.95

0.05

1.2

1.2

1

Turbulence
parameters
(canopy
coefficients).
These are the
turbulence closure
constants.
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Turbines.ini Inputs: TurbModel

CurvesFil #curves.trb#

Name EastRiver

Diameter 2.0

XYLoc 588980, 4513068

Orientation 180

VertPos #fixed#

AxisLevel -7.0

ThrustCurve #Turbine Type 1#

PowerCurve #Turbine Type 1#

NDiaDist4Vel 1.0

Beta_p 0.95

Beta_d 0.05

Cep4 1.2

Cep5 1.2

TurbModel

Specifies whether
to use (1) or not
(0) the model that
alters turbulence
due to the turbine.

Sandia
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Curves.trb Example

table-name

parameter

parameter

parameter

-99.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

99.0

'Turbine Type 1

'velocity '

'thrust coefficient'

'power coefficient '

.72000000

.72000000

.72000000

.72000000

.72000000

.72000000

.72000000

.72000000

.72000000

.

.

.

.

.

9

9

7

5

1

5

7

9

9

i

unit

unit

unit

This file may contain
multiple turbine types.
This sequence of inputs
must be repeated for
each turbine with a
unique name assigned
to it on the first line.

Sandia
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Curves.trb Inputs

• This file allows specification of velocity-
dependent thrust and power coefficients.

• The "table-name" must match the
"CurvesFil" name specified in turbines.ini.

• The first column or numbers (parameter) is
the velocity.

• The second column of numbers
(parameter) is the corresponding thrust
coefficient.

• The third column of numbers (parameter) is
the power coefficient.

Sandia
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Conclusions

• This work demonstrates how modeling can be used to
estimate environmental impacts from marine renewable
energy projects (i.e., changes to circulation, sediment
dynamics, and water quality).

• San Francisco Bay is an example of the modeling potential.

• Delft3d (and SNL-EFDC) are open-source so that regulators,
industry developers, etc. will have free access to the tool for
independent studies.

• lt will help facilitate the easy and common communication of study
results.

• Future work will deploy this modeling software at a real-
world site for further verification.
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Exceptional service in the national interest

Best Practices: Conceptual Site Model Development
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Model Development:
Tiered Approach

■ Developing a model in tiers is the most efficient and
cost-effective approach.

■ The general approach to the modeling study is
outlined at the beginning of the project.

■ Design of subsequent tiers will be updated as the
site becomes better understood.

Sandia
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Model Development:
Typical Phased Approach

■ Tier 1: Data compilation and initial
'onceptual ite odel (CSM) development.

■ Tier 2: Hydrodynamic modeling.

■ Tier 3: Transport modeling (dye, temperature,
sediment, water quality, CEC).

Sandia
National
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1
Tier 1 Data Compilation and Initial

CSM Development

• Compile and analyze available data.

• Identify data gaps.

• Design and conduct field studies to fill data
gaps.

• Measurement of currents, waves, water levels.

• Develop initial CSM for hydrodynamics.

Sandia
National
Laboratories
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Tier 2 Hydrodynamic Modeling

■ Develop model:

■ Generate model grid and bathymetry.

■ Develop boundary conditions for model.

■ Initial testing of hydrodynamic model.

■ Calibrate and validate hydrodynamic model.

■ Incorporate CEC.

■ Evaluate CSM.
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Hydrodynamic Model:
Typical Data Needs
• Geometry and bathymetry of study area:

• Bathymetry for riverine studies

• Additional marsh topography in estuarine studies

• Inflows from upstream boundaries and tributaries

• Water-surface elevation at downstream boundaries

• CEC characteristics

• For some studies, additional data needs may include:

• Temperature

• Salinity

• Wind

• Vegetation properties

• Water-quality data

Sandia
National
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Hydrodynamic Model
Geometry and Bathymetry Data

• Shoreline location

• Bathymetry

• Floodplain topography

• Data sources:

• NOAA navigation

charts

• Bathymetry surveys

• Laser altimetry

surveys ( LIDAR)

San
Francisco

Pleasanton

Sandia
National
Laboratories

Index lap
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National
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200 Washinpon Si Suite 210

S.taln Cruz CA 95060
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Hydrodynamic Model
Numerical Grid Generation (RGFGRID)

■ Determine the extent of the model
domain:

■ Establish upstream and
downstream boundaries.

