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What are the mission problems?

■ Enormous corpus of position/time data thanks to GPS and
new sensing technologies

■ But...often very little other information

■ Questions then related to comparing trajectories:

■ Have we seen this pattern before?

■ Have we seen a pattern related to a known behavior of interest?

■ Can we group together similar patterns, and...

■ ...can we identify patterns that are unique (outliers)?

■ Can we predict where a current trajectory will go based on historical
observations?

■ Can we identify different types of collective behavior among many
trajectories?
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So, starting out...

• How do you compare two trajectories?

• First thought? Try line them up and
measure differences

• This is the core of how it is primarily done in
the literature

• Basically, you align their starting points and

calculate how much work it is to munge the

two curves together.

• Can think of it as an edit distance sort of
approach. Very SLOW!

• Used in bioinformatics, and spell checking!
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Scale of data
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New Idea

■ Why use the curve alignment process at all?!?

■ If you have enough numerical descriptions of the curve, those
should mostly uniquely describe it!

■ End-to-end distance traveled

■ Total distance traveled

■ Ratio of end-to-end distance

traveled to total distance

traveled

■ Total curvature

■ Total amount of turning

■ Average heading change

■ Area covered by flight (convex

hull of points)

■ Eccentricity of the convex hull

■ Perimeter of convex hull

■ Centroid of points

■ Centroid of convex hull

■ Start/Stop point

■ Nearest distance to a given

point

■ "Distance" from a given

specified track

■ "Distance" from a given

specified shape

■ Start/Stop time

■ Time nearest to a given point

■ Average speed

■ Range of speeds

■ Max altitude

■ Fluctuations of altitude/shape

of altitude/time curve

■ Difference from historical data

■ Most common speed/altitude

(cruise)

■ Place, time and heading where

first seen / last seen (might not

be start/stop points)

■ Other...
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But what are we really doing now?

• Building up a list of descriptors about something is called a
feature vector

fi = (x11, x2,,...,xnd

• Once you have a feature vector with n features in it, what you
have is a set of points in an n-dimensional space.

• Now, you can really do some analysis

• Most importantly, if your feature vector contains the features
that represent similarity in the flights, you can answer key
semantic questions by defining a metric on the space and
looking for points close together

• Can be stored in a traditional database structure
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Example: Find Holding Pattern

• Looking for
significant distance
traveled, but lots of
circular motion...
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Example: Avoiding Airspace

• Flights avoiding
airspace might be
not quite-point-to
point, but covering
a wide area. Look
for some clustered
in area and time,
and you get...
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Example: Mapping flights

• Lots of ways to
do it, but
easiest is to just
look for long,
but compact
flights

• Can also make
"turn around"
features
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Spatial Indexing: Motivation

• Key idea of geometrical descriptor is that a trajectory can be
characterized by a feature vector
• v = (fp f2,•••,fd

• Previous work had focused on searching based on the ranges
of feature values

• However, being able to work in the abstract vector space of
the features allows many more powerful approaches
• Neighbor search

• Clustering

• Outlier detection

• However, you need to have a way to find nearby points in a
computationally efficient manner
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Killer app: Building a spatial index

■ Now, instead of just checking a list of flights for similarity to
another flight, we can build a spatial index.

■ A spatial index is a special data structure that can be used to
find points quickly in n-dimensional space

■ Most provide 0(log n) access to the points, which makes
finding neighboring points very fast, even in large (>106)
databases.

■ We use an R-tree, although there are others (kd-tree, etc.)

■ Once you have a spatial index (and the associated fast
neighbor look-up), you enable clustering
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Spatial Indexing: R-Trees

Features: 

• First proposed by Antonin
Guttman in 1984

• Used for spatial indexing to

enable fast search

• Essentially, just a hierarchical

tree of bounding boxes,
including leaves

• All leaves are the same height
(balanced!)

• Search is 0(logmn), where n is
the number of items and M is
the max number of entries per
node.

