

Bayesian Calibration of the Thermal Battery

PRESENTED BY

Kyle Neal

Mentors: Josh Mullins & Ben Schroeder

Manager: Angel Urbina, Sandia National Labs

Advisor: Sankaran Mahadevan, Vanderbilt University

Colleague: Abhinav Subramanian, Vanderbilt University

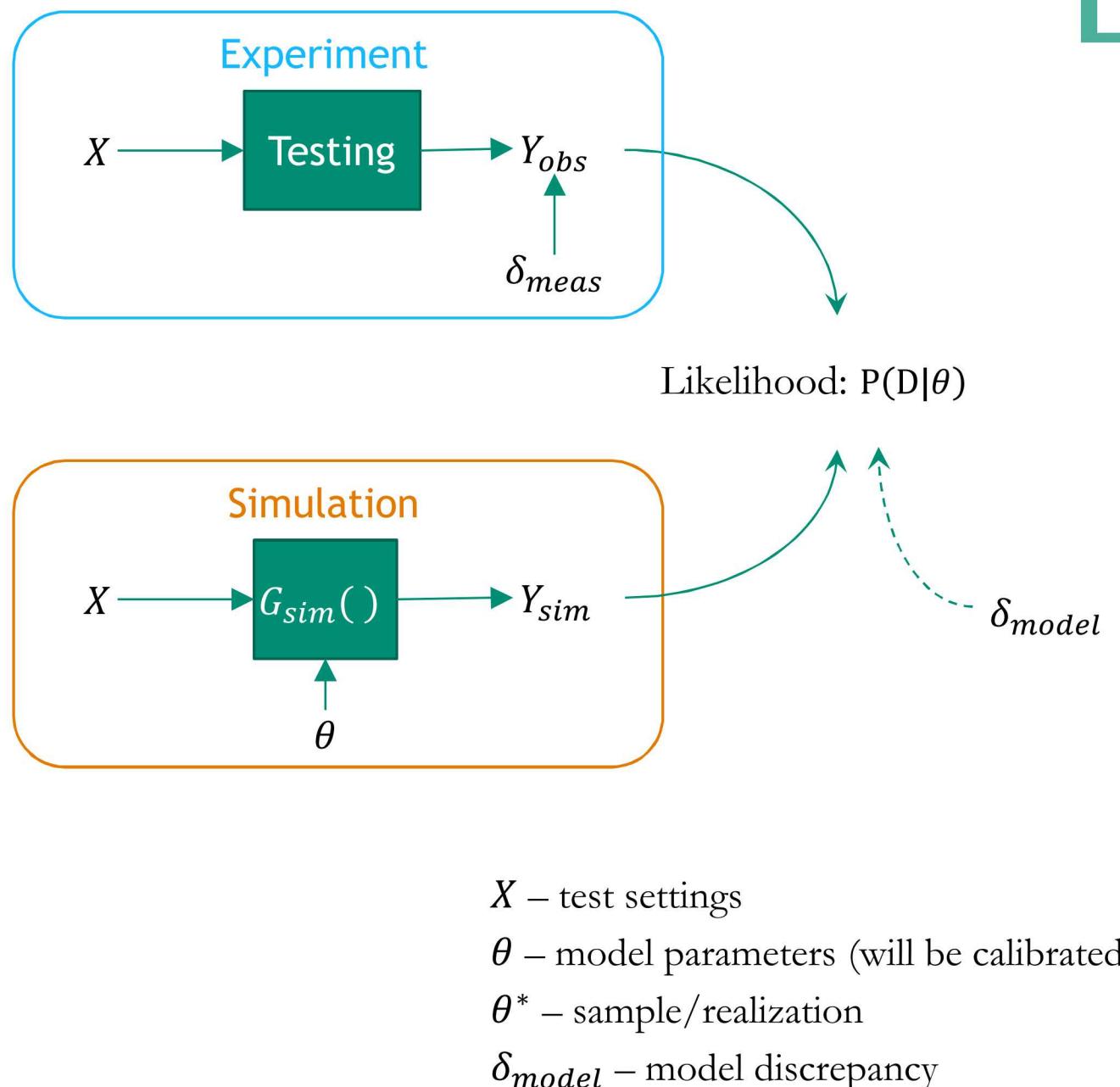
1544 Department
Meeting
Summer Seminar

07/25/2019

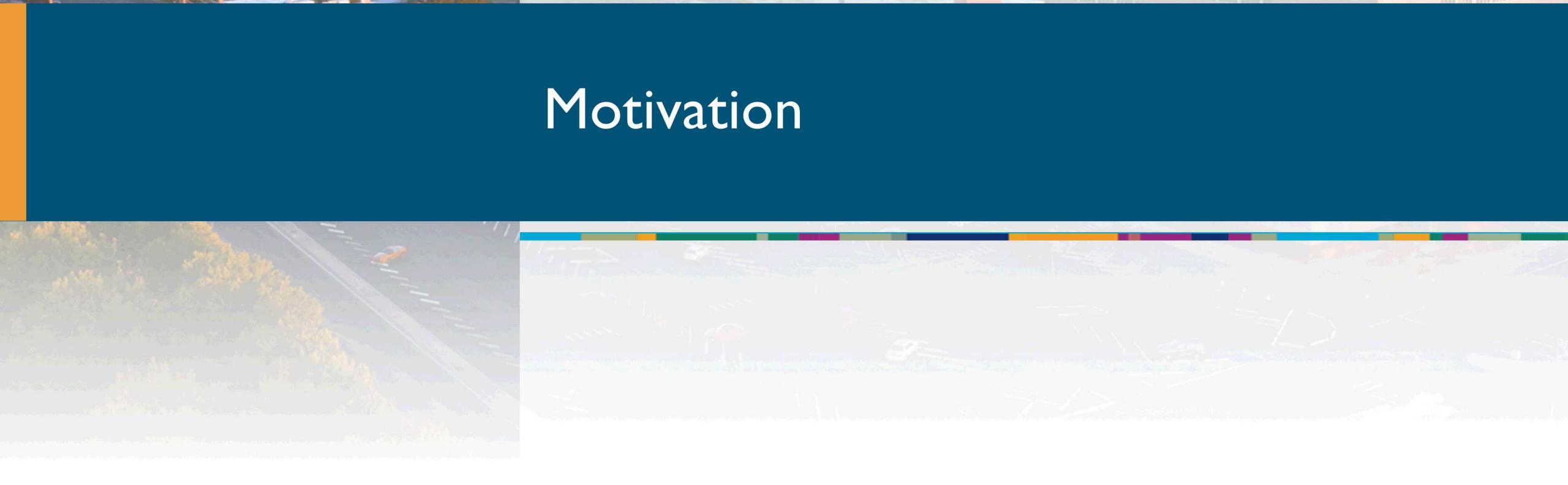
Outline

- Motivation
 - Thermal battery
 - Spatio-temporal data
 - Challenges
- Principal component analysis (PCA)
 - Calibration in latent response (eigen) space
- Novel Sampling Algorithm
 - IISGA
 - Iterative importance sampling
 - Genetic algorithm
- Future Work
 - Model discrepancy formulations

Robust Importance Sampling for Bayesian Model Calibration with Spatio-Temporal Data
(2019, in preparation)



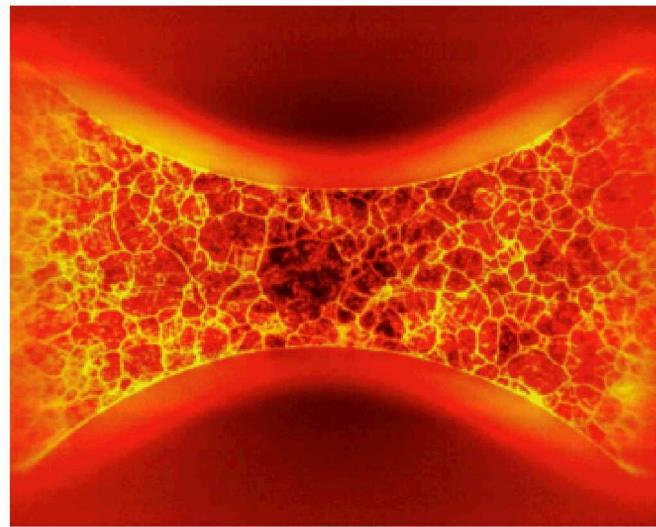
Motivation



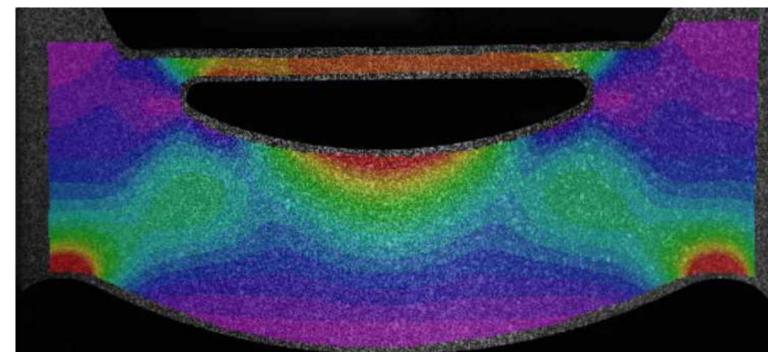
Spatio-temporal outputs “Field Data” are common

Examples

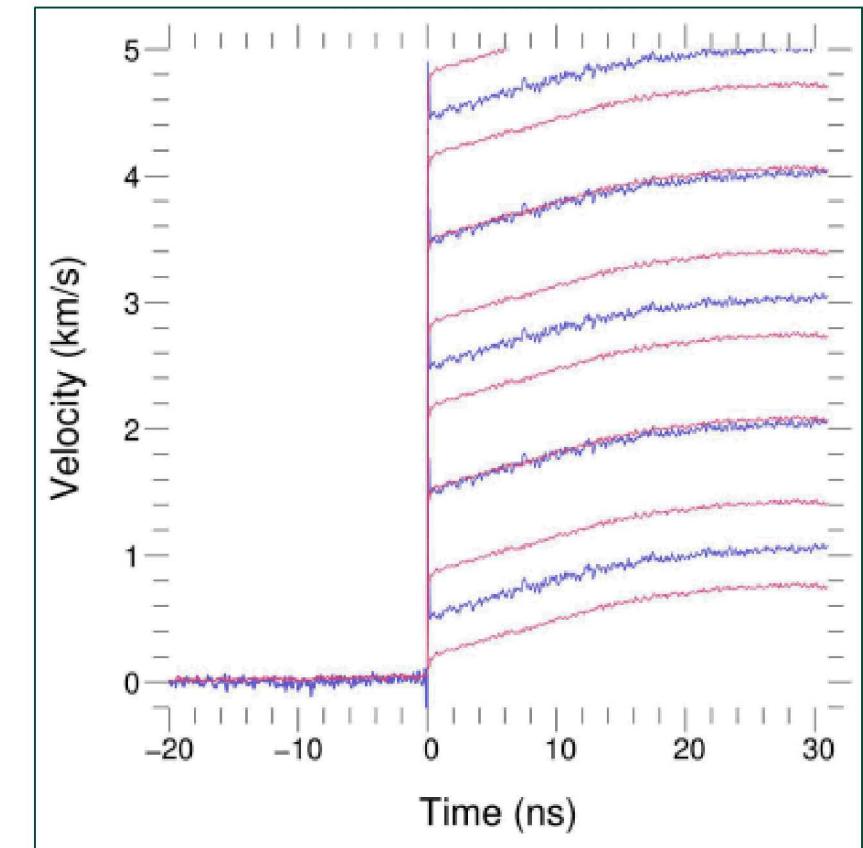
- Digital image correlation
- Thermal heatmap
- Time series data