■ Type of numerical grid depends on
geometry of study area:

■ Rectangular grid

■ Curvilinear grid

■ Need to consider study objectives
and questions when designing the
numerical grid:

■ Long-term, multi-year simulations

■ Areas of special interest

■ Spatial scale of remedial areas

Sandia
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Hydrodynamic Model
Boundary Conditions

• Data sources:

• USGS gauging stations

• NOAA tidal stations

• Published field studies:

Local universities

USACE

USGS

NOAA

• Special field studies

Sandia
National
Laboratories
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Hydrodynamic Model
Initial Model Testing
• Quality control:

Sandia
National
Laboratories

• After developing input files for upstream and downstream BCs,
generate plots of the model inputs and compare to original
data.

• Determine maximum time-step for numerical stability:
• May be flow dependent.

• Conduct short simulations over a wide range of flow and
tidal conditions and verify results:
• For floodplain and intertidal areas, ensure that wetting/drying

of grid cells is working properly.
• Animate results to examine entire study area.
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Hydrodynamic Modeling Study

■ Conduct a complete modeling study:

■ Calibration with appropriate data sets

■ Validation using "blind" simulations

■ Sensitivity testing

■ Evaluate appropriateness of CEC parameters:

■ Are CEC effects reasonable?

■ Is there any way to design field studies to
validate?
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Refine Models
• Refine conceptual site models and numerical models to

address project questions as needed.

• Strike a balance.

Model
error

model too simple optimal model too complex
„ 4 1 4 N. 1  ,

1

Discrepancy between model
and real system behavior

Prediction error

Discrepancy between model
and observations

Calibration error

Model complexity

Sandia
National
Laboratories
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Exceptional service in the national interest

Appendix: Description of the Delft3D Turbulence
Model
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Delft3D Horizontal/Vertical Mixing

• For 3D, the horizontal eddy viscosity coefficient, vE, >> vv, is the
superposition of:
1. Sub-grid scale (SGS) turbulence, VsGs.
2. 3D turbulence, vv.

b
3. Reynolds-averaged shallow-water equations, -vH

ackground

background
VH V + V + VSGS V H

• Vertical mixing is the sum of:
1. Water kinematic viscosity, vmoi
2. The greater of the computed mixing coefficient from the 3D

turbulence-closure model or the spatiotemporal user-defined
ambient or "background" mixing.

v 
background

v V + max v Vmol ( 3D 1 v
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Delft3D Turbulence Options
Sandia
National
Laboratories

• Because turbulence processes are "sub-grid" scale, the primitive
variables are space and time averaged and require appropriate
closure assumptions.

• Four turbulence-closure models are available to determine the
vertical eddy viscosity (vv) and vertical eddy diffusivity
coefficient (Dv):

1. Constant coefficient (user defined).

2. Algebraic Eddy viscosity closure Model (AEM).

3. k-L turbulence closure model.

4. k-sturbulence closure model (3D only).

• Each model calculates the turbulent kinetic energy (k), and its
dissipation rate (s) or mixing length (L) differently
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#1 User-Defined Constant Coefficient
Sandia
National
Laboratories

• The user-specified eddy viscosity is related to the
characteristic length and velocity scale (leads to a

parabolic velocity profile as in laminar flow):

V3D yv Ct L \/If
ii

• c'A is a calibration constant (user specified).

• L is the mixing length.