• Insertion/deletion is worst-case
O(n) and can be ugly

631

Guttman, A. (1984). "R-Trees: A Dynamic Index Structure for Spatial 

Searchin . Proceedings of the 1984 ACM SIGMOD International

Conference on Management of Data - SIGMOD '84. p. 47.
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Example: Find Similar Shaped Flight

■ Consider the red
flight, and look at
just two features:

■ Ratio of length to
end-to-end distance

■ Aspect ratio of
convex hull

■ Search for flights
with similar values
gives the white
flights

■ Note that we have a
superfast shape-
invariant search
now!
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Clustering: Motivation

■ The previous uses of feature vectors are very powerful, but
are in the class of "supervised" approaches.

■ What we ideally want, is the computer to automatically
■ Finding natural neighbors of a flight

■ Find unexpected patterns

■ Find outliers 

■ Once you have your flights described by feature vectors and
have the capability of spatial indexing, these problems can all
be solved by clustering.
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Clustering: DBSCAN

■ Many different types of clustering algorithms (k-means, EM,

etc.) but DBSCAN has two nice properties

■ Doesn't require a pre-defined number of clusters

■ Has the notion of noise (outliers)

■ DBSCAN requires

■ A neighborhood density

■ A neighborhood radius

Example cluster

requiring a density of 4
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Clustering: Results

• Did not tell it to
find this, only told
it to "make groups
of similar flights"

• This was one of
many clusters that
had distinctive
shapes
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Clustering: Results

■ "Paper Clip"
shaped flights

■ Different scales,
orientations

■ Seemed to be
practice take-
off/landing
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Clustering: Results

■ Was not doing
proximity, only
shape

■ But, found a group
of similar shaped
flights

■ What is this odd
behavior?

■ Boeing flying from
its factory to a test
field in eastern
Washington
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Clustering: Results

■ Same aircraft,
different days (still
only clustering on
shape)

■ Flew almost
identical pattern in
different
orientation
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Clustering: Results

• Just clustering on

shape, found these

5 similar flights

• All of them were
helicopters
belonging to the

same company
(Petroleum
Helicopters)

• They fly
people/equipment

out to oil rigs
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Collective Behavior

■ If you look for similar geographic location plus similar time
(time can be a feature too!), clustering will give co-travelers

■ Can find convoys

■ If your database contains two different objects, can correlate them
(e.g. a phone and a vehicle)

■ This can also be used to find to trajectories that cross, or
meet up for an extended period of time
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Clustering: Results (place & time)

■ Find flights that
followed the same
path,
approximately the
same time

■ A group of 6
Cessna's all flew
from LA to Redding
in the morning on
July 10th.
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Clustering: Results (place & time)

■ ... and then from

Tracy to Redding

around noon on

July 10th.
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Clustering: Results (place & time)

■ Find flights that

followed the same

path,

approximately the

same time

■ A group of 7 UAL

flights took off

from IAH to Central

American

destinations right

after each other
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Clustering: Outliers

■ Using all of the tools described previously, we can now tackle
what is one of the most important and vexing problems in
trajectory analysis: discovering outliers

■ Would ideally want the computer to be able to search data and
identify unusual trajectories

■ But defining "unusual" in a rigorous manner is hard

■ Using DBSCAN, we can identify the "noise" points (points that
don't belong to any cluster) as outliers, giving us a fast way of
finding potentially anomalous behavior.
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Odd flights

• Clustering done

based on

geometric features

• Many clusters

found, but what

remains is...

• Represents

approximately 700

out of a total of

50,000 flights from

one day
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Prediction

■ Idea: Put known historical trajectory fragments into a
database

■ Take the observations of the beginning of a new trajectory,
and search for near matches

■ Weight the "nearness" of the different trajectories, and sort
the different possible destinations

■ Work based on observing the first 20% to 80% of a flight, with
that fraction unknown to prediction algorithm
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Small Data Set -> Mistake

• Target flight

(white) goes from

LAX to Toronto, but

nearest flights are

all going to more

common

destinations

(Chicago, Detroit)
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More Data, Better

• Flights from

Nashville go to

DFW and IAH, but

proper weighting

finds DFW for the

target (white).
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Lots of data

• Popular flights are

picked perfectly

(DFW to Las Vegas)
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Perfection not possible
A

T9/2013 7:01 pm 7.10.2013
4   .1
b pm prn

c,•• \• -

• /

• Some flights to the

same airport follow

the same path for

long time, like

Chicago to Bay

Area.

