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Comparing different (but related) chemical systems

Autoignition chemistry Tropospheric oxidation
Complex networks of
chemical reactions

Deliberate control of
reaction conditions

Simple goal: clean/efficient
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Complex networks of chemical
reactions

Human effects on reaction conditions
are accidentaLVprvrAltViewrirt ?Pr -

What are the "goals"? - -
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How do we handle complex networks of reactions?
Control of model and parametric uncertainties

"Comprehensive" chemical models not always feasible

Targeted reduced models

How can kineticists
Choose reactions that make a difference

Choose reactions that give fundamental insight

Look at reactions that have multiple possible channels
that have different impacts in the complex system

0 
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Combust. Flame 153, 2-32 (2008)
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•

• R alkene + R '

+ 02 11,

7,o0 •

11'

• Q0OH  YIP cyclic ether + OH

+ 02 11'

conjugate alkene

•

•
+ H02

•
•00Q0OH fl-scission products + OH

•
HOOQ'OOH

HOOQ'=0 + OH

The chemistry of
autoignition has been
studied for many decades —

Some details remain hidden

+ OH (chain-branching)

Zador, J.; Taatjes, C. A.; Fernandes, R. X.

Prog. Energy Combust. Sci. 2011, 37, 341.

In autoignition chemistry it is
easy to find reactions that fit
these criteria

(:100H H2
0

HO CH2
H2

H2

CH3
H2

ROCI

• QOOH + 02 is responsible for chain
branching

• Chain branching step goes through
dissociation of a ketohydroperoxide

• Isomers make a difference

CRF
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Crounse et al., J. Phys. Chem. Lett.
4,3513-3520 (2013)
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Tropospheric oxidation and ignition share
some isomerizations and intermediates

Zador, J.; Taatjes, C. A.; Fernandes, R. X.
Prog. Energy Combust. Sci. 2011, 37, 341.
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+ 02
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•00Q0OH fl-scission products + OH

•
HOOQ'OOH

HOOQ'=0 + OH

• •
• OQ'=0 + OH + OH (chain-branching)

Zador, J.; Taatjes, C. A.; Fernandes, R. X.
Prog. Energy Combust. Sci. 2011, 37, 341.

Reactions proceed on surfaces with multiple wells —
lsomerization leads to different products
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Scheer et al., Phys.

Chem. Chem. Phys. 16,

13027-13040 (2014)

Jalan et al., J. Am.

Chem. Soc. 135,

11100-11114 (2013)
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Kinetic models for tropospheric
oxidation require knowing reactions
of other intermediates

Carbonyl oxides ("Criegee
intermediates") are formed in
ozonolysis

Criegee intermediates are potential
tropospheric reactants

Key intermediates are again isomers
of other stable or reactive species

0

() 

.

H_2_c H2C O

HO

O

O-CH2 7



s)

Os •

0)

e)

4173

'0+

_Oa —10.
- OH

c) OH

O

0 5

0

O

Eli

„I.%)

40,0

O

T. Jokinen et al., Angew. Chem.

Int. Ed. 53, 14596-14600 (2014)

• Specific investigations target
individual reaction types

• Physical understanding allows
rigorous generalization

Ozonolysis — can we focus on
individual carbonyl oxide
channels?

Peroxy radical chemistry — can
we isolate specific
transformations?

Outcome of reaction systems
depend on fate of short-lived
intermediates
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Synchrotron photoionization mass
spectrometry can detect and
characterize these intermediates

0 in+2 = 72 (Expt
— fit

2-mettlyloxetane
Tetrahydrofuran

— Dimethylowane
— • Ethyloxirane

Time-Dependent
Chemical Kinetics

• o o 10.4

David Osborn

Isomer-Resolved
Species Identification

-10 0 10 20 30



too We can detect the intermediates but
first we need to make them

• In the troposphere or in bulk oxidation reactions,
these intermediates are difficult to isolate

• They are formed in slow processes like ozonolysis or
ROO isomerization, then react relatively rapidly

• Need strategies to form the intermediates in a
controlled way

• Pulsed laser photolytic initiation of oxidation

0 CRF
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Diethyl ketone prototype for
tropospheric autoxidation

Ketone oxidation has possibility of
vinoxylic resonance stabilization

Resonance-stabilized radicals less
reactive with 02
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Scheer et al., Phys. Chem. Chem. Phys. 16, 13027-
13040 (2014); J. Phys. Chem. A 120, 8625-8636 (2016)

Isomeric product branching can show
how molecular structure affects QOOH
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Diethyl ketone prototype for
tropospheric autoxidation

