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Motivation




4 | Spatio-temporal outputs “Field Data” are common
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5 I Thermal battery dataset
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Why spatio-temporal data must be processed before Bayesian Calibration

a) surrogate model construction

Gaussian Process [']

g Notional 5
Building surrogate models o — - |
° Gaussian process, SVM, polynomial chaos, ANN, etc. [3] *[| e 55 preacion mona

° One-to-many mapping

o Inputs are RVs and output is random process/ field
> Approaches:

° Build separate surrogate for each location

° Include time/space as an input

° Feature selection

> Decomposition / dimension reduction technique

Support Vector Machine [
Nonlinear Regression

X P(x)

GP

° Nonparametric kernel based model

o Probabilistic

SVM Regression

> Hyperplane that maximizes the margin

linearly separable
o Parametric/nonparametric depending on linear/kernel based
° Typically deterministic [1] MathWorks
[2] saedsayad.com by Dr. Saed Sayad

[3] Neal, K., Hu, Z., Mahadevan, S., & Zumberge, J. (2019). Discrepancy
prediction in dynamical system models under untested input
histories. Journal of Computational and Nonlinear Dynamics, 14(2), 021009.

> Nonlinear — map data (via kernel transform) to higher dimension where I



Why spatio-temporal data must be processed before Bayesian Calibration

b) likelihood covariance

Field data has thousands of unique outputs
° High-dimensional joint PDF for likelthood function

° In the case of a Gaussian likelithood (Gaussian error sources),

> Determinant and inverse of covariance matrix required

> “As the number of data points [output quantities] increases, this covariance matrix may
become ill-conditioned and lead to significant numerical errors in the computation of the

likelithood function” [1]

Correlation of error terms

o Correlation in covariance matrix required

o If a model makes a poor prediction at one output location (spatial or temporal),

it is probable that it will also fail at a nearby output location, which suggests

statistical correlation between model discrepancies at these two output locations

o Correlation can be calibrated, but increases number of
calibration terms

> Pulls from same experimental data used to update model parameters — which is

what we actually want

° Makes sampling (e.g.,, MCMC) more difficult due to curse of dimensionality

N
LO,p o) = 1_[ mexp (“ % ((yobs,i - ysim(a)) - u)T 23_11 ((yobs,i - ysim(e)) - M))
i=1

PDF

Error 2 Error 1

How to reduce dimension of output?

o Feature selection

o Doesn’t address correlations

> Mathematical decomposition

o If eigen based, removes correlation

[1] Ling, Y., Mullins, J., and Mahadevan, S., “Selection of model discrepancy priors
in Bayesian calibration,” J. Comput. Phys., vol. 276, pp. 665-680, Nov. 2014.







9 I Principal Component Analysis (PCA)

Difference between PCA and singular value decomposition (SVD)?

> SVD is a matrix decomposition (mathematical)

> Generalized Eigen decomposition for rectangular matrices

> PCA is a strategy to remove correlation by mapping data onto principal directions (data science)

> FEigen decomposition of covariance matrix

o SVD on centered data matrix

Mathematics of SVD [l

o

o

o

[e]

[e]

A= Usv’

[nXp]=[nXr][rXr][rXp]

n — number of samples

p — number of dimensions (timesteps)

‘ Equivalent [1

r — rank of A, number of linearly independent rows or
columns, or the dimension of the space that is spanned

by the vectors it contains

° maximum value for 7 is min(n,p)
U and V are both column-orthonormal

S — diagonal with singular values

Dimension Reduction

Latent response:
YVinxk] = U[*nxk]S[*kxk]
where k L r

Convert back to trace:

[ 1] https://stats.stackexchange.com/questions/134282/relationship-
between-svd-and-pca-how-to-use-svd-to-perform-pca

[2] Van Buren, K., Reilly, J., Neal, K., Edwards, H., & Hemez, F. (2017).
Guaranteeing robustness of structural condition monitoring to
environmental variability. Journal of Sound and Vibration, 386, 134-148.

