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Overview

Objective
o Perform evaluation to complete two Level 4 DOE Milestones based on an expansion of the current 2-D flared grid modeling methodology
o EXPW-19-03: Complete an initial computational grid study for use in future performance assessments of the expanded repository

o EXPW-19-04: Complete and document an initial investigation of the likelihood of brine and gas flow between the current and expanded repository regions

Alternatives

o Utilize two BRAGFLO grids, one for the old “south” reﬁositpry and one for the new “west” repository with a portion of the experimental area
volume attributed to each model, each with a single borehole intrusion in to the “waste panel”

o Utilize one BRAGFLO grid that models connectivity of the old “south” repository with the new “west” repository through a common experimental
area with two borehole intrusion locations, one in the old “south” waste panel and one in the new “west” waste panel

° In both cases, the new “west” repository waste areas are assumed to have all panel closures with excavation volumes equal to the old “south” waste
areas; the CRA19 waste inventory is unchanged and evenly distributed between the two

Primary Technical Considerations

° Evaluate the degree to which the old “south” repository and the new “west” repository are communicating through brine and gas flows that can lead
to conditions in one repository area affecting the conditions in the other repository area

°  Evaluate impacts to modification of the TBM 2-D flared grid methodology when applied to an expanded repository

Approach

> Develop two model grids, one for the old “south” and one for the new “west” repository, that attribute 50% of the experimental area to each model
for the undisturbed and E1 intrusion scenarios; the attribution of experimental area void space could later be adjusted in an attempt to equalize
pressures and saturations in the experimental area between the two models

> Develop a single model grid, combining the old “south” and the new “west” repository areas, that shares a common experimental area void space for
the undisturbed and E1 intrusion scenarios with two borehole locations in each of the “waste panels”

o Compare and contrast the 3 sets of results to determine the magnitude of cross-repository communication of brine and gas and the associated impact
to adjacent repository results and also inform the decision regarding whether combining two decoupled (isolated) solutions is advisable or
implementing a one (integrated) solution is necessary




3 ‘ Model Descriptions and Assumptions

Two-grid models (isolated)

o CRA19S (old “south”) — based on CRA19, with only changes being the halving of the inventory parameters (iron, cellulose,
radionuclide content, MgO), halving of the experimental area void space, and modification of the shaft to represent the original 4
shafts

o CRA19W (new “west”) — based on CRA19S, with only additional changes being modification of the shaft to represent the new 5%
shaft and reinstalling the abandoned panel closure for the waste panel

o Note that the 1 degree Salado dip from experimental area toward the waste panel is applied to both models; the old repository areas dip North to South and the
new repository areas dip East to West

° Analysis files located on the Solaris cluster at /nfs/data/ CVSLIB/WIPP_SPECIAL_ANALYSES/CRA19SW

One-grid model (integrated)

o CRA19SWe - combination of the CRA19S and CRA19W grids, with CRAT9W mirrored and located to the north of the CRA19S
experimental area (experimental areas joined), with modifications being to generally update the TBM grid flaring methodology to
use the centerline of the experimental areas as the assumed flow center, to adjust the center reference point for the Salado dip
from the intersection of the CRA19S shaft and MB139 to the intersection of the combined experimental area midline and MB139,
and to implement material maps for new intrusion scenarios to accommodate a borehole intrusion in the new “west” waste panel

> Note that the REFCON:VREPOS parameter (excavated repository volume) is doubled and the full LWA inventory parameters for CRA19 are utilized

o Note that the 1 degree Salado dip is highest at the center of the experimental area and slopes downward toward the “south” and the “west” repository waste
areas

]
|

> Note that Castile brine reservoir porosity is modified in an ALGEBRACDB step to correlate the sampled bulk rock compressibility to an effective porosity that
(along with the modeled grid volume in the Castile) gives an equivalent brine (pore) volume ranging from 3.39E6 to 1.69E7 m?

° Analysis files located on the Solaris cluster at /nfs/data/CVSLIB/WIPP_SPECIAL_ANALYSES/CRA19SW
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6 ‘ CRA19SWe Material Maps for Scenario |

/" X(North)

modified flaring

The new “west” repository, physically located to the northwest of the old “south” repository, is rotated 90 degrees such that

it resides in-line and to the north of the old “south” repository within the 2-D flared grid

T

/ xwew Modified flaring
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7 | CRAI9S, CRAI9VW, and CRA19SWe Initial Pressures
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9 ‘ TBM Flared Grid Methodology Evaluation

