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What are the mission problems?

= Enormous corpus of position/time data thanks to GPS and
new sensing technologies

= But...often very little other information

= Questions then related to comparing trajectories:
= Have we seen this pattern before?
= Have we seen a pattern related to a known behavior of interest?
= Can we group together similar patterns, and...
= ...can we identify patterns that are unique (outliers)?

= Can we predict where a current trajectory will go based on historical
observations?

= Can we identify different types of collective behavior among many
trajectories?
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So, starting out...

= How do you compare two trajectories?

= First thought? Try line them up and
measure differences

= This is the core of how it is primarily done in
the literature

= Basically, you align their starting points and
calculate how much work it is to munge the
two curves together.

= (Can think of it as an edit distance sort of
approach. Very SLOW!

= Used in bioinformatics, and spell checkmgI
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cale of data

ONE DAY ALOFT

12 PM, April 4 - 12 PM, April 5, 2013
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Data: FAA Aircraft Status Display to Indusiry (ASDI) feed from Airnav,
Visualization: Andy Wilson (atwilso@sandia.gov)
Software: Python 2.7, Matplotlib and Basemap

Sandia National Laboratories




New ldea

= Why use the curve alignment process at all?!?

= |f you have enough numerical descriptions of the curve, those
should mostly uniquely describe it!

=  End-to-end distance traveled =  Centroid of points =  Range of speeds
=  Total distance traveled =  Centroid of convex hull =  Max altitude
=  Ratio of end-to-end distance =  Start/Stop point =  Fluctuations of altitude/shape
traveled to total distance = Nearest distance to a given of altitude/time curve
traveled point =  Difference from historical data
=  Total curvature =  “Distance” from a given =  Most common speed/altitude
=  Total amount of turning specified track (cruise)
=  Average heading change =  “Distance” from a given =  Place, time and heading where
= Area covered by flight (convex specified shape first seen / last seen (might not
hull of points) = Start/Stop time be start/stop points)

=  Eccentricity of the convex hull Time nearest to a given point  * Other...

=  Perimeter of convex hull Average speed



But what are we really doing now?

= Building up a list of descriptors about something is called a
feature vector

i = (X1 Xappres X i)
= Once you have a feature vector with n features in it, what you
have is a set of points in an n-dimensional space.

= Now, you can really do some analysis

= Most importantly, if your feature vector contains the features
that represent similarity in the flights, you can answer key
semantic questions by defining a metric on the space and
looking for points close together

= Can be stored in a traditional database structure



= Looking for
significant distance
traveled, but lots of
circular motion...
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Flights avoiding
airspace might be
not quite-point-to
point, but covering
a wide area. Look
for some clustered
in area and time,
and you get...
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Example: Mapping flights

= Lots of ways to
do it, but
easiest is to just
look for long,
but compact
flights

= (Can also make
“turn around”
features
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Spatial Indexing: Motivation

= Key idea of geometrical descriptor is that a trajectory can be
characterized by a feature vector

= V=(f1/f2/---/fn)
= Previous work had focused on searching based on the ranges
of feature values

= However, being able to work in the abstract vector space of
the features allows many more powerful approaches
= Neighbor search
= Clustering
= Qutlier detection

= However, you need to have a way to find nearby pointsin a
computationally efficient manner



Killer app: Building a spatial index

= Now, instead of just checking a list of flights for similarity to
another flight, we can build a spatial index.

= A spatial index is a special data structure that can be used to
find points quickly in n-dimensional space

= Most provide O(log n) access to the points, which makes
finding neighboring points very fast, even in large (>10°)
databases.

= We use an R-tree, although there are others (kd-tree, etc.)

= Once you have a spatial index (and the associated fast
neighbor look-up), you enable clustering




Spatial Indexing: R-Trees

Features: o R
in. R4, d
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Example: Find Similar Shaped Fligh

Consider the red
flight, and look at
just two features:

= Ratio of length to
end-to-end distance

= Aspect ratio of
convex hull

Search for flights
with similar values
gives the white
flights

Note that we have a
superfast shape-
invariant search

now! R bLowp Googleearth




Clustering: Motivation

= The previous uses of feature vectors are very powerful, but
are in the class of “supervised” approaches.