• k is the turbulent kinetic energy.
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#1 User-Defined Constant Coefficient

• This zero-order formulation calculates k and L
algebraically:

L = ic(z +d)
z+d

1  
H
FL Ri)

Sandia
National
Laboratories

• K is the von Karman constant z 0.41.

• FL(Ri) is a damping function for stratified flow
that depends upon the Richardson number, Ri.
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#1 User-Defined Constant Coefficient
Sandia
National
Laboratories

• Stratification stability, which limits vertical
turbulent exchanges, is a function of the
interaction between gravitational forces
(buoyancy flux) and turbulent shear production.

• This is characterized through the Richardson
number:

Ri

P

( au 2 ( av 2

  +  
az i azi
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#1 User-Defined Constant Coefficient

• The Ri-dependent damping function comes

from a fit to laboratory data:

FL(Ri)
e
-2.3Ri

Sandia
National
Laboratories

Ri> 0

14Ri)025 Ri <0
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#1 User-Defined Constant Coefficient

• Vertical eddy diffusivity is a scaled form of the
vertical eddy viscosity:

D3 D = Dv
V3D

ac

• Where ac is the Prandtl-Schmidt number:

(lc acoFa(Ri)

Sandia
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#1 User-Defined Constant Coefficient

Crc Substance

0.7 T, S, scalars

1.0 Sediment

1.0 k in k-L and k-s models

1.3 s in k-s model

Sandia
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#1 User-Defined Constant Coefficient
Sandia
National
Laboratories

• The damping function for vertical eddy

diffusivity uses the Munk-Anderson formula:

FL(Ri

(1+ 3.33R015 

\11+10Ri
Ri> 0

Ri <0
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#1 User-Defined Constant Coefficient

• Vertical eddy diffusivity:

i

Dv = max D3D10.2E„
g ap

p az )

Sandia
National
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• Where Lo, is the user-specified Ozmidov length
scale.

• Use an ambient eddy diffusivity of 10-4 to 10-5
depending on the Prandtl-Schmidt number.
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#2 Algebraic Eddy Model (AEM)
Sandia
National
Laboratories

• The algebraic closure (ALG) model assumes a logarithmic

velocity profile leading to a linear relation between k at the

bed and k at the free surface:

k
1

VC
P

( b
U* )2
( z+c0 z+d

1   
2  

+ Li* 

H i 
s 

H

• Where c
P • 
z 0 09 calibrated for local-equilibrium shear

layers.

• u*s is the friction velocity at the free surface.

• 1,1,*b is the modified bed friction velocity, u*b.
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#2 Algebraic Eddy Model (AEM)
Sandia
National
Laboratories

• The magnitude of the bed friction velocity is
determined from the flow speed in the first grid point
above the bed assuming a logarithmic velocity profile:

, IC ,
14*b ( Az ...\ ilb

ln 1+ b

2z0 i

• The friction velocity at the free surface is dependent
upon the wind velocity 10 m above the free surface.
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#2 Algebraic Eddy Model (AEM)
Sandia
National
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• The Prandtl Mixing Length (PML) model assumes instantaneous
local equilibrium between production and dissipation in the k-L
model:

k  L2
V

1 

 C 
P

,Il

.111

( 
oU V (802

+
aZ / OZ)

• With mixing length, L, as given in Turbulence Option #1 (user
defined).

http://energy.sandia.gov/snl-delft3d-cec/ 116



#3 k-L Turbulence-Closure Model
Sandia
National
Laboratories

• In the k-L model, the mixing length is prescribed as in Turbulence
Option #1.

• The turbulent kinetic energy term, k, is calculated from a
transport equation that includes:

• An energy dissipation term

• A buoyancy term

• A production term

• Two additional assumptions:

• Production, buoyancy, and dissipation are dominant.