Thermography for coupon test¹



DIC of D-Specimen²



Time series realizations³

1 SAND2014-2227P

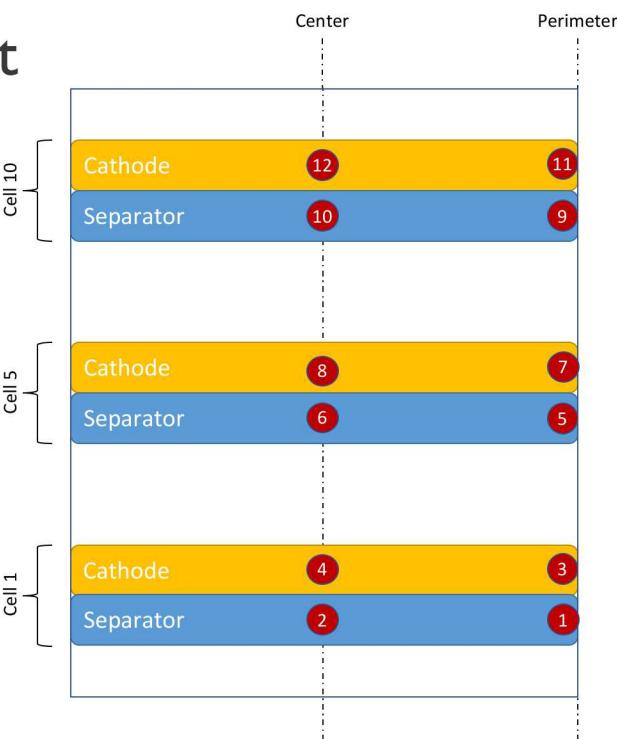
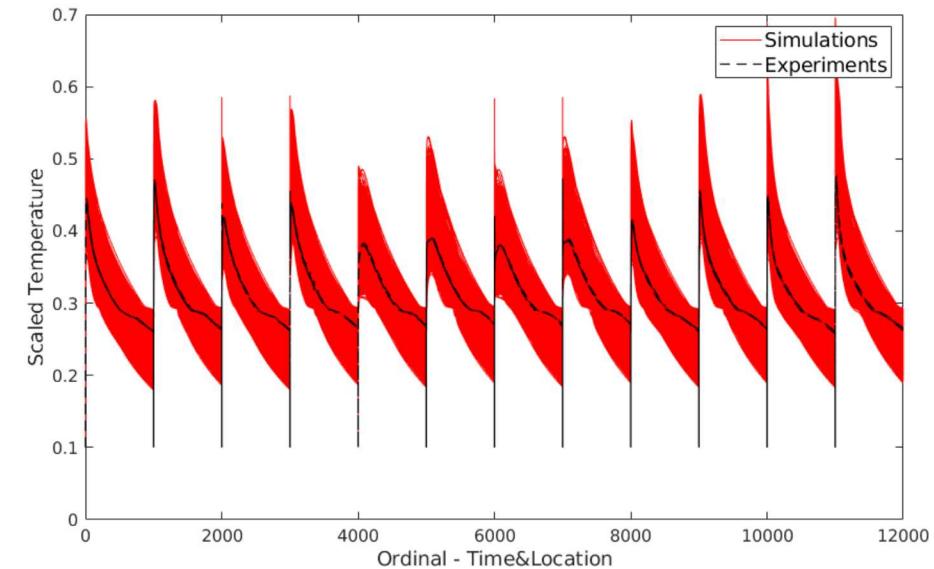
2 SAND2017-10365PE

3 SAND2019-7427C

5 | Thermal battery dataset

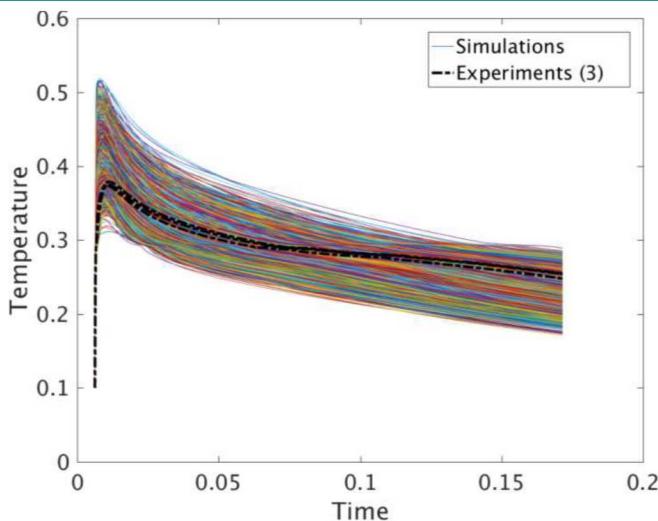
Temperature is spatially and temporally varying

- High dimensional output space



Data preprocessing

- Sim & exp same length
 - Truncate traces
 - Zero padding is also an option
- Time steps the same
 - Align traces
 - Interpolation



How to organize data in a matrix?

- Separate matrices for exps and sims

$location_1, location_2, \dots, location_{12}$

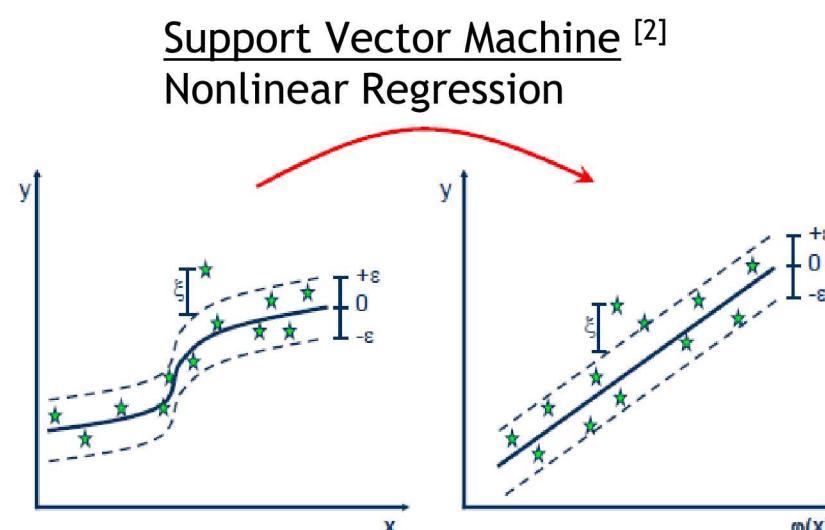
$[t_1, \dots, t_N] \quad [t_1, \dots, t_N] \quad [t_1, \dots, t_N]$

Why spatio-temporal data must be processed before Bayesian Calibration

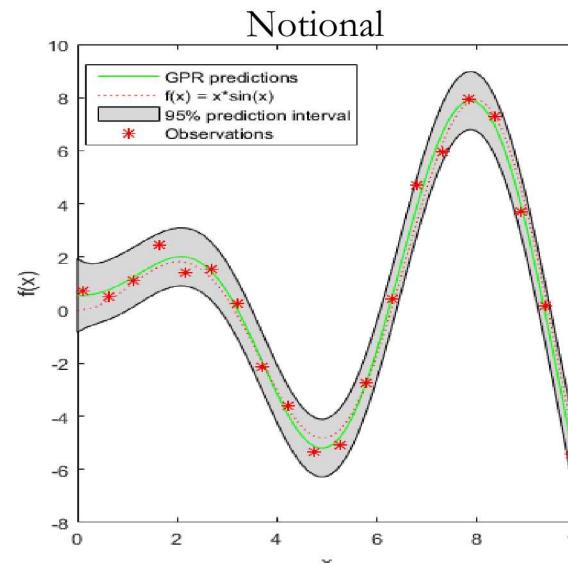
a) surrogate model construction

Building surrogate models

- Gaussian process, SVM, polynomial chaos, ANN, etc. [3]
- One-to-many mapping
 - Inputs are RVs and output is random process/field
- Approaches:
 - Build separate surrogate for each location
 - Include time/space as an input
 - Feature selection
 - Decomposition / dimension reduction technique



Gaussian Process [1]



GP

- Nonparametric kernel based model
- Probabilistic

SVM Regression

- Hyperplane that maximizes the margin
- Nonlinear – map data (via kernel transform) to higher dimension where linearly separable
- Parametric/nonparametric depending on linear/kernel based
- Typically deterministic

[1] MathWorks

[2] saedsayad.com by Dr. Saed Sayad

[3] Neal, K., Hu, Z., Mahadevan, S., & Zumberge, J. (2019). Discrepancy prediction in dynamical system models under untested input histories. *Journal of Computational and Nonlinear Dynamics*, 14(2), 021009.

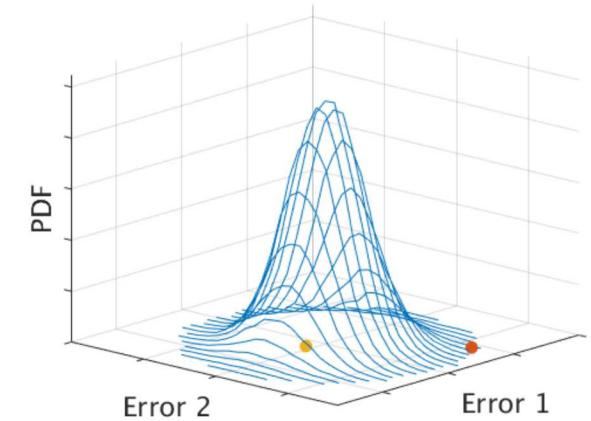
Why spatio-temporal data must be processed before Bayesian Calibration

b) likelihood covariance

Field data has thousands of unique outputs

- High-dimensional joint PDF for likelihood function
- In the case of a Gaussian likelihood (Gaussian error sources),
 - Determinant and inverse of covariance matrix required
 - “As the number of data points [output quantities] increases, this covariance matrix may become ill-conditioned and lead to significant numerical errors in the computation of the likelihood function” [1]

$$L(\boldsymbol{\theta}, \boldsymbol{\mu}, \boldsymbol{\sigma}) = \prod_{i=1}^N \frac{1}{\sqrt{(2\pi)^k |\Sigma|}} \exp \left(-\frac{1}{2} \left((\mathbf{y}_{obs,i} - \mathbf{y}_{sim}(\boldsymbol{\theta})) - \boldsymbol{\mu} \right)^T \Sigma_y^{-1} \left((\mathbf{y}_{obs,i} - \mathbf{y}_{sim}(\boldsymbol{\theta})) - \boldsymbol{\mu} \right) \right)$$



Correlation of error terms

- Correlation in covariance matrix required
 - If a model makes a poor prediction at one output location (spatial or temporal), it is probable that it will also fail at a nearby output location, which suggests statistical correlation between model discrepancies at these two output locations
- Correlation can be calibrated, but increases number of calibration terms
 - Pulls from same experimental data used to update model parameters – which is what we actually want
 - Makes sampling (e.g., MCMC) more difficult due to curse of dimensionality

How to reduce dimension of output?