= What we ideally want, is the computer to automatically
= Finding natural neighbors of a flight
" Find unexpected patterns
= Find outliers

= Once you have your flights described by feature vectors and
have the capability of spatial indexing, these problems can all
be solved by clustering.




Clustering: DBSCAN

= Many different types of clustering algorithms (k-means, EM,
etc.) but DBSCAN has two nice properties
= Doesn’t require a pre-defined number of clusters
= Has the notion of noise (outliers)

= DBSCAN requires
= A neighborhood density

Example cluster
requiring a density of 4

= A neighborhood radius




Clustering: Results

Did not tell it to
find this, only told
it to “make groups
of similar flights”

This was one of
many clusters that
had distinctive
shapes
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Clustering: Results

“Paper Clip”
shaped flights

Different scales,
orientations

Seemed to be
practice take-
off/landing




Clustering: Results

Was not doing
proximity, only
shape

But, found a group
of similar shaped
flights

What is this odd
behavior?

Boeing flying from
its factory to a test
field in eastern
Washington

o A




Clustering: Results

Same aircraft,
different days (still
only clustering on
shape)

Flew almost
identical pattern in
different
orientation




Clustering: Results

= Just clustering on
shape, found these
5 similar flights

All of them were
helicopters
belonging to the
same company
(Petroleum
Helicopters)

They fly
people/equipment
out to oil rigs

Googleearth




Collective Behavior

= |f you look for similar geographic location plus similar time
(time can be a feature too!), clustering will give co-travelers
= Can find convoys

= |f your database contains two different objects, can correlate them
(e.g. a phone and a vehicle)

= This can also be used to find to trajectories that cross, or
meet up for an extended period of time




= Find flights that
followed the same
path,
approximately the
same time

A group of 6
Cessna’s all flew

from LA to Redding
in the morning on
July 10th,




... and then from
Tracy to Redding
around noon on
July 10,
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Find flights that
followed the same
path,
approximately the
same time

A group of 7 UAL
flights took off
from IAH to Central
American
destinations right
after each other

Googleearth




Clustering: Outliers

= Using all of the tools described previously, we can now tackle
what is one of the most important and vexing problems in
trajectory analysis: discovering outliers

= Would ideally want the computer to be able to search data and
identify unusual trajectories

= But defining “unusual” in a rigorous manner is hard

= Using DBSCAN, we can identify the “noise” points (points that
don’t belong to any cluster) as outliers, giving us a fast way of
finding potentially anomalous behavior.




Odd flights

= (Clustering done
based on
geometric features

Many clusters
found, but what
remains is...

Represents
approximately 700
out of a total of
50,000 flights from
one day
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Prediction

= |dea: Put known historical trajectory fragments into a
database

= Take the observations of the beginning of a new trajectory,
and search for near matches

= Weight the “nearness” of the different trajectories, and sort
the different possible destinations

= Work based on observing the first 20% to 80% of a flight, with
that fraction unknown to prediction algorithm




Small Data Set -> Mistake

= Target flight .
(white) goes from b
LAX to Toronto, but
nearest flights are
all going to more
common
destinations
(Chicago, Detroit)
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More Data, Better

Flights from
Nashville go to
DFW and IAH, but
proper weighting
finds DFW for the
target (white).

Imagel.andsat R =
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© 2015INEG] O
Imagery Date: 4/9/2013 lat 33.197847° lon -92.314281° elev 142 ft eye alt 701.98 mi €




Lots of data

Popular flights are
picked perfectly
(DFW to Las Vegas)

©F2015
Data SI@) NOAA,




Perfection not possible

Some flights to the
same airport follow
the same path for
long time, like
Chicago to Bay
Area.

Close-up shows
flights going to
SFO, OAK, SIC (and
one to
Sacramento!)

GoogleBarth
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Swarming Example

%
oA
Vot 1
t/onal

Swarming
i Example of flights headed to a similar destination at the same time.