• Close-up shows

flights going to

SFO, OAK, SJC (and

one to

Sacramento!)
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Swarming Example

Swarming
Example of flights headed to a similar destination at the same time.
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Swarming Example

Swarming
. Example of flights headed to a similar destination at the same time.
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Big Improvement: Efficient lndexin

Now using an cube-sphere approach
• Much more isotropic near poles

• Math not so bad for indexing
• Allows for easy alignment of

fragments on a set of trajectories
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Long Fragments Work Well

No real surprises for longer
air travel fragments

Origin/Destination easy

MInnesota



Tiny Segment near Mantoon, IL

Just 2.5 km in the middle of
nowhere



Tiny Segment near Mantoon, IL

A surprising number of hits
align directly with Phoenix
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Summary

■ Very complicated geometry problem -> informatics problem!

■ Representation as a feature vector allows the rather
extensive corpus of machine learning to be applied in a
straightforward manner

■ Have had surprising technical and practical success with this
rather simple approach

■ Looking forward to working with others who have other
capabilities to apply
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Extra Slides
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Trajectory Theory Effort

■ This work is connected to a similar effort in trajectory theory

■ SNL: Rintoul, Cindy Phillips

■ SUNY-SB: Prof. Joe Mitchell, Kan Huang

■ Focus on:

■ Summarize information to improve understanding and guide

observation

■ Develop practical algorithms/heuristics for large numbers of

trajectories (>106)

■ Study related precise geometric problems to

understand limits of provable algorithms

guide practical algorithms

Impact other fields

■ See poster during poster session!
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Example 1 (Avoiding Airspace)

• Flights avoiding
airspace might be
not quite-point-to
point, but covering
a wide area. Look
for some that are
close in location
and time, and you
get...
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Example 2 (Holding Pattern)

• Looking for
significant distance
traveled, but lots of
circular motion...
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Example 3 (Scanning Area near SNL

• Flights that aren't
long point-to-point
flights, but seem to
be localized to an
area that is
centered around
SNL's lat/lon...
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Example 4 (Search or Mapping)

• Compact, lots
of turning, but
not lots of
winding

• The statement
above is sort of
a lie

• Really, they are
characterized
more by a
small but
somewhat
uniaxial
(roundish)
convex hull for
a long flight.
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Example 5 (Big Circle)

• Long, with a
relatively small
eccentricity and a
distance
approximately
equal to the
perimeter
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Example 6 (Compact Flight)

• Very small area to
distance traveled
ratio.
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Example 7 (Forgot Something)

• Start/stop distance
nearly 0

• Total flight distance
long

• Very skinny shape
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Example 8 (Figure 8)

■ Almost no total

curvature

■ Significant turning

■ Fairly high-aspect

ratio convex hull

■ Note: this was 1 of

115 flights
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But what are we really doing now?

■ Building up a list of descriptors about something is called a
feature vector

■ Once you have a feature vector with n features in it, what you
have is a set of points in an n-dimensional space.

■ Now, you can really do some analysis

■ Most importantly, if your feature vector contains the features
that represent similarity in the flights, you can answer the key
semantic questions:

■ Find me flights that look like this flight (nearest neighbors)

■ Find flights that are outliers (have few to no near points)

■ The last one is a tough question to answer in other schemes
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Other key advantages

■ Classical clustering algorithms can be used

■ Seems obvious in the feature vector space, is extremely non-obvious
without it.

■ Includes k-means, SVM's, EM, etc.

■ Easy similarity (neighbor lookup) without recalculation

■ Dimensionality reduction techniques can be used for
visualization

■ Can be implemented on a database machine

■ These machines can handle 100 TB of data (decades of flights)

■ They can also process SQL (and SQL-like) commands very quickly

■ Can use techniques like PCA and similar

Note: Preliminary

Implementation Completed!
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Important Discovery

• Start/Stop distance is great, so why not have other distances?

