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2  Outline

➢ Motivation
• Thermal battery

• Spatio-temporal data

• Challenges

➢ Principal component analysis (PCA)
• Calibration in latent response (eigen) space

➢ Novel Sampling Algorithm
• IISGA

• Iterative importance sampling

• Genetic algorithm

➢ Future Work

• Model discrepancy formulations

Robust Importance Sampling for Bayesian
Model Calibration with Spatio-Temporal Data

(2019, in preparation)
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Testing Yobs

6meas

Simulation

Ysim

Likelihood: P(D10)
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omodel

X — test settings

— model parameters (will be calibrated)

0* — sample/realization

6model — model discrepancy



Motivation



4 Spatio-temporal outputs "Field Data" are common

Examples 

o Digital image correlation

o Thermal heatmap

o Time series data

Thermography for coupon test1

DIC of D-Specimen2

Time series reatizations3

1 SAND2014-2227P
2 SAND2017-10365PE
3 SAND2019-7427C

■



5 Thermal battery dataset

o

Temperature is spatially and
temporally varying

0 High dimensional output
space

Center Perimeter

11

Separator 10 9

O

0.7

0.6

0.5
f.12
4_,

4-) 0.4

0.1

 Simulations
-  Experiments

2000 4000 6000 8000

Ordinal - Time&Location
10000 12000

Data preprocessing
Sim & exp same length
o Truncate traces
o Zero padding is also an option

Time steps the same
O Align traces
• Interpolation
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How to organize data in a matrix?
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Why spatio-temporal data must be processed before Bayesian Calibration
6 a) surrogate model construction

Building surrogate models
Gaussian process, SVM, polynomial chaos, ANN, etc. [3]

One-to-many mapping
• Inputs are RVs and output is random process/field

Approaches:
• Build separate surrogate for each location

• Include time/space as an input

• Feature selection

• Decomposition / dimension reduction technique

Support Vector Machine {2]
Nonlinear Regression

+E

000

10

8

4

2

ti."

-2

-6

-a

Gaussian Process [1]

Notional

 GPR predictions
  Ns) - x•sin (.0

 195% prediction interval
* Observations

2

GP
Nonparametric kernel based model

• Probabilistic

4 6 10

SVM Regression
• Hyperplane that maximizes the margin

• Nonlinear — map data (via kernel transform) to higher dimension where
linearly separable

• Parametric/nonparametric depending on linear/kernel based

• Typically deterministic [1] MathWorks
[2] saedsayad.com by Dr. Saed Sayad

[3] Neal, K., Hu, Z., Mahadevan, S., & Zumberge, J. (2019). Discrepancy
prediction in dynamical system models under untested input
histories. Journal of Computational and Nonlinear Dynamics, 14(2), 021009.



Why spatio-temporal data must be processed before Bayesian Calibration
7 b) likelihood covariance

Field data has thousands of unique outputs
o High-dimensional joint PDF for likelihood function

o In the case of a Gaussian likelihood (Gaussian error sources),

• Determinant and inverse of covariance matrix required

O 'As the number of data points [output quantities] increases, this covariance matrix may
become ill-conditioned and lead to significant numerical errors in the computation of the
likelihood function" [1]

Correlation of error terms
o Correlation in covariance matrix required

O If a model makes a poor prediction at one output location (spatial or temporal),
it is probable that it will also fail at a nearby output location, which suggests
statistical correlation between model discrepancies at these two output locations

o Correlation can be calibrated, but increases number of

calibration terms

• Pulls from same experimental data used to update model parameters — which is
what we actually want

• Makes sampling (e.g., MCMC) more difficult due to curse of dimensionality

N
1

(270k lEl
L(0, cr) =  exp

lif „T

obs,i ystm (0) — ) E371 ((Yobs,i Ysim(0)) — it))

Error 2 Error 1

How to reduce dimension of output?
o Feature selection

0 Doesn't address correlations

o Mathematical decomposition

If eigen based, removes correlation

[1] Ling, Y., Mullins, J., and Mahadevan, S., "Selection of model discrepancy priors
in Bayesian calibration," J. Comput. Phys., vol. 276, pp. 665-680, Nov. 2014.
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9 Principal Component Analysis (PCA)

Difference between PCA and singular value decomposition (SVD)?