- Feature selection
 - Doesn’t address correlations
- Mathematical decomposition
 - If eigen based, removes correlation

[1] Ling, Y., Mullins, J., and Mahadevan, S., “Selection of model discrepancy priors in Bayesian calibration,” *J. Comput. Phys.*, vol. 276, pp. 665–680, Nov. 2014.

PCA

Principal Component Analysis (PCA)

Difference between PCA and singular value decomposition (SVD)?

- SVD is a matrix decomposition (mathematical)
 - Generalized Eigen decomposition for rectangular matrices
- PCA is a strategy to remove correlation by mapping data onto principal directions (data science)
 - Eigen decomposition of covariance matrix
 - SVD on centered data matrix

→ Equivalent [1]

Mathematics of SVD [2]

$$A = USV^T$$

$$[n \times p] = [n \times r][r \times r][r \times p]$$

- n – number of samples
- p – number of dimensions (timesteps)
- r – rank of A , number of linearly independent rows or columns, or the dimension of the space that is spanned by the vectors it contains
 - maximum value for r is $\min(n, p)$
- U and V are both column-orthonormal
- S – diagonal with singular values

Dimension Reduction

Latent response:

$$\gamma_{[n \times k]} = U_{[n \times k]}^* S_{[k \times k]}^*$$

where $k \ll r$

Convert back to trace:

$$A_{[n \times p]}^* = \gamma_{[n \times k]} V_{[k \times p]}^{*T}$$

[1] <https://stats.stackexchange.com/questions/134282/relationship-between-svd-and-pca-how-to-use-svd-to-perform-pca>

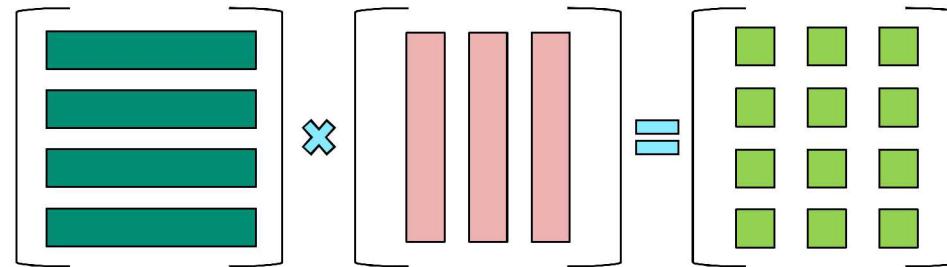
[2] Van Buren, K., Reilly, J., Neal, K., Edwards, H., & Hemez, F. (2017). Guaranteeing robustness of structural condition monitoring to environmental variability. *Journal of Sound and Vibration*, 386, 134-148.

Converting to latent response space

- Each row of A is projected onto the k orthonormal column vectors in V

$$A_{[n \times p]} V_{[p \times k]}^* = \gamma_{[n \times k]} ,$$

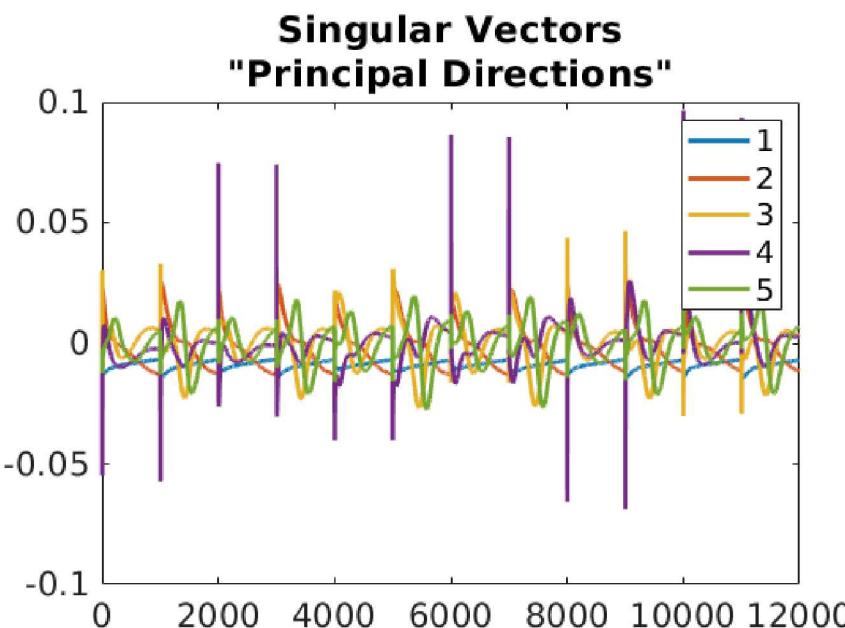
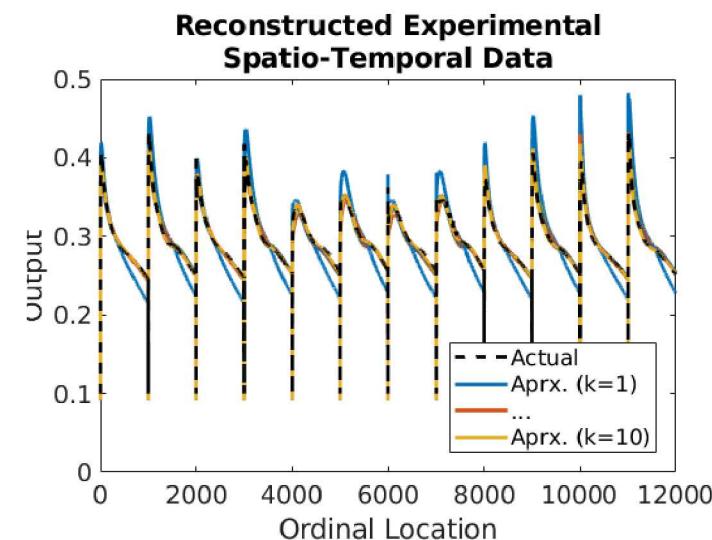
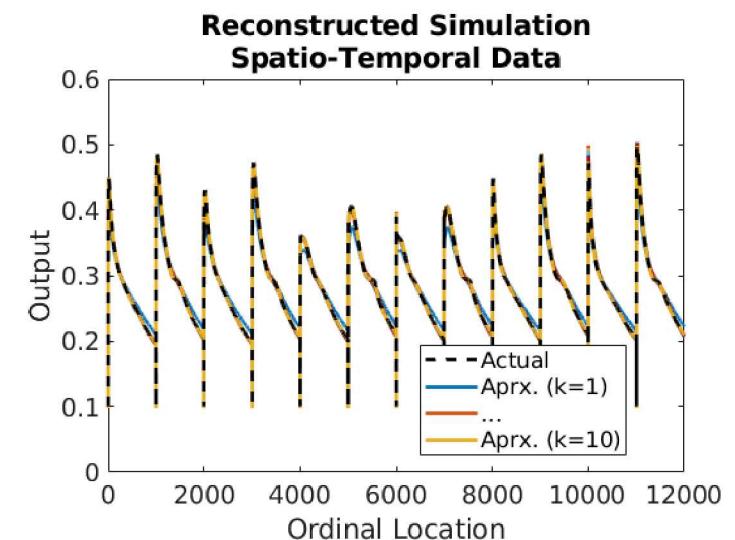
$$(V_{[k \times p]}^*)^{-1} = V_{[p \times k]}$$



- This new space is termed “latent response”, γ , and has k dimensions instead of p
- We want both simulation and experimental data to be in same latent response space for calibration
- Use latent response as outputs for calibration

$$A_{[N \times p]}^{\text{sim}} V_{[p \times k]}^* = \gamma_{[N \times k]}^{\text{sim}} \quad A_{[m \times p]}^{\text{exp}} V_{[p \times k]}^* = \gamma_{[m \times k]}^{\text{exp}}$$

PCA on Thermal Battery

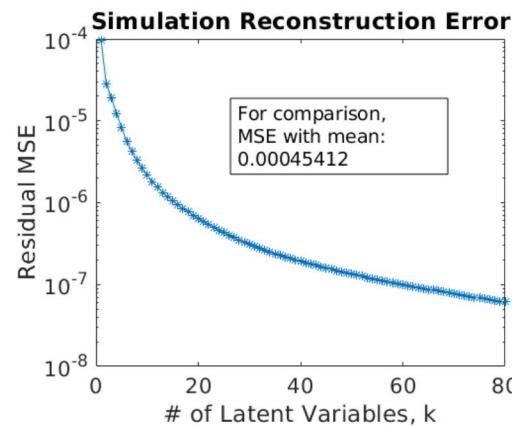
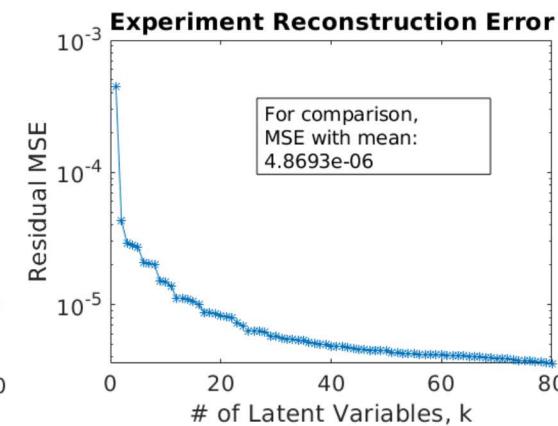
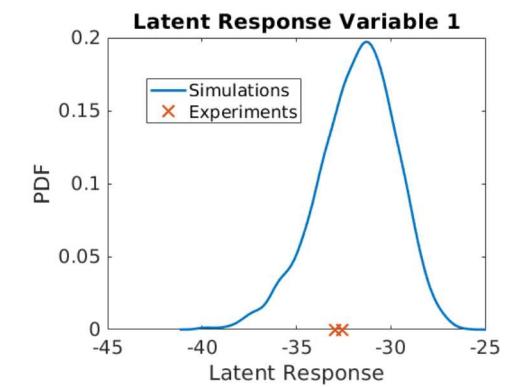


Selecting number of latent variables

- Computed MSE of residual

Higher latent response variables may mostly be capturing noise

- Difficult to build a surrogate for these



Recap: Bayesian Calibration in Latent Response Space

Convert simulations to latent response space

- Use SVD

Build surrogates mapping model parameters to latent response

Convert experimental data to same latent space

- This is a change of basis

Perform calibration in latent response space

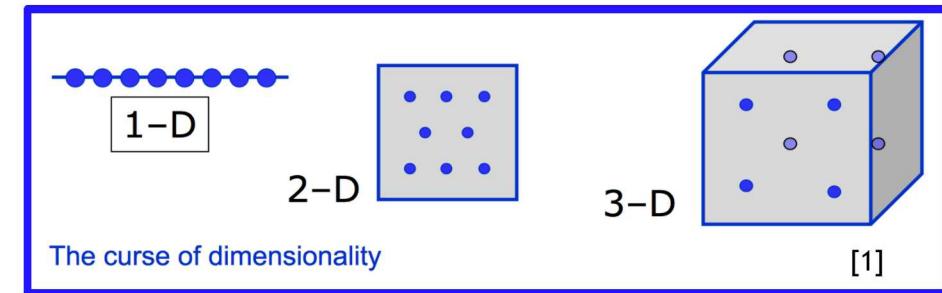
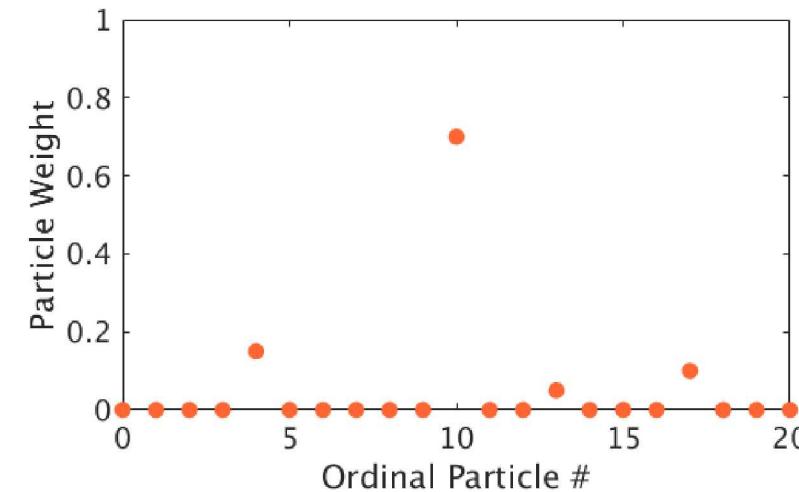
- Likelihood
 - Covariance will be diagonal
→ latent response space is orthogonal
 - Error terms must be calibrated