• Horizontal length scales are much larger than vertical
(shallow water, boundary layer flow).
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#3 k-L Turbulence-Closure Model
• The non-conservative form of the transport

equation is solved:

Sandia
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Ok Ok a w a
±u—±v—±

Ot a Oy H Oa

(1 
D 

Olc 
P 13 ± + +B c

H2 

0 

Oa k ad-) k kw k
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#3 k-L Turbulence-Closure Model
• In the preceding equation:

-vmol D + V3Dk   
umoi ac

• Where vmoi is the kinematic molecular
viscosity.

• umoi is the Prandtl-Schmidt number for
molecular mixing (700 for S and 6.7 for T).

• ol. is the Prandtl-Schmidt number (defined in
previous table, slide 39).
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#3 k-L Turbulence-Closure Model
• For production of k, horizontal gradients of

horizontal velocity and all gradients of vertical

velocity are neglected:

Pk V3D 
H

2

1
i au V ( ay V,

  +  

• A "partial slip" option is available for small-

scale applications (e.g., simulations of
laboratory flumes).
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National
Laboratories

http://energy.sandia.gov/snl-delft3d-cec/ 120



#3 k-L Turbulence-Closure Model
• Vertical distribution of turbulent kinetic energy

production and dissipation due to waves, PkAzi) and
P jz'), respectively.

Af 1-41,
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#3 k-L Turbulence-Closure Model
• Near the surface, the contribution due to breaking waves is

distributed over the half wave height below the mean water
surface, Hrms/2:

Pkw (z9
4D

pH rms
1 

2z'

Hrms

Sandia
National
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for 0 < 
1 

z' < Hr.
2

• Where zl is the vertical coordinate originating from the wave-
averaged water level and positive downward and åis the
wave boundary-layer thickness described later.

• Dw (W/m2) is the areal energy density of the waves (from
SWAN).

• And p is the water density.
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#3 k-L Turbulence-Closure Model

• Near the bottom, the contribution due

to bottom friction is linearly
distributed over the wave boundary
layer:

Pkw (z 9 
2Df (

1
8

H z'

Sandia
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for H g < z' < H

• Where gis the thickness of the wave
boundary layer.
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#3 k-L Turbulence-Closure Model
Sandia
National
Laboratories

• The thickness of the wave boundary layer is:

g H min 0.5, max

0.82
ezo k

s 
( uorb 

H ' 
0.09 

H colf, i

• Where the increased bed roughness due to
waves is:

Azb
zo (

exp ic
Ub

ii* i
1
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#3 k-L Turbulence-Closure Model
Sandia
National
Laboratories

• The ratio of bed shear-stress velocity to the shear-
stress velocity due to waves and currents is:

Ub 1 
1 Az \

ln 1+ b,...,
U* K 2z0 1

• Where Azb is the thickness of the bottom model
layer and zo is the increased bed roughness due
to waves.
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#3 k-L Turbulence-Closure Model
Sandia
National
Laboratories

• On slide 51, the wave energy dissipation due to bottom friction
is: 1

Df  Pofelwo3rb
2\t7E

• Where the orbital velocity near the bed is:

Jr llnnsco
u orb = 

4 sinh(kH)
• And the wave friction factor under oscillatory flow is:

0.00251 exp

0.3

U 
\ —0.19

5.21  orb 

coks

Uorb 

cok 2

uorb  < 7t

COk 2
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#3 k-L Turbulence-Closure Model

• On the preceding slide:

• co is the wave angular
frequency, and

• lc is the Nikuradse roughness
length scale, which can be
used to estimate zo = ks/30.

Sandia
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#3 k-L Turbulence-Closure Model
• The Dirichlet boundary condition at the bed is:

2
U*b

C

• And at the surface is:

u*s ( 2Dw
232

k a=0 VCP
wind

pcio

waves

• Where cD = c
3/4 

•-•-• 0.1925 is a calibration constant.
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#3 k-L Turbulence-Closure Model
Sandia
National
Laboratories

• At open boundaries assuming a
logarithmic velocity profile and shear
stresses at the bed and surface, the
boundary condition is:

k(z)= 1
\l„

Bottom Wind

u*

2

b 

(
1 + 
z+c0 

+
z+d

H i H
2

U*s + VCAl

Waves

( 2Dwic 2/3

pcio i
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#3 k-L Turbulence-Closure Model
• In stratified flows, turbulent kinetic energy is

converted into potential energy through the
buoyancy flux:

Bk v 3D  g ap
pa p H Oa

• Where p is the water density.