• Can use multiple intra-trajectory distances

• If you have enough, you are putting tight constraints on the
shape
• In fact, on discrete lattices you can show that you need -N distances

to exactly describe the shape (Faulon, Rintoul, Young (2002)).

• These distances can be normalized to the largest distance in order to

find shapes that are scale invariant!

d2 i d3

d1
 A 

I

0 1/2 1
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Different way to find figure-8 shape

■ Let's start with the
previous flight we
found

■ That was found
from 1 day data, so
expand to a week

■ Use 10 control
distances (full
distance through
all quarter
distances)
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Finding squares

■ Can specify the
distances for a
square pretty easily

■ A square is an
interesting shape
to be flying

■ l did not know that
shape was going to
be there!
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Big Feature Space Advantage

■ Clustering, leading to unsupervised learning techniques

■ Previous examples showed searching the space for a specific
pattern or a specific volume of the feature space

■ But, with clustering, the computer can group the different
patterns in the feature space without knowing a priori what
they are!

■ Perhaps most importantly, many clustering algorithms
specifically identify outliers in the feature space that
correspond to odd behaviors
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Goals for FY15 (Final Year)

■ Algorithm development

■ Incorporation of sub-trajectory analysis

■ A covariance/correlation analysis of the information in the different

features

■ Develop quantitative metrics to understand the effect of sparseness
and intermittency in the data

■ Software Engineering:

■ Get a version 1.0 of TrackTable into the wild

■ Put a wrapper around parts of TrackTable that will enable customer
usage

■ Incorporate trajectory work into GeoGraphy codebase

■ Further Netezza development
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Software Engineering: IBM/Netezza

■ Netezza (now IBM PureData) is a data appliance designed for
deep analytics on large (100's of Terabytes) data sets

■ This is the machine of choice for many gov't agencies for
storing the biggest data sets, including trajectories

■ Andy has ported some of the trajectory assembling code to a
local Netezza machine

■ Start: One year's worth of unassembled trajectory data (-400GB)

■ End: A list of -15M trajectories

■ Time: 44s

■ Normally, one month takes about 3000s

■ Feature vector approach potentially enables most routines to
be implemented on Netezza
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Software Engineering
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Example of a search for a very specific behavior
based on geometric properties ("mapping flighr)
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Clustering: Important Notes

■ Using idea of distance geometry, we
can define intra-trajectory distances
as features, allowing the computer to
develop its own notion of shape

■ Time (flight length, start/stop times,
day of week) can also be used as a
feature allowing us to find patterns
in time, including

■ Objects travelling together

■ Trajectories that occur on a daily or
weekly pattern

9/27/2018 Visitor Talk 58



Clustering: Extended DBSCAN

• Default DBSCAN difficult to use with features that have very
different scales

• Also, most spatial indexing schemes work best with the
notion of a box-neighborhood (not spherical)

• We developed and proved the consistency of an extended
version of DBSCAN that uses and e-box instead of an e-ball,
where the box can have different sizes in each dimension.

• This allows us: Y1
 82• No need to rescale data 81 

• Simple control as to what constitutes "closeness" in each feature

• A simpler and faster connection to the r-tree structure

/
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Final Important Discovery

• Start/Stop distance is great, so why not have other
distances?

• Can use multiple intra-trajectory distances

• If you have enough, you are putting tight
constraints on the shape

• In fact, on discrete lattices you can show that you
need —N distances to exactly describe the shape
(Faulon, Rintoul, Young (2002)).

• These distances can be normalized to the largest
distance in order to find shapes that are scale
invariant!

d2 d3 A
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Different way to find figure-8 shape

• Look for shapes
near the one below

• Use 10 control
distances (full
distance through
all quarter
distances)
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Finding squares

■ Can specify the
distances for a
square pretty easily

■ A square is an
interesting shape
to be flying

■ l did not know that
shape was going to
be there!
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