Ketone oxidation has possibility of
vinoxylic resonance stabilization

Resonance-stabilized radicals less
reactive with 02
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Isomeric product branching can show
how molecular structure affects 000H
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Diethyl ketone prototype for
tropospheric autoxidation

Ketone oxidation has possibility of
vinoxylic resonance stabilization

Resonance-stabilized radicals less
reactive with 02

Resonance stabilization may favor
particular QOOH pathway

Substitution changes oxidation
chemistry — for ignition or for the
troposphere

CRF

Isomeric product branching can show
how molecular structure affects QOOH
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Additions of QOOH to 02 are important to
complex oxidation submechanisms

+ OH
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Crounse et al., J. Phys. Chem.
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Unraveling the structure and chemical mechanisms of highly
oxygenated intermediates in oxidation of organic compounds
Wang et al., PNAS 2017 doi: 10.1073/pnas.1707564114 w



Additions of QOOH to 02 are important to
complex oxidation submechanisms

+ OH

H-shifIf 411' _OH
&comp.

O

R 
HOO

H

Crounse et al., J. Phys. Chem.

Lett. 4, 3513-3520 (2013)

R'

4-
+ 7, OOH

• Can we assume kinetics similar to alkyl + 02
reactions?

• Preparing 000H by alternative methods (e.g.,
CI + ROOH) allows direct kinetics
measurement (Zaclor et al. PCCP 15, 10753-10760 (2013))

• Resonance stabilization
can dramatically shift
dominant product
channels in these
reactions
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Double resonance stabilization allowed first
direct detection of QOOH — photolytic CI
atoms initiate reaction of cycloheptadiene

QOOH verified by mass, spectrum, and kinetics

I I I

0

I " " " ' I   ,   1   ,
10 20 30

Kinetic Time (ms)

  I I IN 11111 r I

40 50

Resonance stabilization dramatically reduces
the reactivity with 02

kQ00H+ 02 = (2.9 ± 1.0) x 10-15 cm3 s-1

kR+o2 = 
(3.2 ± 0.5) x 10-16 cm3 s-1
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Ketone oxidation — resonance
stabilized QOOH are preferred

Scheer et al., Phys. Chem. Chem. Phys. 16, 13027-13040

(2014); J. Phys. Chem. A 120, 8625-8636 (2016)

Make more stable QOOH?

RO2

QOOH

unimolecular

decomposition



RH
•

+ OH - H20

• R alkene 4

+ 02

ROO•

• Q0OH 

( 02

• 00Q0OH

•
HOOQ'OOH

HOOQ'=0 + OH
•

• •
• OQ'=0 + OH + OH (chaii

Compare the autoignition process to the autoxidation
to highly oxygenated species in the troposphere

What stops the process towards chain branching?
CH3

H2

H3C.

nCH3

Tertiary R: No KHP — 3rd 02 addition instead

cyl
CH3

+ 02

H2

isomerize

Wang et al , Combust. Flame 164, 386-396 (2016).
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0
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What else can intercept these molecules on the path?
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Ketohydroperoxides have now been
observed in many kinetic systems

exp. simul.
675K — - -

650K — - -
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550K — -

m/z = 118

Time-resolved
products suggest
some KHP does not
make OH + oxy
radical (7)

ca

'a

KHP 2,2-dimethyl
propanedial + H20

a)

(a
Cr)

Pulsed photolytic
neopentane
oxidation shows KHP
formation

Eskola et al., Phys. Chem. Chem.
Phys. 19, 13731-13745 (2017)

m/z= 100
— 675 K
— 650 K
— 590 K
— 550 K

0 10 20
Time / ms
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Pulsed photolytic
oxidation of butane
shows KHP formation

Identified as 3-
hydroperoxybutanal

Eskola et al., Proc. Combust. Inst. 35,
291-298 (2015)
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Moshammer et al. J. Phys.
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(2015) 18



What if ketohydroperoxides don't fall apart to two
radicals? Look at y-ketohydroperoxides

So far observed species are all gamma- Jalan et al. pointed out that gamma-KHP
ketohydroperoxides can isomerize

•OCHCH2CH0+ •OH

O O OH

0-0 bond fission leads
to chain branching

Ketohydroperoxide Cyclic Peroxide Acid Carbonyl

Jalan et al., J. Am. Chem.