Swarming Example

%
oA
Vot 1
t/onal

Swarming
i Example of flights headed to a similar destination at the same time.




Big Improvement:

Now using an cube-sphere approach

* Much more isotropic near poles

* Math not so bad for indexing

* Allows for easy alignment of
fragments on a set of trajectories




No real surprises for longer
air travel fragments

Origin/Destination easy




Tiny Segment near Mantoon,

u 200, g

Just 2.5 km in the middle of
nowhere




A surprising number of hits
align directly with Phoenix




Summary

= Very complicated geometry problem -> informatics problem!

= Representation as a feature vector allows the rather
extensive corpus of machine learning to be applied in a
straightforward manner

= Have had surprising technical and practical success with this
rather simple approach

= Looking forward to working with others who have other
capabilities to apply




Extra Slides




Trajectory Theory Effort

= This work is connected to a similar effort in trajectory theory
= SNL: Rintoul, Cindy Phillips
= SUNY-SB: Prof. Joe Mitchell, Kan Huang

= Focus on:

= Summarize information to improve understanding and guide
observation

= Develop practical algorithms/heuristics for large numbers of
trajectories (>10°)
= Study related precise geometric problems to
= understand limits of provable algorithms
= guide practical algorithms
" Impact other fields

= See poster during poster session!



Flights avoiding
airspace might be
not quite-point-to
point, but covering
a wide area. Look
for some that are
close in location
and time, and you
get...

fiviinnesota

Missouri="

[

chita:Mcgnt nn\\

Arkansas :

} ( New\Brunsw

2 r\/lame
Vermont

/Aduond ack Mot H‘T‘!H’\§ \ \ 4
Liew York Néw Hampshir
Massachusetts

1 Connectlcut
} D) LN A4
-t Fennsylvama e
Bt . sl

% 5

X
Jiey /

‘x Apmhrhmnf’lou‘.mm >*’ NeW Jersey
Wa h‘llrg]gton /

o \/\/est \‘/|rg1ma";'
\ ‘

V. s \irginial

E BI\ e F—hd ge Mc nml nn\

North Carolma

lou|5|ana

Georgia

o

Google earth
C

Image Landsat

X A .©2013 Google

Data SIO NOAA-U-ST Navy NGA, GEBCO
©2013 INEGI

A”'h"l%s”l\é‘lp[?l Delta = -
el Imagery Date: 4/9/2013 lat 37.955893° lon -81.910695° elev 1060 ft eye alt 1243.26 mi




Example 2 (Holding Pattern)

= Looking for
significant distance
traveled, but lots of
circular motion...
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Flights that aren’t
long point-to-point
flights, but seem to
be localized to an
area that is
centered around
SNL’s lat/lon...
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Compact, lots
of turning, but
not lots of
winding

The statement
above is sort of
a lie

Really, they are
characterized
more by a
small but
somewhat
uniaxial
(roundish)
convex hull for
a long flight.
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Example 5 (Big Circle)

Long, with a
relatively small
eccentricity and a
distance
approximately
equal to the
perimeter
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Example 6 (Compact Flight)

=  Verysmall areato
distance traveled
ratio.




= Start/stop distance

nearly O
= Total flight distance
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Example 8 (Figure 8)

=  Almost no total
curvature

= Significant turning
= Fairly high-aspect ingenat g
ratio convex hull i

= Note: this was 1 of
115 flights




But what are we really doing now?

= Building up a list of descriptors about something is called a
feature vector

= Once you have a feature vector with n features in it, what you
have is a set of points in an n-dimensional space.

= Now, you can really do some analysis

= Most importantly, if your feature vector contains the features
that represent similarity in the flights, you can answer the key
semantic questions:

= Find me flights that look like this flight (nearest neighbors)
= Find flights that are outliers (have few to no near points)

= The last one is a tough question to answer in other schemes



Other key advantages

= (Classical clustering algorithms can be used

= Seems obvious in the feature vector space, is extremely non-obvious
without it.