SVD is a matrix decomposition (mathematical)

. Generalized Eigen decomposition for rectangular matrices

PCA is a strategy to remove correlation by mapping data onto principal directions (data science)

. Eigen decomposition of covariance matrix

. SVD on centered data matrix
PP  Equivalent [1]

Mathematics of SVD [2]

A = USVT
[n x p] = [n x r][r x r][r x p]

O n — number of samples

O p — number of dimensions (timesteps)

O r — rank of A, number of linearly independent rows or
columns, or the dimension of the space that is spanned
by the vectors it contains

0 maximum value for r is min(n,p)

o U and V are both column-orthonormal

o S — diagonal with singular values

Dimension Reduction 

Latent response:

Y[nxk] = U[nxk]S[kxk]

where k « r

Convert back to trace:
A nxp] = Y[nxic]17* [kxp]
L

[1] https://stats.stackexchange.com/questions/134282/relationship-
between-svd-and-pca-how-to-use-svd-to-perform-pca
[2] Van Buren, K., Reilly, J., Neal, K., Edwards, H., & Hemez, F. (2017).
Guaranteeing robustness of structural condition monitoring to
environmental variability. Journal of Sound and Vibration, 386, 134-148.



10  Converting to latent response space

• Each row of A is projected onto the k orthonormal column vectors in V

A[nxp]17[pxk] = Y [nxk] l

T \ 1
0 7* [kxp] ) — V[pxk]

• This new space is termed "latent response", y , and has k dimensions
instead of p

• We want both simulation and experimental data to be in same latent
response space for calibration

• Use latent response as outputs for calibration

A sim if* — Sim A exp
ri[N xp] v [pxk] )7 [N xk] ri[mxp]v [pxk] — )1 [mxk]



11 PCA on Thermal Battery
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12 Recap: Bayesian Calibration in Latent Response Space

Convert simulations to latent response space

o Use SVD

Build surrogates mapping model parameters to latent response

Convert experimental data to same latent space

O This is a change of basis

Perform calibration in latent response space
O Likelihood

° Covariance will be diagonal
4 latent response space is orthogonal

0 Error terms must be calibrated
Physics 

Simulation

Experimental
— Field Data

Spatio-
Temporal
Outputs

Surrogate

SVD 
Mapping

,,

Same

,
4,

F SVD
Mapping

Model

Latent
Responses

ilk
Likelihood
(Orthogonal)

Latent
Responses
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14 Why IISGA is Needed

➢ Curse of dimensionality
• Large number of parameters to calibrate

➢ Sample degeneration
• Afflicts sequential Monte Carlo methods

➢ Leverage high performance computing
• Parallelization

1

0.8

'7) 0 6
•

7, 0.4

0

•

10 15 20

Ordinal Particle #

[1] "Bi-Clustering" by Jinze Liu,
Liu, J., Et Wang, W. (2003, November). Op-cluster: Clustering by
tendency in high dimensional space. In Third IEEE international
conference on data mining (pp. 187-194). IEEE.
[2] Sandia.gov



15 IISGA — Iterative Importance Sampling with Genetic Algorithm

N
CC)

Iterative Importance Sampling

o Draw samples from known "Proposal" distribution q (9)

o Assign a weight to each sample
U_

. w(9) oc p(OID) = p(DIO)p(e) 0
(4(6) q(9) 0_

o Iterative? 4 gradually moves the proposal towards the target

Genetic Algorithm
o Selection — retain best performing samples

o Crossover — add noise to existing samples

o Mutation — randomly sample from prior

Proposal Samples

• Candidates
.

Iteration:
-4— 1

2

.

Genetic Samples

.

• Selection
• Crossover
• Mutation

.