%k *T
A[n><p] = V[nxk]V [kxp] I



10 I Converting to latent response space E.:

* FEach row of 4 is projected onto the k orthonormal column vectors in V

AnxpVipxk] = Yinxk] » ] ulinln D E D |
o 1 —| [ [ &
«T o * 23 —
(V' hexp1 ) = Vipcag [ ] O O &
I | VUL | BEo
* This new space is termed “latent response”, ¥, and has k dimensions
instead of p
* We want both simulation and experimental data to be in same latent |
response space for calibration
* Use latent response as outputs for calibration I

' % _ _si exp # ___exp
AinxpVipxk] = Yinxkl  Apmxp)Vioxk] = Y pmxk] |



11 I PCA on Thermal Battery

Reconstructed Experimental Reconstructed Simulation
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12 I Recap: Bayesian Calibration in Latent Response Space

Convert simulations to latent response space
> Use SVD

Build surrogates mapping model parameters to latent response

Convert experimental data to same latent space

° This 1s a change of basis Experimental
Field Data

Perform calibration in latent response space
> Likelihood

> Covariance will be diagonal
- latent response space 1s orthogonal

o Error terms must be calibrated

Spatio-
Temporal
Outputs

Model Physics
Parameters Simulation

Surrogate

SVD

Mapping

A
1

Same
v

SVD

Mapping

Latent
Responses

Likelihood
(Orthogonal)

Latent

Responses

Model







14 ‘ Why lISGA is Needed

o
seo0oo0e
e o o ® ® _
; . : 1-D LA ° o
» Curse of dimensionality .. e
= Large number of parameters to calibrate 2-D 3-D[ % °
. The curse of dimensionality [1]
» Sample degeneration
= Afflicts sequential Monte Carlo methods
» Leverage high performance computing
= Parallelization X
v 0.5
o *
D B
20.6
@
C0.4¢
S
% 0.2
]
®
®
o---— - —
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Ordinal Particle #

Liu, J., & Wang, W. (2003, November). Op-cluster: Clustering by
tendency in high dimensional space. In Third IEEE international
conference on data mining (pp. 187-194). IEEE.

[1] “Bi-Clustering” by Jinze Liu, ‘
[2] Sandia.gov (



Iterative Importance Sampling

° Draw samples from known “Proposal” distribution q(8)

° Assign a weight to each sample

p(01D) _ p(D1O)p®
q(6) q(6)

o w(f) x

o Iterativer = gradually moves the proposal towards the target

Genetic Algorithm
> Selection — retain best performing samples
° Crossover — add noise to existing samples
> Mutation — randomly sample from prior

Proposal Samples

° ® (Candidates

N Iteration:
«— 1
2 —>

15 I ISGA — Iterative Importance Sampling with Genetic Algorithm E4

Genetic Samples

® Selection
® Crossover
®  Mutation

—Target—Proposal

PDF

|
Sequential |
Monte Carlo l

Stationary Target  Nonstationary Target

Iterative Importance Particle
Sampling Filter




16 1 IIGSA — Procedure described schematically

Condition
Proposal Samples Compute Normalize Resample based et Samples of
(0) > q@) =f'(9) » Scores Weights » on W (8%) » Posterior
L(@)+f'(6) (W) (onsterior)
q(6)
Genetic Condition
Algorithm not Met

(6™) = q(6)

Significant speedup for previous calibration study

° Vectorized likelihood — most surrogate models are

. . vectorized by default
lISGA (40 Cores) Slice Sampl]ng (1 Core) ° MCMC can only evaluate samples serially

10 hrs 495 days (predicted) ° Multi-core

° MCMC can run separate chains on multiple cores

3 million posterior samples



17 I Not so fast.. Computational Challenges with [ISGA

How to estimate proposal density?