= |ncludes k-means, SVM’s, EM, etc.
= Easy similarity (neighbor lookup) without recalculation

= Dimensionality reduction techniques can be used for
visualization

Note: Preliminary

= Can be implemented on a database machine 'mplementation Completed:
= These machines can handle 100 TB of data (decades of flights)
= They can also process SQL (and SQL-like) commands very quickly

= Can use techniques like PCA and similar




Important Discovery

= Start/Stop distance is great, so why not have other distances?
= Can use multiple intra-trajectory distances

= |f you have enough, you are putting tight constraints on the
shape

= |n fact, on discrete lattices you can show that you need ~N distances
to exactly describe the shape (Faulon, Rintoul, Young (2002)).

= These distances can be normalized to the largest distance in order to
find shapes that are scale invariant!

| | ]
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Let’s start with the
previous flight we
found

That was found

from 1 day data, so [e 8

expand to a week

Use 10 control
distances (full
distance through
all quarter
distances)
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Finding squares

Can specify the .
distances for a _ s
square pretty easily ¢

A square is an

interesting shape
to be flying

| did not know that
shape was going to §
be there!
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Big Feature Space Advantage

= (Clustering, leading to unsupervised learning techniques

= Previous examples showed searching the space for a specific
pattern or a specific volume of the feature space

= But, with clustering, the computer can group the different
patterns in the feature space without knowing a priori what
they are!

= Perhaps most importantly, many clustering algorithms
specifically identify outliers in the feature space that
correspond to odd behaviors




Goals for FY15 (Final Year)

= Algorithm development
= |ncorporation of sub-trajectory analysis

= A covariance/correlation analysis of the information in the different
features

= Develop quantitative metrics to understand the effect of sparseness
and intermittency in the data
= Software Engineering:
= Get aversion 1.0 of TrackTable into the wild

= Put a wrapper around parts of TrackTable that will enable customer
usage

= |ncorporate trajectory work into GeoGraphy codebase

= Further Netezza development



Software Engineering: IBM/Netezza

= Netezza (now IBM PureData) is a data appliance designed for
deep analytics on large (100’s of Terabytes) data sets

= This is the machine of choice for many gov’t agencies for
storing the biggest data sets, including trajectories

= Andy has ported some of the trajectory assembling code to a
local Netezza machine
= Start: One year’s worth of unassembled trajectory data (~400GB)
= End: A list of ¥15M trajectories
= Time: 44s
= Normally, one month takes about 3000s

= Feature vector approach potentially enables most routines to
be implemented on Netezza



Software Engineering

"H."I 3=

7 : (,ogqlc earth

Example of a search for avery speaﬁc behavior
based on geometric properties (“mapping flight”)




Clustering: Important Notes

= Using idea of distance geometry, we
can define intra-trajectory distances
as features, allowing the computer to
develop its own notion of shape

= Time (flight length, start/stop times,
day of week) can also be used as a
feature allowing us to find patterns

in time, including
= QObjects travelling together

= Trajectories that occur on a daily or
weekly pattern




Clustering: Extended DBSCAN

= Default DBSCAN difficult to use with features that have very
different scales

= Also, most spatial indexing schemes work best with the
notion of a box-neighborhood (not spherical)

= We developed and proved the consistency of an extended
version of DBSCAN that uses and e-box instead of an e-ball,
where the box can have different sizes in each dimension.

= This allows us: 3
—_—
e
= No need to rescale data s €, 2

= Simple control as to what constitutes “closeness” in each feature

= Asimpler and faster connection to the r-tree structure




Final Important Discovery

= Start/Stop distance is great, so why not have other
distances?

= Can use multiple intra-trajectory distances

= |f you have enough, you are putting tight
constraints on the shape

= |n fact, on discrete lattices you can show that you
need ~N distances to exactly describe the shape
(Faulon, Rintoul, Young (2002)).

= These distances can be normalized to the largest
distance in order to find shapes that are scale
invariant! 4 g
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Different way to find figure-8 shape (58

Look for shapes
near the one below

Use 10 control
distances (full
distance through
all quarter
distances)
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Finding squares

Can specify the .
distances for a _ s
square pretty easily ¢

A square is an

interesting shape
to be flying

| did not know that
shape was going to §
be there!
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