Target Proposal

9

Sequential '
Monte Carlo

Stationary Target Nonstationary Target

Iterative Importance
Sampling

Particle
Filter



16 IIGSA — Procedure described schematically

Proposal Samples
09) —> q(9) = f 09)*

Compute
Scores

L(9)* f ' (9) 

q(0)

Normalize
Weights
(W)

Genetic
Algorithm

(9") 09)

Resample based
on W (9*)

4•P

3 million posterior samples

IISGA (40 cores)

10 hrs

Slice sampling (1 core)

495 days (predicted)

Condition
not Met

Condition
Met

*
Samples of
Posterior

(eposterior)

Significant speedup for previous calibration study
. Vectorized likelihood — most surrogate models are

vectorized by default
a MCMC can only evaluate samples serially
Multi-core
- MCMC can run separate chains on multiple cores



17 Not so fast.. Computational Challenges with IISGA

How to estimate proposal density?
Through the GA we have proposal samples but no
distribution

Curse of dimensionality persists
Few samples from proposal land in target

Posterior sample set is sparse



18 Frequency Histogram —Adaptive Binning

Accurately estimate density of proposal distribution
o Kernel estimators are slow

o No built-in N-dimensional histogram function
Modified open source code to prevent overflow error

Grid of (Nbi„rdim was sparse, disposed of empty bins

How to decide on the number of bins?
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Challenges with Curse of Dimensionality (I)
19 Posterior becomes hard to find

Most samples have likelihood weights of —0, and these samples are lost in resampling

When prior covers a much larger region than posterior, particularly in high dimensions
• toprior) >> opost} {ysim(prior ,x

)} >> fysimopost ,c))

O See plot at right

O Recall that the posterior is proportional to the likelihood

This effect becomes more pronounced as 9 becomes higher dirnensional
• If for example,

(eriorN (rst) v — / . e {1: 16}range = 2 * range
Volume(Opos0) 516*VOlUrne(OPrin

0    = 0.000015
Volume(OPri°1 = Volume(OPrwr)

Essentially, it is difficult for samples from the prior to find (land in) the posterior

Solution: artificially inflate the likelihood

Note, inflating the likelihood works for SMC samplers, not for MCMC

0_

O

X

x

(=Likelihood
X Ysi.(9Prior, ,x)

x

x

X

x X

Output 1



20 Inflated Likelihood

Idea: scale the likelihood covariance matrix
• This will flatten the likelihood function

• More samples will have non-zero weights

• Reduce scale factor over iterations to avoid a bias posterior

Similar to simulated annealing
• "Temperature" acts as a SF for the distance (in terms of objective function)

a proposed x can be from current best solution x
Decreases over iterations

x x

c: a Likelihood

X Icytt(0"'"' , x)

x

x x
Output 1

Optimization Terminology
max f (x)
s.t.xESZ

f - objective function
x - decision variable
SZ - feasible set

Calibration Parallels 
f 4 L - likelihood function
x 4 0 - model parameters
SZ - 4 Trf - prior distribution

Simulated Annealing  (maximize)
Iterate over values of x

A = f (x') — f (x)
if A > 0

x =
else

if exp 
T em 

> Uniform(0,1)
p

= xf

end
end

Reduce T emp



Challenges with Curse of Dimensionality (2)
21 More samples become close to perimeter

Computed below: samples
in a perimeter cell

Causes problems with
noise added in crossover
(GA)

Solution:
Gaussian noise in
crossover

add check that sample is
inside bounds

/
//4111”(

r
8

1 
8 

2 
8 

3

1 — 
10
) = 20% 1 — (

TO
) = 36% 1 — (-

10
) = 48.8%

8 )
26

1 - (10 = 99.7%



Results from Thermal Battery



23 Posterior Samples

Axis limits are range of uniform priors
o 16 model parameters, plotted to show correlations
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24 Calibration Fit
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Future Work



26 Model Discrepancy (after calibration)

6model(X) = mean(Yobs(x)) 
ysimopost

6model varies over time, location, and initial temperature

Discrepancy of Reconstructed Field Data
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27  Simultaneous Parameter Calibration and Model Discrepancy Estimation