° Through the GA we have proposal samples but no
distribution

Curse of dimensionality persists
° Few samples from proposal land in target

> Posterior sample set is sparse



18 I Frequency Histogram — Adaptive Binning EI:
Assign a weight to each sample

w(@) o« 2OID) _ p(D[0)p®) .
Accurately estimate density of proposal distribution 1(6) 1(6)
> Kernel estimators are slow

> No built-in N-dimensional histogram function 310" 35 o] 10’

> Modified open source code to prevent overflow etrror §2'5 et T 25 3 § Histgram ] ’ -

o Grid of (Npins)™im was sparse, disposed of empty bins % 2 2' g % 102% g

> How to decide on the number of bins? §1f 155 g 10" 2

« [ [0} ) L

%3_ 10* 165 168 10_2(3 5 10 15 20 0

Number of Samples Number of Dimensions

0.5

0.4/ T - Adaptive binning

PDF

° For areas of high density, do bin size refinement
0.2+

0.1

03l alll _ ° Initially using coarse bins H
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Challenges with Curse of Dimensionality (1)
Posterior becomes hard to find

Most samples have likelihood weights of ~0, and these samples are lost in resampling

When prior covers a much larger region than posterior, particularly in high dimensions
= {eprior} >> {onst} {Ysim (eprior’x)} >> {Ysim (gpost’x)}
> See plot at right
> Recall that the posterior is proportional to the likelihood

This effect becomes more pronounced as 8 becomes higher dimensional
o If for example,
o range(6P™°") = 2 x range(6P*) v i € {1: 16}

Volume(6P°St)  516xyolume(§P7i0T)
Volume(ep’“i"r)_ Volume(@PTior)

= 0.000015

Essentially, it is difficult for samples from the prior to find (land in) the postetior
Solution: artificially inflate the likelihood
Note, inflating the likelihood works for SMC samplers, not for MCMC

Output 2

rn

@ Likelihood
X Yoin (91” o :)
X

X X

X X X

\

Output 1 h
[
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Inflated Likelihood

Idea: scale the likelihood covariance matrix
o This will flatten the likelihood function
> More samples will have non-zero weights

> Reduce scale factor over iterations to avoid a bias posterior

Similar to simulated annealing

o “Temperature” acts as a SF for the distance (in terms of objective function)
a proposed X" can be from current best solution X

o Decreases over iterations

A
@& Likelihood
¥ You (P77 ,.5)
o X
5
X
= X X
— X
o X
X X X
‘ X
X
X X

Output 1

Optimization Terminology
max f(x)
s.t.tx €

f - objective function

x - decision variable

() - feasible set

Calibration Parallels

f = L - likelihood function
x = 6 - model parameters
Q - 2> ' - prior distribution

Simulated Annealing (maximize)

[terate over values of x
A=f(x")—fx)
ifA>0
x=x
else
if exp (ﬁ) > Uniform(0,1)

x=x
end
end
Reduce Temp




Challenges with Curse of Dimensionality (2)
21 ¥ More samples become close to perimeter

Computed below: samples
in a perimeter cell

Causes problems with
noise added in crossover

(GA)

1 81—200/
10/ ~ 7

Solution:

o (Gaussian noise in
crossover

° add check that sample is
inside bounds

3
) - 1s8%




Results from Thermal Battery
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24 1 Calibration Fit
Reconstructed Field Data (I.C. Low)
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Future Work




26 I Model Discrepancy (after calibration)

O Omodel(X) = mean(yobs (x)) — Ysim(ngSt; x)

O Omodel Vaties over time, location, and initial temperature
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Simultaneous Parameter Calibration and Model Discrepancy Estimation

Multiple discrepancy formulations

Extend these to latent response space

> Can map back to spatio-temporal space

KOH framework

> A Gaussian process is used to represent the dependence of model discrepancy on input conditions (initial temperature)

Seminar (Early Fall): Non-intrusive state estimation of model error

> Model error — differential equations

> Can be extrapolated

> Model discrepancy — output quantities
° May only be applicable to calibration test settings