IISGA

Why IISGA is Needed

- Curse of dimensionality
 - Large number of parameters to calibrate
- Sample degeneration
 - Afflicts sequential Monte Carlo methods
- Leverage high performance computing
 - Parallelization



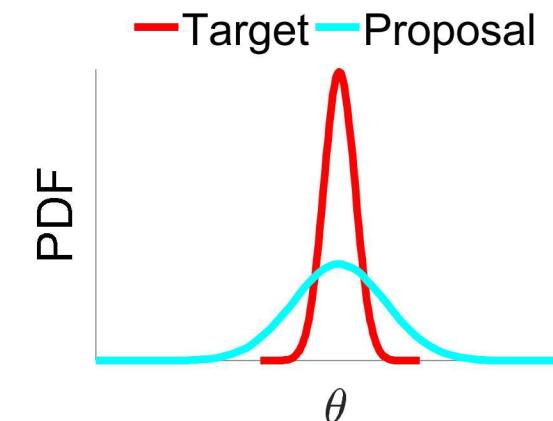
[1] “Bi-Clustering” by Jinze Liu,
Liu, J., & Wang, W. (2003, November). Op-cluster: Clustering by
tendency in high dimensional space. In Third IEEE international
conference on data mining (pp. 187-194). IEEE.

[2] Sandia.gov

IISGA – Iterative Importance Sampling with Genetic Algorithm

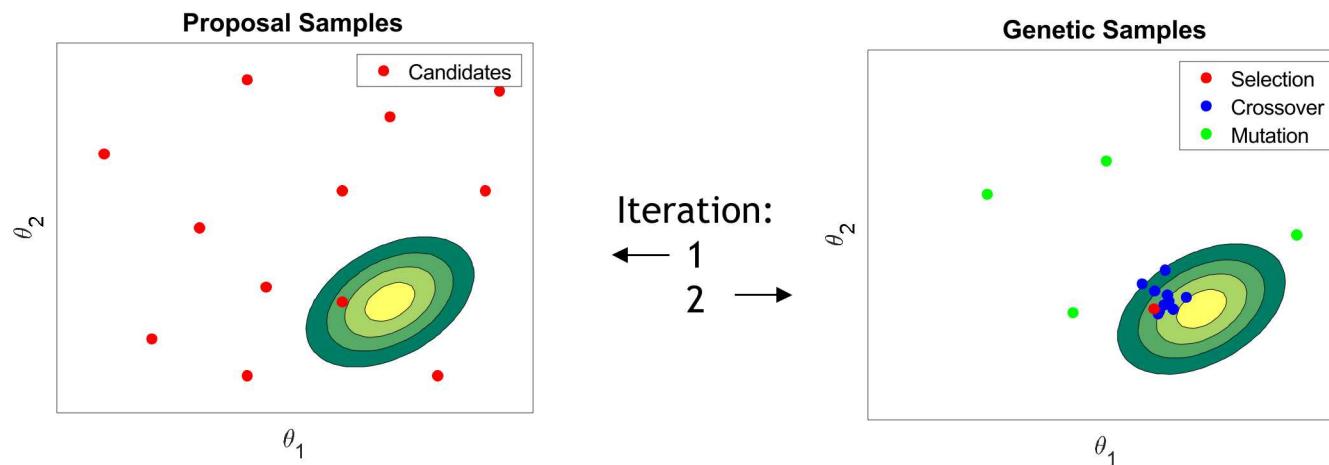
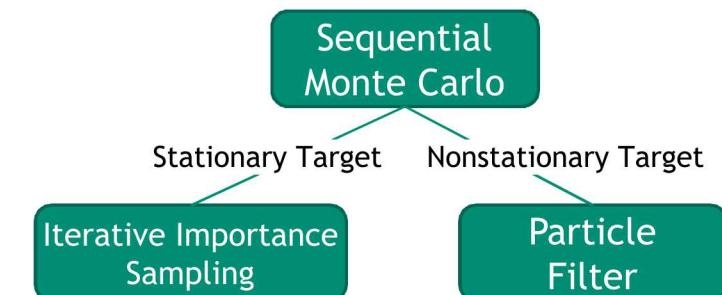
Iterative Importance Sampling

- Draw samples from known “Proposal” distribution $q(\theta)$
- Assign a weight to each sample
- $w(\theta) \propto \frac{p(\theta|D)}{q(\theta)} = \frac{p(D|\theta)p(\theta)}{q(\theta)}$
- Iterative? → gradually moves the proposal towards the target

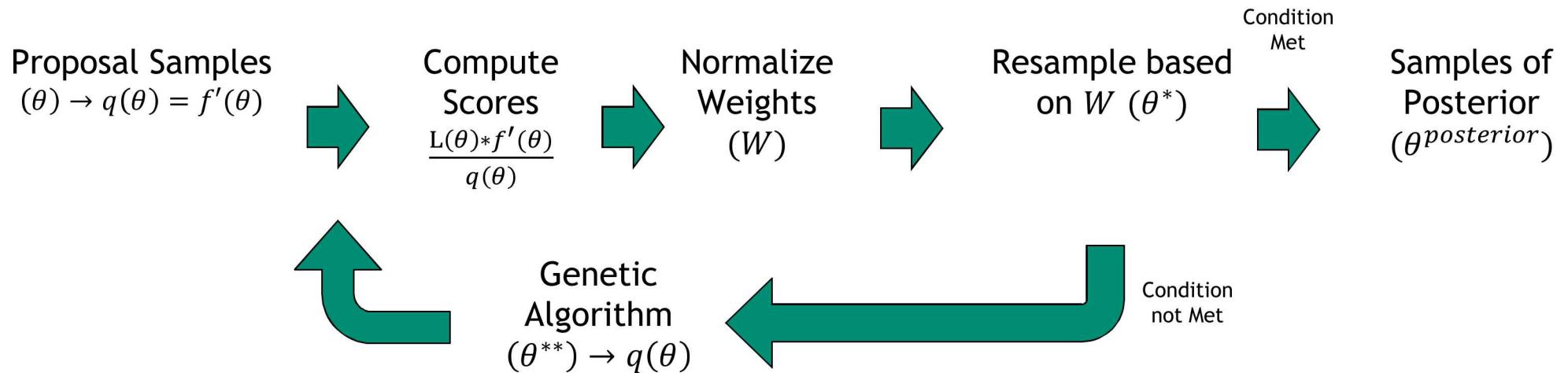


Genetic Algorithm

- Selection – retain best performing samples
- Crossover – add noise to existing samples
- Mutation – randomly sample from prior



IIGSA – Procedure described schematically



3 million posterior samples

IISGA (40 cores)

10 hrs

Slice sampling (1 core)

495 days (predicted)

Significant speedup for previous calibration study

- Vectorized likelihood – most surrogate models are vectorized by default
- MCMC can only evaluate samples serially
- Multi-core
- MCMC can run separate chains on multiple cores

Not so fast.. Computational Challenges with IISGA

How to estimate proposal density?

- Through the GA we have proposal samples but no distribution

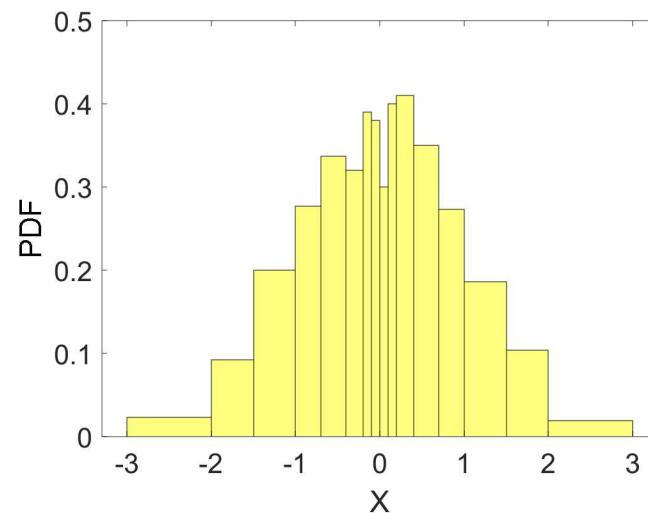
Curse of dimensionality persists

- Few samples from proposal land in target
- Posterior sample set is sparse

Frequency Histogram – Adaptive Binning

Accurately estimate density of proposal distribution

- Kernel estimators are slow
- No built-in N-dimensional histogram function
 - Modified open source code to prevent overflow error
 - Grid of $(N_{bins})^{ndim}$ was sparse, disposed of empty bins
- How to decide on the number of bins?