• And the Prandtl-Schmidt numbers are
p a= 0.7 for salinity and temperature and
p, 1.0 for suspended sediments.
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#3 k-L Turbulence-Closure Model
• Turbulent kinetic energy dissipation rate
depends on the mixing length and turbulent
kinetic energy:

E = CD

k312

L
• Where CD is a calibration constant derived from
c
P 
in the k-s model:

Sandia
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CD ,u = C3/4 etZ 0.1925
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#4 k-sTurbulence-Closure Model
• Transport equations are solved for both the turbulent

kinetic energy, k, and for the energy dissipation, c.

• The mixing length is calculated from k and cas:

k312
L cD

g

Sandia
National
Laboratories

• Assumptions include:

• Production, buoyancy, and dissipation terms
dominate (non-conservative transport allowed).

• Horizontal length scales are larger than vertical.
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#4 k-eTurbulence-Closure Model

• Transport equations:

Sandia
National
Laboratories

a ak ak w ak 1 a i ak`
Dk +Pk+ Pkw + B k — e+1/1—+12—+

at ax ay H 0o- H2 Oa au ,
ae ae ae w  ae 1 a ( e2

  DE
ag  ̀+ pe + pe 

w + 13,-c2,+u--PV—+at ax ay H Oa H2 au Oa i k

• With:
Dk

1),

Vmol 
+ 

V3D

Umol Uc

V3D

0-,
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#4 k-sTurbulence-Closure Model
Sandia
National
Laboratories

• Turbulent kinetic energy production, P k,
is calculated the same as Turbulence
Option #3 on slide 48.

• Turbulent kinetic energy production due
to waves, P kw, is calculated the same as
Turbulence Option #3 on slide 49.
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#4 k-sTurbulence-Closure Model
• P kw along the bottom due to waves is the
same as Turbulence Option #3 on
slides 50-54.

• The Dirichlet boundary condition at the
bed for k is the same as Turbulence Option
#3 on slide 55.

• The open boundary condition at the bed
for k is the same as Turbulence Option #3
on slide 56.
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#4 k-sTurbulence-Closure Model
Sandia
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• The source term for PE is coupled to Pk

as:

E
P c i

le k Plc

• Where clE = 1.44.
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#4 k-eTurbulence-Closure Model
Sandia
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• The source term for PEw is coupled to Pkw

as:

6
Pgw(z') c18 

k 
—Pkw (z')

• Where c18 = 1.44.
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#4 k-sTurbulence-Closure Model

• Turbulent kinetic energy dissipation through
buoyancy flux is:

• Where:

• clE = 1.44

• c2E = 1.92

• C3E

g(1 C3E)Bk

0 unstable stratification

1 stable stratification
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#4 k-sTurbulence-Closure Model
• The Dirichlet boundary condition at the bed for

turbulent energy dissipation rate is:
3

14*b

• And at the surface is:

2u,,3,,, + 4Div
616=0

KAZ s p firms

KZO

16111Nellili° \.....,,Ntengi

wind waves
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#4 k-sTurbulence-Closure Model
Sandia
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• At open boundaries assuming a
logarithmic velocity profile and shear
stresses at the bed and surface, the
boundary condition is:

3
U*b  

+

K(Z+d) K(11—Z— C1)

3
U*s

\....._.„,„,_i ,...._.„.._./
bottom wind
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#4 k-eTurbulence-Closure Model

EVertical eddy viscosity is:

V3 D ct L\I-k CjuCDI-I

k2

g
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