> Work with Abhinav to apply his methods to thermal battery




Thank you

Kyle Neal

kneal@sandia.gov
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Bayesian Calibration

Bayes’ Theorem
> Use observations to update beliefs

Posterior

> Find values of theta that are P(6|D) =

most probable given the data

Posterior LikeliQood Prior .
\\ X -
p(a |3y - PELAPAY)
P(B)
AN
P(D|@) * P(0) Data

P(D)

P(@|D) < P(D|6) = P(8)

Uncertainty sources
> Aleatory — irreducible, naturally varying
°  Measurement noise
> Epistemic — reducible, lack of knowledge
> Model parameter uncertainty (calibration)
° Model bias

Likelihood (case 1):

o

obs = Ysim t €meas
° Measurement noise: i.i.d. with N(0, 52)

« P(D|6) = L(8)

Notional 1-D Likelihood

——Error Distribution
0

meas
® yobs_ysim(el)

yobs—ysim(ez) I
| |

PDF

L() = 1_[ m/lﬁ exp (— ;7 ((yobs,i ~ Ysim (9)) - 0)2>

i=1

Error
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Bayesian Calibration Cont’d

Likelihood (case 2):

o

obs — Ysim + €Emeas T 5model
o Model error can take on different forms

> Kennedy O’Hagan Framework

° Treat model error as a Gaussian random
process with unknown mean and covariance

Likelihood (case 3):
> Multiple output quantities

o Covariance matrix of errors needed

Solving for posterior
> Markov chain Monte Carlo (MCMC)
> Samples from chain approach posterior distribution

o Particle filter (PF)

o Particles weighted based on likelihood scores
o FRasily parallelizable

> Replace computationally expensive physics model with efficient surrogate model

——Error Distribution
14
ag
o yobs—ysim(el)
oY y.. (6,)

obs Ysim" 2

PDF

|

1 1 0 2
Py exp <_ ﬁ ((YObs,i — Ysim(0)) — M) >

N
L(0,1,0) = 1_[
i=1

Error

PDF

Error 2 Error 1

L(O,n0)= ﬁmexp (— % ((yobs,i - ysim(e)) - ﬂ)T x,t ((yobs,i - ysim(e)) - ﬂ)) i
i=1
{

Current Implementation of 1ISGA

17 5output Samples: 10 Resampling 50 cores

° Sample-based Bayesian methods require many model evaluations calibration  variables ~ million  algorithm 10 ~11hrs
parameters iterations
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34 1 Iterative Importance Sampling Algorithm (ISA) [!]

Basic Idea: iteratively improve the proposal distribution

A agk A . A .
Initialization Iteration 1 Iteration 2

[1]

First
proposal x“\ Third

\% proposal

Second
proposal

Posterior
distribution

Weighted samples from
first proposal

Vb N
| —

Weighted samples from' \\
second proposal

Initial samples

\ «

Parameter & Parameter 8 Parameter &

Stopping criteria:
° |Rg41 — Ry | < tol

" __var(w)
where R = Ew)? +1

° w is the normalized weight, ’
> ifq(0) = p(@|D), then var(w) =0soR =1 I

[1] Morzfeld, M., Day, M. S., Grout, R. W., Heng Pau,
G. S., Finsterle, S. A., & Bell, J. B. (2018). Iterative
importance sampling algorithms for parameter
estimation. SIAM Journal on Scientific Computing,
40(2), B329-B352.



35 1 lterative Importance Sampling Algorithm (ISA) - Differences

Their Method

Use a Gaussian for each iteration of proposal distribution: q;, where i = 1: Niterations
o Update the mean and vatiance: qj+1 = N(Ujy1,0i+1), where i1 0;41 are computed from

{01, wi}

> Generate new samples: 0;41~¢;4+1

General strategy seems to be start with a broad proposal distribution and hone in

Our Method

Construct empirical/kernel density distributions based on the samples
° Should better capture multimodality

Rather than draw new samples from a normal on each iteration, the same samples are
carried throughout — but the samples are allowed to change genetically