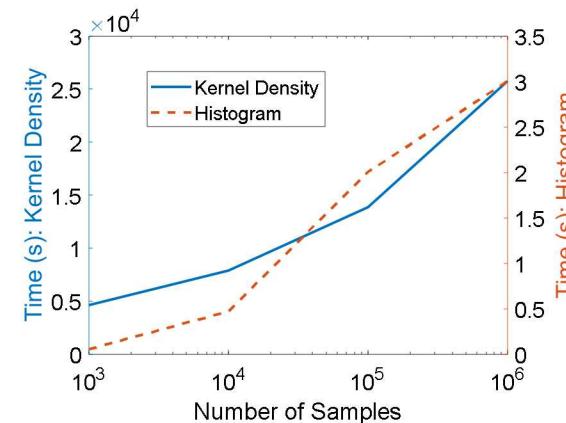
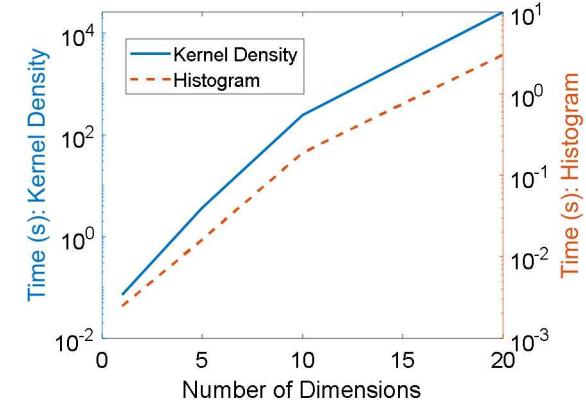


Adaptive binning

- Initially using coarse bins
- For areas of high density, do bin size refinement

Assign a weight to each sample

$$w(\theta) \propto \frac{p(\theta|D)}{q(\theta)} = \frac{p(D|\theta)p(\theta)}{q(\theta)}$$



Challenges with Curse of Dimensionality (I)

Posterior becomes hard to find

Most samples have likelihood weights of ~ 0 , and these samples are lost in resampling

When prior covers a much larger region than posterior, particularly in high dimensions

- $\{\theta^{prior}\} \gg \{\theta^{post}\} \therefore \{Y_{sim}(\theta^{prior}, x)\} \gg \{Y_{sim}(\theta^{post}, x)\}$
- See plot at right
- Recall that the posterior is proportional to the likelihood

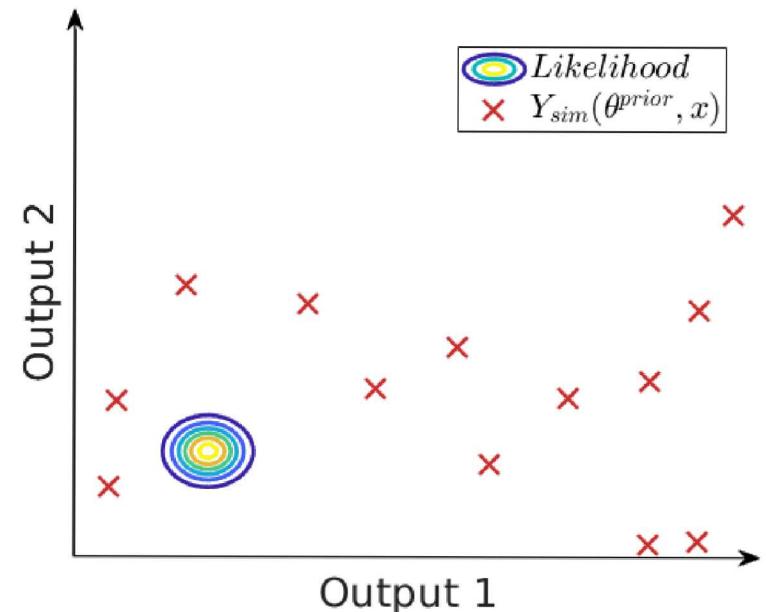
This effect becomes more pronounced as θ becomes higher dimensional

- If for example,
- $range(\theta_i^{prior}) = 2 * range(\theta_i^{post}) \forall i \in \{1: 16\}$
- $\frac{Volume(\theta^{post})}{Volume(\theta^{prior})} = \frac{.5^{16} * Volume(\theta^{prior})}{Volume(\theta^{prior})} = 0.000015$

Essentially, it is difficult for samples from the prior to find (land in) the posterior

Solution: artificially inflate the likelihood

Note, inflating the likelihood works for SMC samplers, not for MCMC



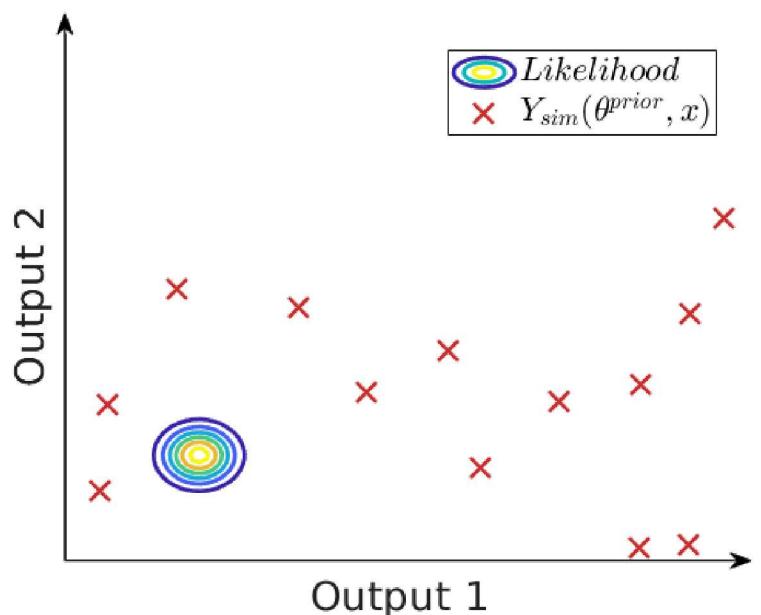
Inflated Likelihood

Idea: scale the likelihood covariance matrix

- This will flatten the likelihood function
- More samples will have non-zero weights
- Reduce scale factor over iterations to avoid a bias posterior

Similar to simulated annealing

- “Temperature” acts as a SF for the distance (in terms of objective function) a proposed x' can be from current best solution x
- Decreases over iterations



Optimization Terminology

$$\begin{aligned} & \max f(x) \\ & \text{s. t. } x \in \Omega \end{aligned}$$

f - objective function
 x - decision variable
 Ω - feasible set

Calibration Parallels

$f \rightarrow L$ - likelihood function
 $x \rightarrow \theta$ - model parameters
 $\Omega \rightarrow \pi'$ - prior distribution

Simulated Annealing (maximize)

Iterate over values of x

```

 $\Delta = f(x') - f(x)$ 
if  $\Delta \geq 0$ 
   $x = x'$ 
else
  if  $\exp\left(\frac{\Delta}{Temp}\right) \geq \text{Uniform}(0,1)$ 
     $x = x'$ 
  end
end
Reduce Temp

```

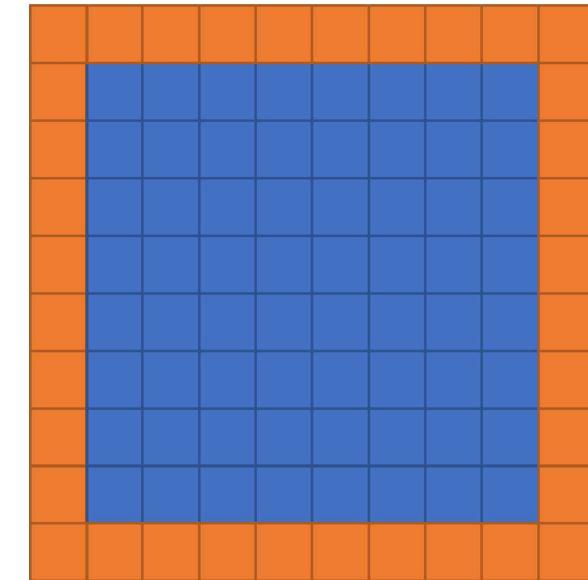
Challenges with Curse of Dimensionality (2)

More samples become close to perimeter

Computed below: samples in a perimeter cell

Causes problems with noise added in crossover (GA)

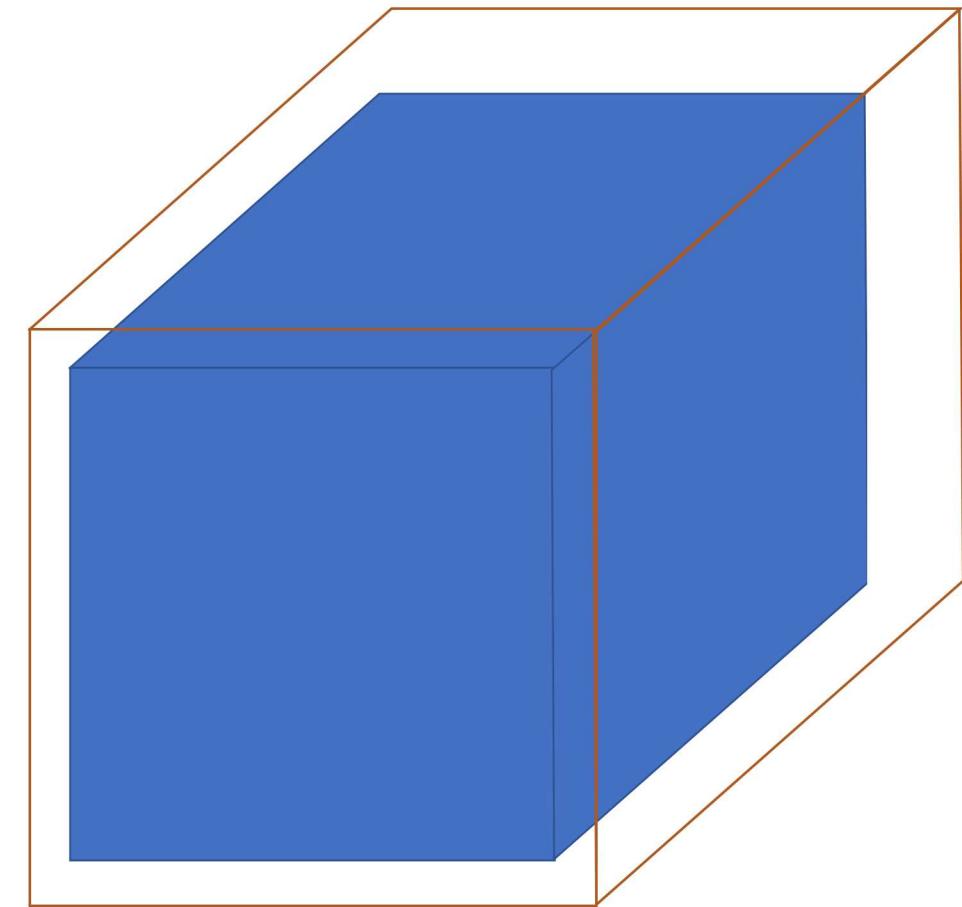
$$1 - \left(\frac{8}{10}\right)^1 = 20\%$$



$$1 - \left(\frac{8}{10}\right)^2 = 36\%$$

Solution:

