

Life Extension of Tanks for High Pressure Storage Vessels

Joe Ronevich, Chris San Marchi
Sandia National Laboratories
Livermore, CA, USA

August 8, 2019

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Numerous instances in reaching end of life criteria far sooner than anticipated

Design life: 37,500 cycles or 20 year (whichever comes first)

Pressure range: 13,500 psi (93 MPa) to 8,900 psi (61.3 MPa)

Reached cycle life in ~ 7 years

Type II tanks - fiber-reinforced pressure vessels

³ How can life of vessels be extended?

Improved definition of Cycle Counting

- Should every pressure fluctuation count as a cycle?

Defining inspection criteria

- Challenging as conventional NDE is not feasible on fiber reinforced tanks
- NDE must ultimately be a field measurement technique to make cost effective

How do we capture influence of autofrettage in these vessels?

- Residual stress

Need acceptance in Codes for life extension

- What will it take to get acceptance of life extension in codes?
- Likely some component testing.

Project Objective(s)

- 1) Develop understanding of opportunity space for life extension
 - Which cycles can be ignored? Collect operational data and analyze
 - Perform ΔK_{th} testing
- 2) Assess defect population in end of life vessels
 - Develop techniques for NDE for Type II tanks
- 3) Develop guidelines and protocols for life extension
 - Could range from predictive tool that operators could employ to generic guidance on what cycles can be dismissed
- 4) Experimental validation of life extension practice
 - Pressure cycling of miniature vessels with engineered defects?

→ The result of this effort will be science-based justification for tank life-extension which can be adopted by industry and standards.

Risks in Project

- 1) NDE technique to inspect steel liner of Type 2 tank not currently available
 - Response Plan: Possibly perform destructive evaluation if NDE is not identified

- 2) ΔK_{th} measurements in 100 MPa H₂ is challenging and time consuming
 - Response Plan: Modify pressures / frequencies to measure high fidelity ΔK_{th}

Are you interested in Participating?

- NDE technique development – (Digital Wave, Luna)
 - Can we get support in inspection?
- Data from industry – (Fiba, Becht, Air Products)
 - Can you reach out and obtain this information so we can start analyzing?
 - Are you interested in analyzing?
- Are we overlooking something? We rely on your input

Next Steps?

- How can your team contribute