Soc. 2013, 135, 11100-

11114



Does this happen? Organic acid products
may be a signature of Korcek dissociation
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Modeling acid formation may constrain Korcek
rate coefficient

Re
la

ti
ve

 T
im
e-
in
te
gr
at
ed
 S
ig
na
l 50

40

30

20

10

0

CH3CD2CD2CH3 oxidation 650K
m/z = 61 product — fit

- - - Propanal - - - - Acetone

D/CH,

A

D2C—C,
HC' 0

HO/

•

DC/CH> CD3COCH3
D2C- HCOOH •

I 0

HO, 0 N4... fieCH,CDO
CD,HCOOH

/1-KHP-11,

•
IL

05
•

fireilat.,4111egillegrattak-,•

O
O
0o 0
• •• O

9.2 9.6 10.0 10.4

Photon Energy (eV)

Eskola, Popolan-Vaida et al.

In butane-d4 oxidation, observe acetone-
d3 isotopolog
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Ft, 0
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------0
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Ozonolysis is too slow and too energetic

For Criegee intermediates the
strategy is direct synthesis

Verified by mass, kinetics, and
spectrum
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For Criegee intermediates the
strategy is direct synthesis

Verified by mass, kinetics, and
spectrum

Reaction of CH3SOCH2 with 02
makes CH200

Reaction of gem-iodoalkyl
radicals with 02 makes lots of
carbonyl oxides

Now can measure carbonyl oxide
reaction kinetics directly
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90

60 -

-90
1.0 2.0 3.0

R (H — H2C00), A

4.0

Miliordos and Xantheas, Angew. Chem. Int. Ed. 55, 1015-1019, 2015

CRF

• Criegee intermediates have
multireference electronic character
• Ground state is dominantly the

closed-shell singlet zwitterion

,O, 0

H..2_

.
H2C

• How should they react? ... not like
radicals!

• CH300 + NO 7.5 x 10-12 cm3
Lightfoot et al., Atmos. Environ. A 26, 1805 — 1961 (1992)

• CH200 + NO
Welz et al., Science 335, 204 — 207 (2012)

< 6 x 1014 - —3CM 8-1

• What about reactions with closed-
shell species?
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The chemistry of ozonolysis was largely worked out
from solution phase — gas phase can be different!

Criegee (1975) outlined four types of reactions that
carbonyl oxides undergo: dimerization, reaction with
carbonyls, isomerization, and reactions with "proton
active substances"

Generalization (CAT, Annu. Rev. Phys. Chem. 2017):
Reactions with other 1,3 bipoles
Unimolecular reactions
Cycloadditions
Insertions
Addition to radical species
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Sheps et al, Phys Chem. Chem. Phys. 16,

26701-26706 (2014)
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Most direct studies of Criegee kinetics look at
disappearance of the carbonyl oxide

Nature of products can make a difference
Insertions

Reactions with other 1,3 bipoles

Unimolecular reactions

Addition to radical species

Cycloadditions

25



Proton active species — insertion

Acids react with carbonyl oxides at
supercollisional rates (Welz et al., Angew.

Chem. Int. Ed. 53, 4547-4550 (2014); Foreman et al.,
Angew. Chem. Int. Ed. 55, 10419-10422
(2016);Chhantyal-Pun et al., Angew. Chem. Int. Ed.
56, 9044-9047 (2017))

Carbonyl oxide reactions in
solution: ROH>H20>CH3CO2H

In gas phase RCO2H » ROH, H20

Fast reaction general for all acids
PFOA reacts slowly with OH

Reaction with CH200 is fast:
(4.7 ± 0.7) x 1040 Crn3

Eskola et al., unpublished

o exp. - - - fit [PFOA] = 0

A exp. — fit [PFOA] = 6.1 x 1011 CrT1-3

o exp. - - fit [PFOA] = 1.8 x 1012 CM-3

5 10 15
time / ms

20 25

What are the products of reactions with acids?
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Reactions with acids appear to
form hydroperoxyesters

Adduct mass observed

Dissociative ionization to protonated
carbonyl oxides

Another possibility is acid-
assisted tautomerization (Kumar et al.,
Phys. Chem. Chem. Phys. 16, 22968-22973 (2014); Liu et al.,
Phys. Chem. Chem. Phys. 17, 20490-20494 (2015), Monge-
Palacios et al. Phys. Chem. Chem. Phys.
doi:10.1039/C7CP08538A (2018))

CH200 + HCI reaction

37CICH200H°

-0-- 35CICH200H+

-4- CH200H°

10.0 10.2 10.4 10.6 10.8 11.0
Photon energy eV

Caravan, Rotavera et al., unpublished



Most common proton active
species — H20

Differences in reactivity among
carbonyl oxides:

(CH3)2C00 < 1.5 X 10-16 (Huang et al , Proc.
Natl. Acad. Sci. U.S.A. 112, 10857-10862 (2015))

CH200 (3.2 ± 1.2) X 10-16 (Berndt et al.,
Phys. Chem. Chem. Phys. 17, 19862-19873 (2015))

anti-CH3CHOO (2.3 ± 2.1) x 10-14
(Huang et al., Proc. Natl. Acad. Sci. U.S.A. 112, 10857-10862
(2015))

H20 monomer reactions have
conformer dependence — syn-
CH3CHOO unmeasurably slow

H20 dimer reaction is the
dominant removal mechanism for
tropospheric CH200

O

m/z = 60 product from CH3CHI
zero [H20] -(11- high [H20]

4 -- Fit - - Vinyl hydroperoxide
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Chao et al, Science 347, 751-754 0

(2014); Lewis et al., Phys. Chem.