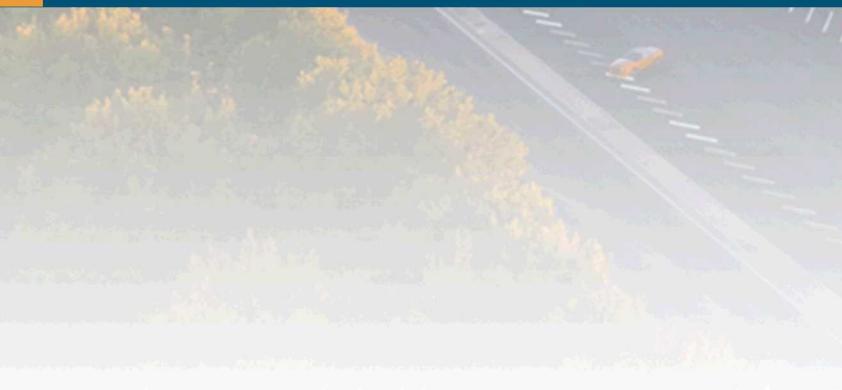
- Gaussian noise in crossover
- add check that sample is inside bounds



$$1 - \left(\frac{8}{10}\right)^3 = 48.8\%$$

$$1 - \left(\frac{8}{10}\right)^{26} = 99.7\%$$

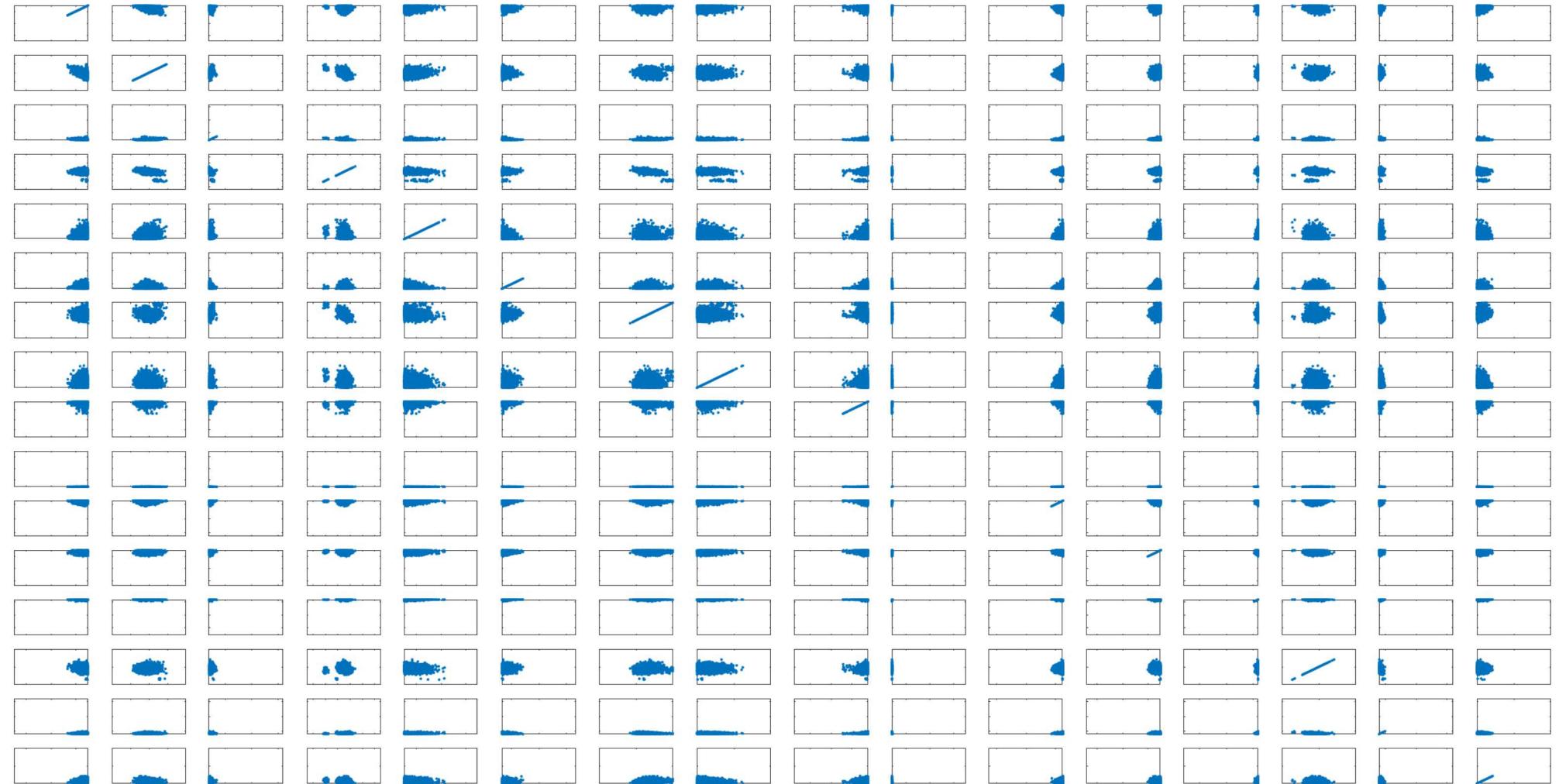
Results from Thermal Battery



Posterior Samples

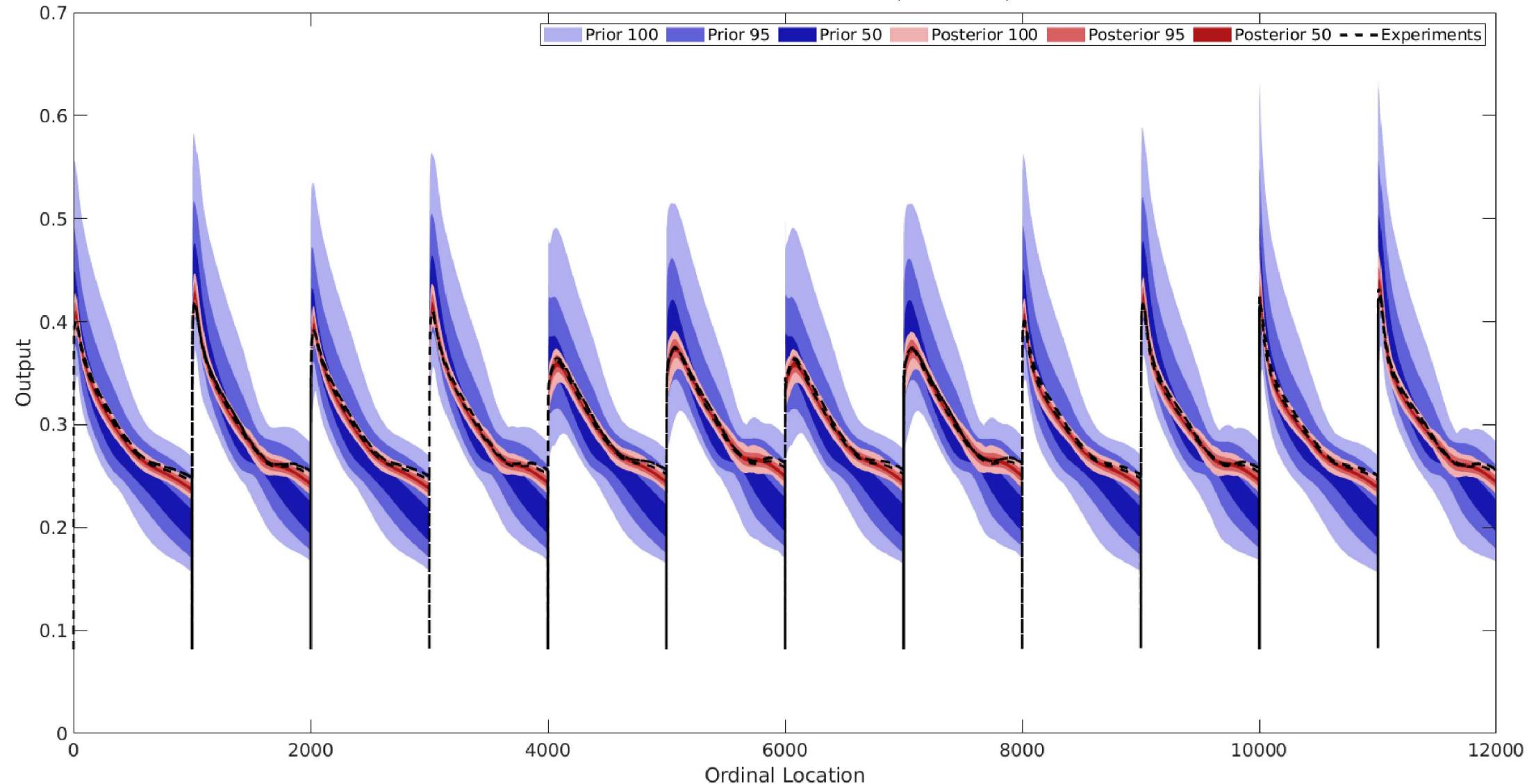
Axis limits are range of uniform priors

- 16 model parameters, plotted to show correlations

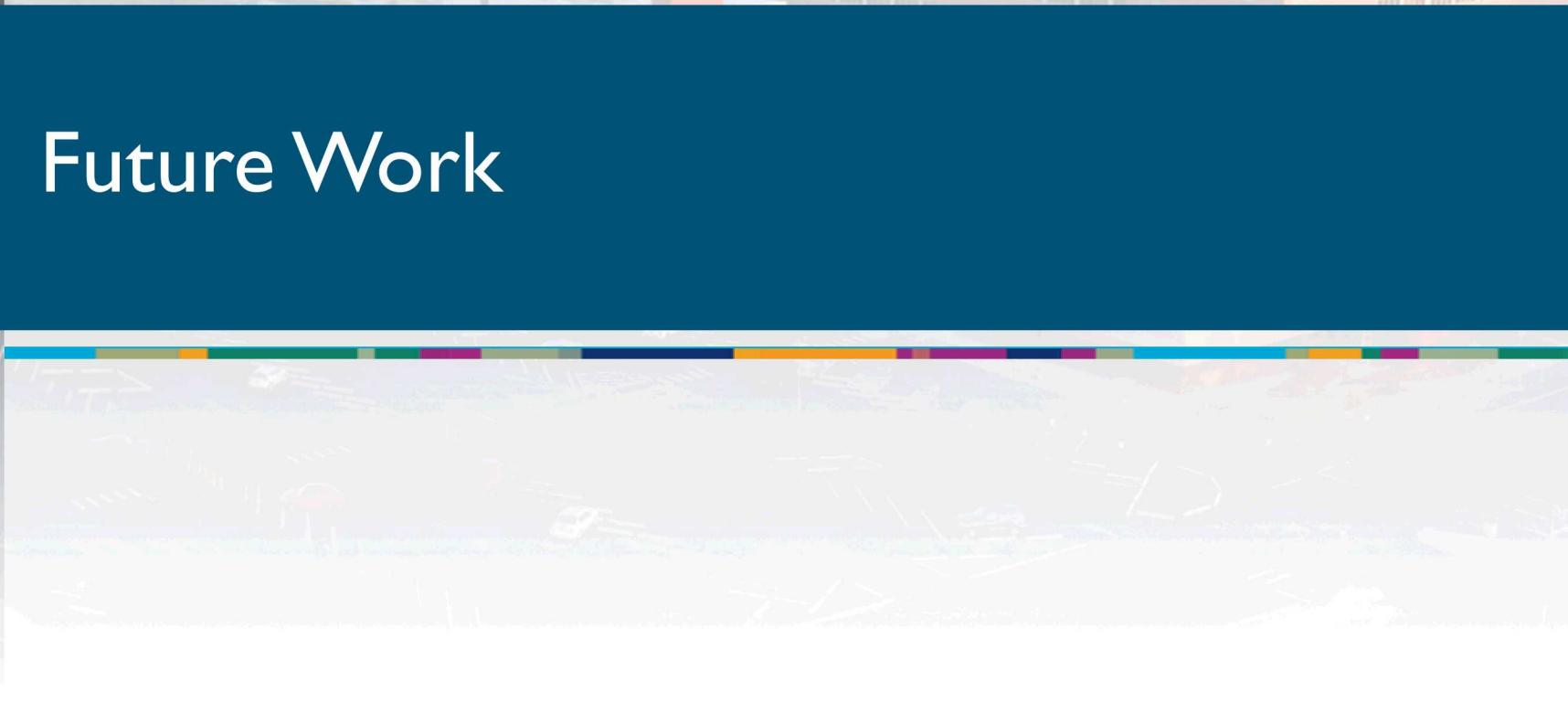


Calibration Fit

Reconstructed Field Data (I.C. Low)