Multiple discrepancy formulations

Extend these to latent response space

o Can map back to spatio-temporal space

KOH framework

A Gaussian process is used to represent the dependence of model discrepancy on input conditions (initial temperature)

Seminar (Early Fall): Non-intrusive state estimation of model error

O Model error — differential equations

. Can be extrapolated

) Model discrepancy — output quantities

° May only be applicable to calibration test settings

o Work with Abhinav to apply his methods to thermal battery
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Kyle Neal
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31 Bayesian Calibration

Bayes' Theorem
Use observations to update beliefs

Posterior
• Find values of theta that are

most probable given the data
P(eID)

P (OW)

Uncertainty sources
• Aleatory — irreducible, naturally varying

Measurement noise

Epistemic — reducible, lack of knowledge
Model parameter uncertainty (calibration)

Model bias

Likelihood (case 1):

o Yobs = Ysim E me as

• Measurement noise: i.i.d. with N (0 , 62)

Posterior

P 10) * P (0) 

P (D)

a P (D 10) * (0)

a (D lt9) = L(e)

Notional 1-D Likelihood

Likelihood Prior

P A B) 
P(B A)P(A)

P(B)

—Error Distribution
- 0

▪ ameas

• Yobs-Y sim(01)

• obs-Y sim((12)

L(9) =

N

exp (— 
2a2

1

Data

((Yobs,i sirn (e))

Error



32 Bayesian Calibration Cont'd

Likelihood (case 2):

o Yobs = Ysim + Emeas 8model
Model error can take on different forms

• Kennedy O'Hagan Framework
• Treat model error as a Gaussian random

process with unknown mean and covariance

Likelihood (case 3):
O Multiple output quantities
o Covariance matrix of errors needed

LL-

Error

Solving for posterior
Markov chain Monte Carlo (MCMC)

L(0, ft, a)
o Samples from chain approach posterior distribution

Particle filter (PF)
• Particles weighted based on likelihood scores

• Easily parallelizable

• Sample-based Bayesian methods require many model evaluations
o Replace computationally expensive physics model with efficient surrogate model

`o_

—Error Distribution

—

• If obs—Ysim(81)

• Yobs—Ysim(82)

N
1

1L(9, a) = i=1 exp ((y • — • 09))b y20_2 ,I SIM

Error 1

— 02)

Error 2

N

_1(271-1 )k IZI

 exp (— ((Yobs,i ysim(0)) — It) Zy 1 ((Y obs,i sim(0)) ett))

Current Implementation of IISGA

17
calibration
parameters

5 output Samples: 10 Resampling 50 cores
variables million algorithm 10 -11hrs

iterations



33 Posteriors
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34 Iterative Importance Sampling Algorithm (ISA) [I]

Basic Idea: iteratively improve the proposal distribution

fr
Initialization

Posterior
distribution

Initial samples

Iteration 1 Iteration 2

First

proposal

Weighted samples from
first proposal

4, \♦
Parameter

Stopping criteria:

o IRk-Fl — Rk I < tol
var (w)

o where R = + 1
E (w)2

° w is the normalized weight,

O if q(0) = p(9 ID), then var(w) = 0 so R = 1

Second
proposal

Weighted samples from
second proposal

Parameter 0

[1]

Third
proposal

Parameter

[1] Morzfeld, M., Day, M. S., Grout, R. W., Heng Pau,
G. S., Finsterle, S. A., Et Bell, J. B. (2018). Iterative
importance sampling algorithms for parameter
estimation. SIAM Journal on Scientific Computing,
40(2), B329-B352.



35 Iterative Importance Sampling Algorithm (ISA) - Differences

Their Method

Use a Gaussian for each iteration of proposal distribution: qi, where i = 1: Niterations
Update the mean and variance: qi+i = N(pti+1,6i+i), where iti+i ai+1 are computed from
{9i, wi}

Generate new samples: Oi+i—qi±i

General strategy seems to be start with a broad proposal distribution and hone in

Our Method 

Construct empirical/kernel density distributions based on the samples

' Should better capture multimodality

Rather than draw new samples from a normal on each iteration, the same samples are
carried throughout — but the samples are allowed to change genetically