Chem. Phys. 17, 4859-4863 (2015);

Smith et al., J. Phys. Chem. Lett. 6,

2708-2713 (2015)

o k.„

-quadratic fit

•
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R2 = 0.9927
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Chao et al, Science. 347, 751-754 (2014)
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Does reaction of CH200 and
water dimer make formic acid?

Water monomer reaction makes
hydroperoxymethanol
(hydroxymethyl hydroperoxide)

Suggestion that reaction with
dimer makes N 50% HCOOH (Nguyen
et al., Phys. Chem. Chem. Phys. 18, 10241-10254 (2016))

Can confirm rate coefficient with
UV absorption, photoionization

MPIMS measures all products

Sheps et al., Phys. Chem. Chem.

Phys., 19, 21970-21979 (2017)

Lenny Sheps
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Fundamental chemistry vs
atmospheric modeling — what
happens to the adduct??

lf the HMHP does not make formic
acid, modeled HCOOH is
substantially reduced

90

60

3a) 0

-o
o

-30

-60

-180 -120 -60 0 60
Longitude

120 180

More experiments to do

Anwar Khan
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Calculation of CH200 + (H20)2
reaction suggests entrance
complex that dissociates to
HMHP and H20
Anglada and Solé Phys. Chem. Chem. Phys. 18, 17698-17712 (2016)
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Ta.
alkene + 03 Competition between chemically activated reaction and thermalization of Intermediate

POZ

\il

Pdmary
ozonids Chingee
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OarbOnyl

Vereecken et al., Phys. Chem. Chem. Phys.

14, 14682-14695 (2012)

OH

vinyl
hydrapermilde dimilrene

0/H P) plo)

bvO

singlet
bisoxy
(S90)

decomposilion

Env
Add

r--

E

373 K
—0-0-0.8 ms
—C-0-4 ms
—0-0-8 ms
—0-0-16 ms

ms

I I I
8.5 9.0 9.5

Photon ene . / eV
10.0 10.5

• lsomerization has two basic
pathways — dioxirane and vinyl
hydroperoxide

• Is it that simple?

• (CH3)2C00 isomerizes to
hydroxyacetone (CAT et al, J. Phys. Chem.
A 121 16-23 (2017))

• Temperature dependence
confirms first-order gas phase
reaction (Caravan et al., unpublished)

• Observed in solution long ago
(P. R. Story and J R. Burgess, J. Am. Chem. Soc.
89, 5726 (1967); 90, 1094 (1968))

• Proposed to start from VHP
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Kuwata et al. recently calculated a
roaming style pathway through the vinyl
hydroperoxide (J. Phys. Chem. A just
accepted DOI: 10.1021/acs.jpca.8b00287
(2018)) that obviates the high transition
state
They also predicted product branching for
the acetone oxide decomposition.
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Cycloaddition — reaction with
carbonyls is one of the three
steps in the Criegee
mechanism

Can directly detect secondary
ozonide products

Carbonyl oxides can transfer
0 atom, e.g., to S02 — but are
these reactions mediated by
cycloaddition?
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CH200 + MVK: Eskola et al., unpublished
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S03 has been directly observed from
Criegee intermediate reactions with
S02 -- but other pathways are possible

Y. P. Lee group identified adduct in
CH200 reaction with SO2 Wang et al , J. Chem.
Phys. 148, 064301 (2018)

Pressure dependence and inverse
kinetic isotope effect is observed in
reaction of acetone oxide with S02
(Chhantyal-Pun et al , J. Phys. Chem. A 121 4-15 (2017); Huang et al.,

Proc. Nat. Acad. Sci. USA 112, 10857-10862 (2015))

All direct rate coefficient
measurements so far have been for
total carbonyl oxide removal

CRF



• Hydrocarbon structure and
resonance stabilization can
dramatically affect
autoxidation processes

• Importance of carbonyl
oxide reactions to the
atmosphere depends on
fate of adducts

Do these results actually make
a difference in complex
chemical models?

What does it mean to make a
difference?
• Models are changed (people

use the results)

• New details are revealed as
important

• Predictions get better?
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