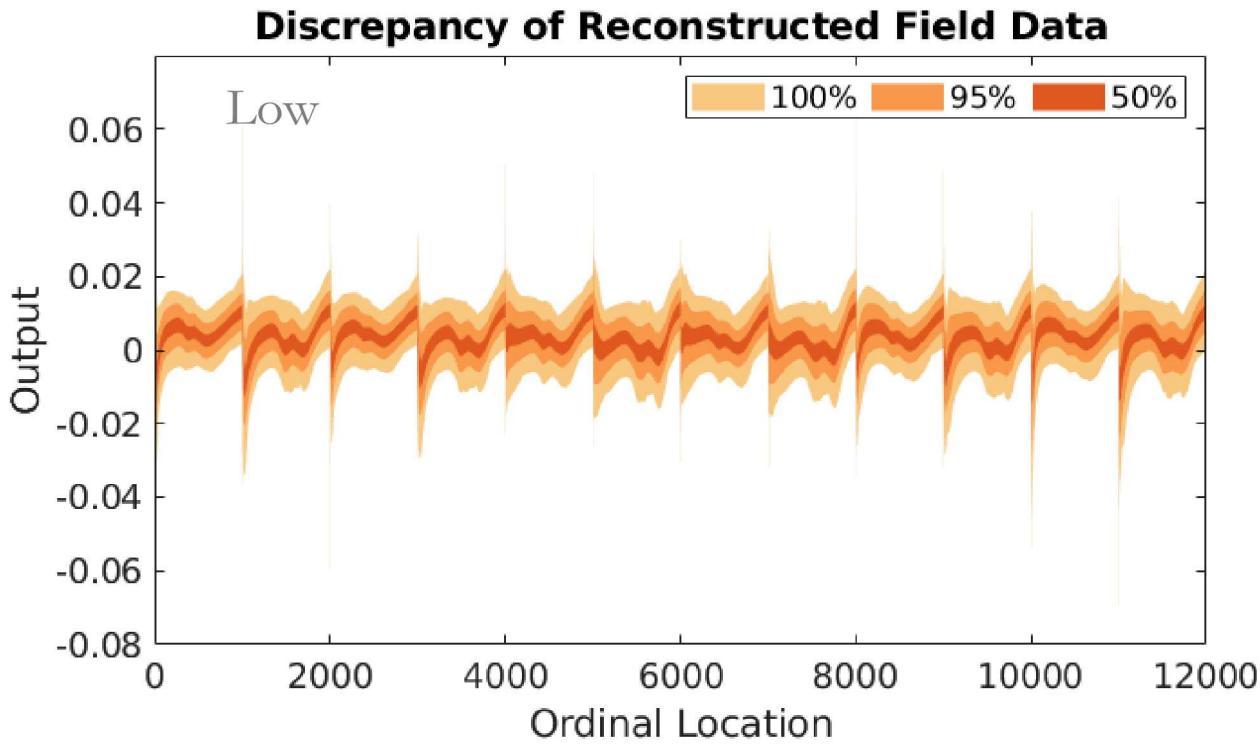
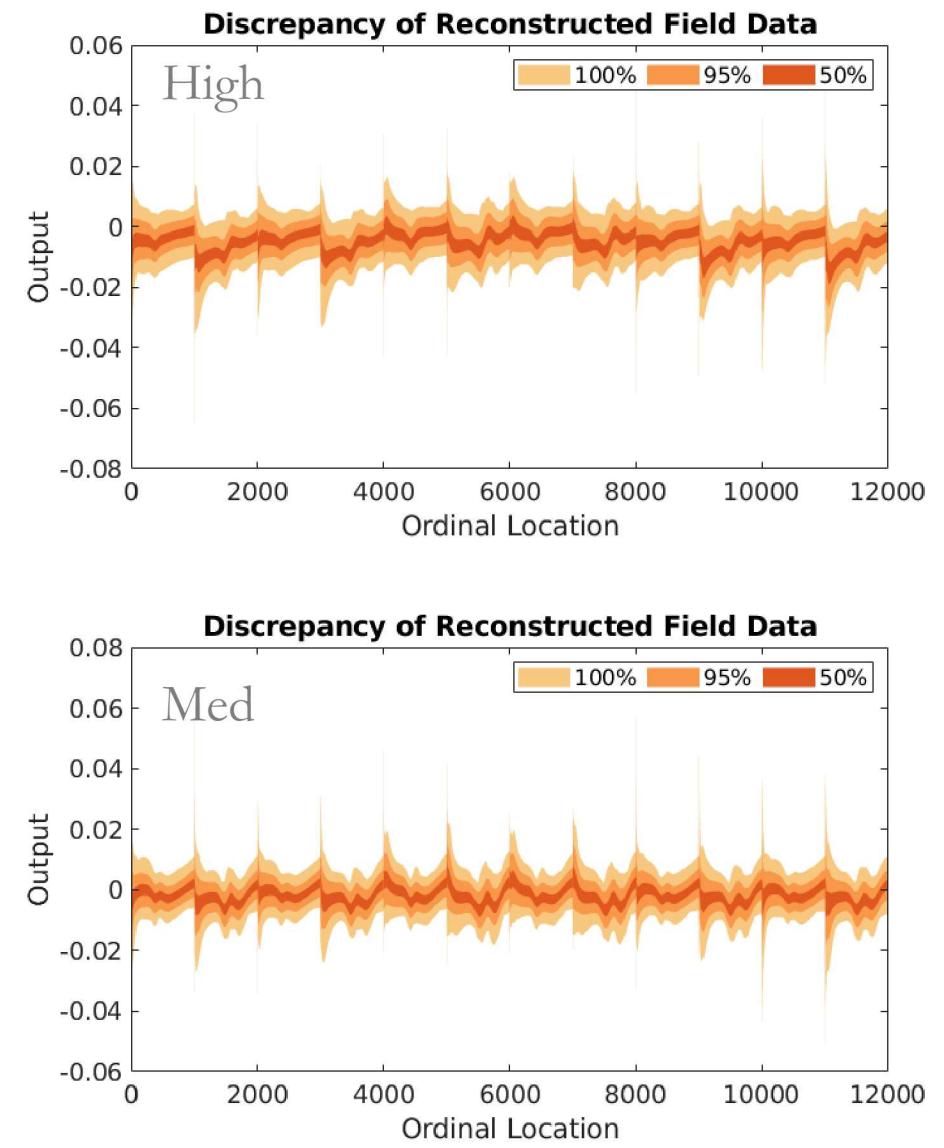


Future Work



Model Discrepancy (after calibration)

- $\delta_{model}(x) = \text{mean}(Y_{obs}(x)) - Y_{sim}(\theta^{post}, x)$
- δ_{model} varies over time, location, and initial temperature



Multiple discrepancy formulations

Extend these to latent response space

- Can map back to spatio-temporal space

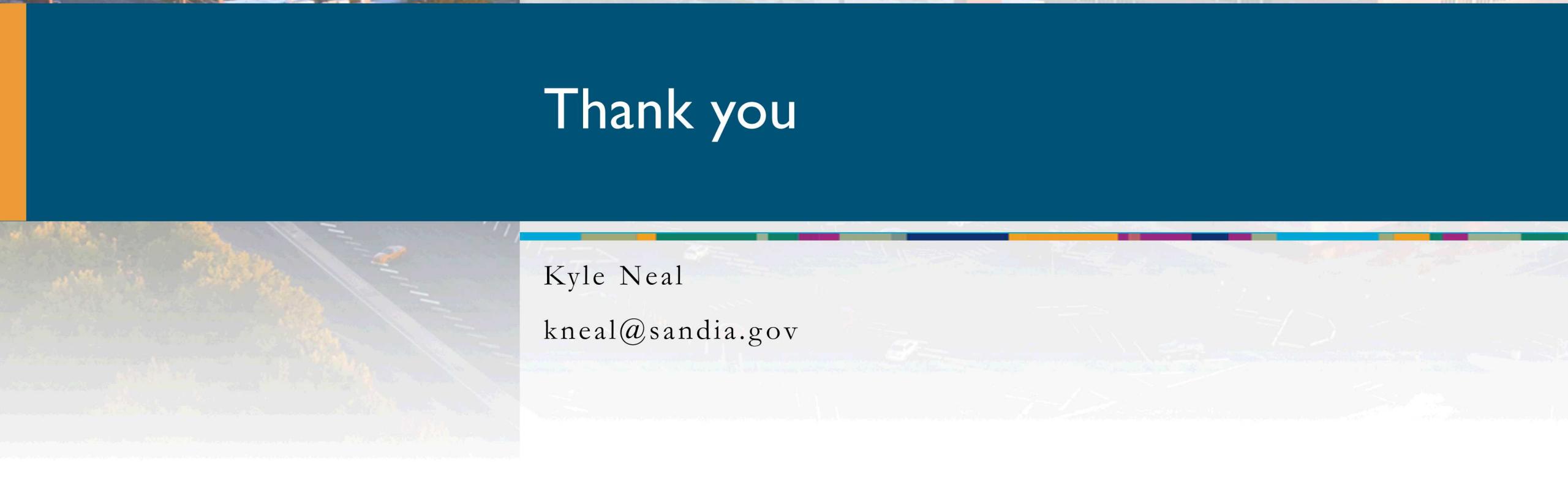
KOH framework

- A Gaussian process is used to represent the dependence of model discrepancy on input conditions (initial temperature)

Seminar (Early Fall): Non-intrusive state estimation of model error

- Model error – differential equations
 - Can be extrapolated
- Model discrepancy – output quantities
 - May only be applicable to calibration test settings
- Work with Abhinav to apply his methods to thermal battery

Thank you



Kyle Neal
kneal@sandia.gov

References

Neal, K., et al. (2019) Robust Importance Sampling for Bayesian Model Calibration with Spatio-Temporal Data (in preparation)

Neal, K., Hu, Z., Mahadevan, S., & Zumberge, J. (2019). Discrepancy prediction in dynamical system models under untested input histories. *Journal of Computational and Nonlinear Dynamics*, 14(2), 021009.

Ling, Y., Mullins, J., and Mahadevan, S., “Selection of model discrepancy priors in Bayesian calibration,” *J. Comput. Phys.*, vol. 276, pp. 665–680, Nov. 2014.

Van Buren, K., Reilly, J., Neal, K., Edwards, H., & Hemez, F. (2017). Guaranteeing robustness of structural condition monitoring to environmental variability. *Journal of Sound and Vibration*, 386, 134-148.

Liu, J., & Wang, W. (2003, November). Op-cluster: Clustering by tendency in high dimensional space. In Third IEEE international conference on data mining (pp. 187-194). IEEE.

Kennedy, M. C., & O'Hagan, A. (2001). Bayesian calibration of computer models. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 63(3), 425-464.

Morfeld, M., Day, M. S., Grout, R. W., Heng Pau, G. S., Finsterle, S. A., & Bell, J. B. (2018). Iterative importance sampling algorithms for parameter estimation. *SIAM Journal on Scientific Computing*, 40(2), B329-B352.

Backup Slides

Bayesian Calibration

Bayes' Theorem

- Use observations to update beliefs

Posterior

- Find values of theta that are most probable given the data

$$P(\boldsymbol{\theta}|D) = \frac{P(D|\boldsymbol{\theta}) * P(\boldsymbol{\theta})}{P(D)}$$

$$P(\boldsymbol{\theta}|D) \propto P(D|\boldsymbol{\theta}) * P(\boldsymbol{\theta})$$

$$\propto P(D|\boldsymbol{\theta}) = L(\boldsymbol{\theta})$$

Uncertainty sources

- Aleatory – irreducible, naturally varying
 - Measurement noise
- Epistemic – reducible, lack of knowledge
 - Model parameter uncertainty (calibration)
 - Model bias

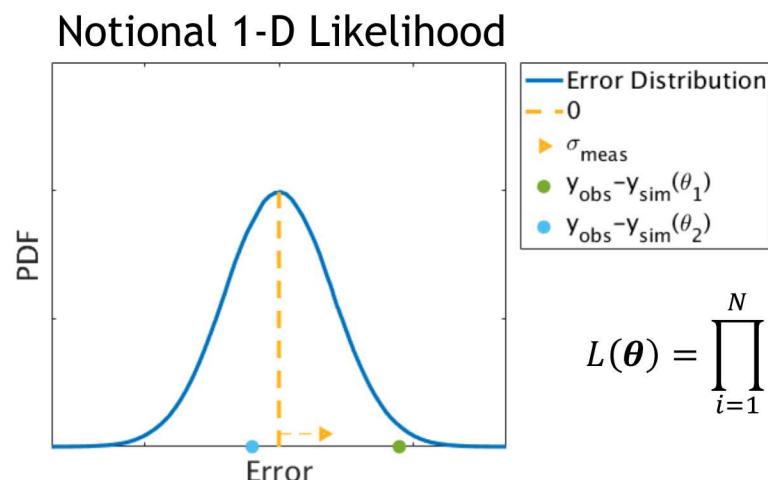
Likelihood (case 1):

- $Y_{obs} = Y_{sim} + \epsilon_{meas}$
- Measurement noise: i.i.d. with $N(0, \sigma^2)$

Posterior Likelihood Prior

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Data

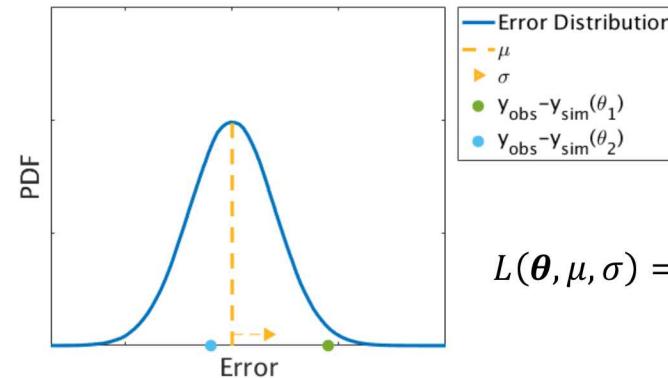


$$L(\boldsymbol{\theta}) = \prod_{i=1}^N \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{1}{2\sigma^2} \left((y_{obs,i} - y_{sim}(\boldsymbol{\theta})) - 0 \right)^2 \right)$$

Bayesian Calibration Cont'd

Likelihood (case 2):

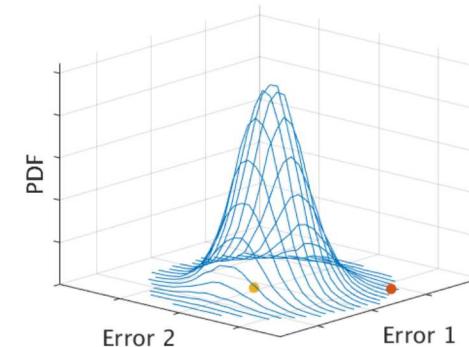
- $Y_{obs} = Y_{sim} + \epsilon_{meas} + \delta_{model}$
- Model error can take on different forms
- Kennedy O'Hagan Framework
 - Treat model error as a Gaussian random process with unknown mean and covariance



$$L(\boldsymbol{\theta}, \mu, \sigma) = \prod_{i=1}^N \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2} ((y_{obs,i} - y_{sim}(\boldsymbol{\theta})) - \mu)^2\right)$$

Likelihood (case 3):

- Multiple output quantities
- Covariance matrix of errors needed



$$L(\boldsymbol{\theta}, \boldsymbol{\mu}, \boldsymbol{\sigma}) = \prod_{i=1}^N \frac{1}{\sqrt{(2\pi)^k |\Sigma|}} \exp\left(-\frac{1}{2} \left((y_{obs,i} - y_{sim}(\boldsymbol{\theta})) - \boldsymbol{\mu} \right)^T \Sigma_y^{-1} \left((y_{obs,i} - y_{sim}(\boldsymbol{\theta})) - \boldsymbol{\mu} \right) \right)$$

Solving for posterior

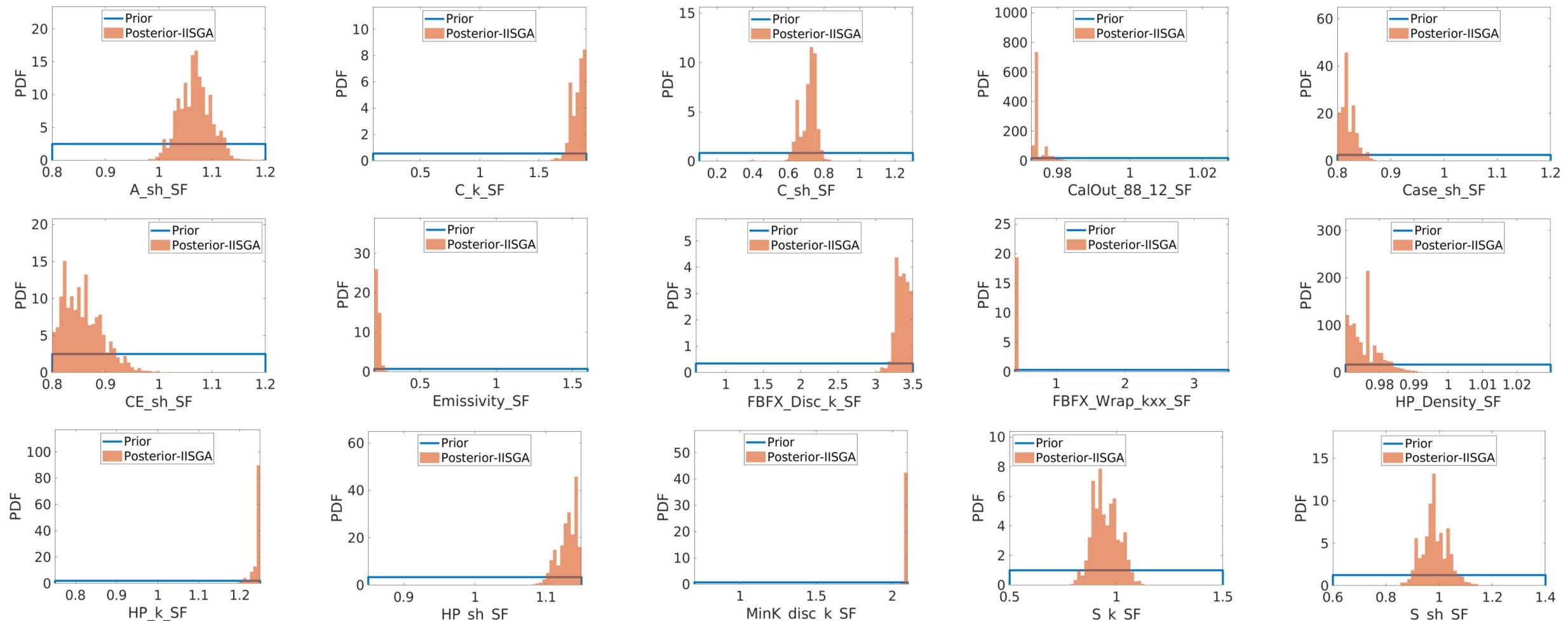
- Markov chain Monte Carlo (MCMC)
 - Samples from chain approach posterior distribution
- Particle filter (PF)
 - Particles weighted based on likelihood scores
 - Easily parallelizable
- Sample-based Bayesian methods require many model evaluations
 - Replace computationally expensive physics model with efficient surrogate model

Current Implementation of IISGA

17 calibration parameters	5 output variables	Samples: 10 million	Resampling algorithm 10 iterations	50 cores ~11hrs
---------------------------	--------------------	---------------------	------------------------------------	-----------------

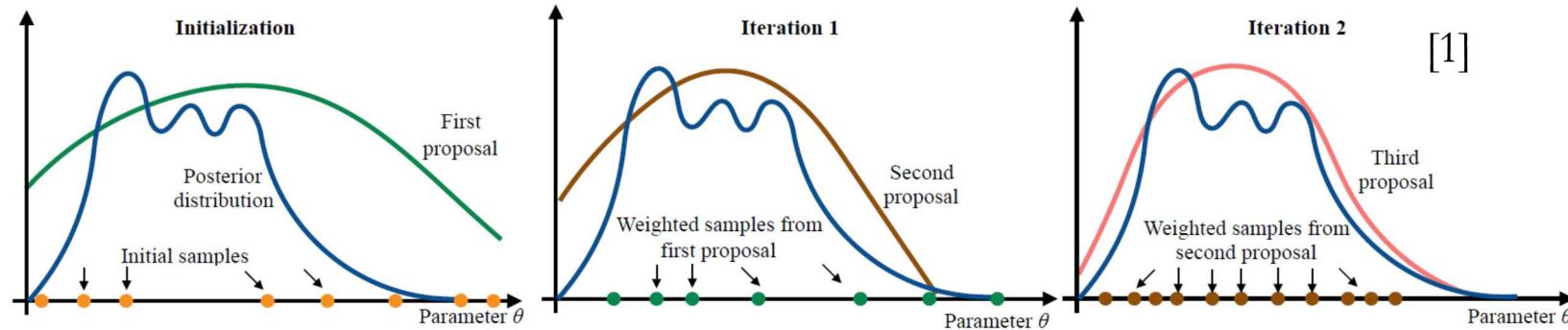
Posteriors

- Marginal posteriors for all 16 model parameters



Iterative Importance Sampling Algorithm (ISA) [1]

Basic Idea: iteratively improve the proposal distribution



Stopping criteria:

- $|R_{k+1} - R_k| < tol$
- where $R = \frac{var(w)}{E(w)^2} + 1$
 - w is the normalized weight,
- if $q(\theta) = p(\theta|D)$, then $var(w) = 0$ so $R = 1$

[1] Morzfeld, M., Day, M. S., Grout, R. W., Heng Pau, G. S., Finsterle, S. A., & Bell, J. B. (2018). Iterative importance sampling algorithms for parameter estimation. *SIAM Journal on Scientific Computing*, 40(2), B329-B352.

Iterative Importance Sampling Algorithm (ISA) - Differences

Their Method

Use a Gaussian for each iteration of proposal distribution: q_i , where $i = 1: N_{iterations}$

- Update the mean and variance: $q_{i+1} = N(\mu_{i+1}, \sigma_{i+1})$, where μ_{i+1} σ_{i+1} are computed from $\{\theta_i, w_i\}$
- Generate new samples: $\theta_{i+1} \sim q_{i+1}$

General strategy seems to be start with a broad proposal distribution and hone in

Our Method

Construct empirical/kernel density distributions based on the samples

- Should better capture multimodality

Rather than draw new samples from a normal on each iteration, the same samples are carried throughout – but the samples are allowed to change *genetically*