Motivation

° Prior to comparing CRA19S and CRAT9W results against CRA19SWe, it 1s necessary to understand the
influence of the TBM flared grid methodology on the brine saturation within excavated regions of the
repository that are modeled adjacent to the initiation of grid flaring (i.e., outside of the excavations)

Methodology

> Compare two integrated model analyses with the only differences being the location in which grid flaring is
initiated and the ratio of cross-sectional areas between the excavated regions of the repository and the
Salado regions that are adjacent to the excavations

o CRA19SWe — grid cells on either side of the excavations are set equal to the nearest excavated region grid cell such that cross-sectional
area and volume ratios are equal to one; grid flaring is initiated from the 2 cells outside of the excavations outward using an x-
dimension refinement factor of 1.08 up to the LWB and an x-dimension refinement factor of 3.80 to within one cell of the domain
extents, the final grid boundary cell Ax size is relatively small to limit the effect of BRAGFLO boundary conditions being numerically
applied at the cell center

o CRA19SWt — grid cells on either side of the excavations are set equal to 2.0 m width in the x-dimension (like TBM); grid flaring is r
initiated from the 1°* cells outside of the excavation (like TBM) such that the cross-sectional area and volume ratios are defined by the
AyAz dimensions necessary to conserve volume; grid flaring uses an x-dimension refinement factor of 1.37 (similar to TBM) up to the
LWB and an x-dimension refinement factor of 2.80 to within one cell of the domain extents , the final grid boundary cell Ax size is
relatively small to limit the effect of BRAGFLO boundary conditions being numerically applied at the cell center

° Analysis files located on the Solaris cluster at /nfs/data/CVSLIB/WIPP_SPECIAL_ANALYSES/CRA19SW



i ‘ CRA19S, CRA19SWe, and CRAI9SWt Grid Flaring Results
Waste Area Cell 21 Waste Area Cell 22 Waste Area Cell 23 _

AX Ay Az A Vv Ax Ay Az A V AX Ay Az A Y 1(1|11|22(22|22
CRA19S 2.9 [3.9624|998.53] 3957 [11474| 2 [3.9624]988.73| 3918 | 7835 | 43.8 [3.9624] 126.2 | 500 |21902 1.1 1222222
CRA19sWt | 2.74 [3.9624] 3040 | 12046 |33005| 2 [3.9624]3030.5] 12008 | 24016 | 43.8 [3.9624] 126.2 | 500 [21902
CRA19SWe | 47.3 |3.9624|3384.6| 13411 |634351| 43.8 [3.9624| 126.2 | 500 |21902| 43.8 |[3.9624| 126.2 | 500 | 21902 -22 22|22
. . . g WO 111 (22(22|22
Flaring Ratios Saturation S 0090 g P R P T TTTTT T T T YT TTTTreee ®
A21/22|V21/22|A22/23|Vv22/23 £ < Db s 1/11|1|21|21|21
CRA19S 1.01 | 1.46 |NE 029 087 EEENRE = o
y S . 3 3 1(1|1|21(21|21
CRA19sWt | 1.00 | 1.37 [FP2H 043 087 ECERLNE- e .5
Crassswe | 7632 |59 NI 100 INOPMO 5200 & e 111 ot
I 5 i .
84 oo . a2 1[1|1[22(22|22
= 000
0.00 5.00 10.00 15.00 20.00 25.00 30.00 1 1 1 22 22 22
Adjacent Saladoto Waste Panel Grid Cell Area Ratio 22 22 22
Harmonically-averaged transmisstvity is a function of cross-sectional area (A) such that 111111111
A22/23 ratios chan%e the interfacial flow conductance between the waste panel and the 111111
adjacent (and much less permeable) Salado and marker beds
° Scenario 1 waste panel brine saturation is increased by flow from the adjacent Salado and 1117111
marker bed grid cells when the adjoining cell area ratios increase 11111111101

° Scenario 2 is largely unaffected because brine inflow 1s dominated by flow up the borehole from
the Castile

Brine flow sources into Waste Panel under Scenario 1 are evaluated on next slide
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TBM Grid Flaring Methodology Conclusions )

Results

° The cross-sectional area of grid cells adjacent to the waste panel(s) (and experimental area for single grid
models) significantly influences the resultant transmissivity between these highly-permeable excavations and
the adjacent low-permeability host rock such that larger adjacent cell area ratios result in an increased lateral
flow conductance that allows brine and gas flow to/from the excavations and host rock

° This arbitrary grid cell dependence has a large impact on brine saturation solutions in the excavations
adjacent to host rock that should be minimized and/or avoided, if possible

TL.ocation of Center of Flow

° The center of flow should be relocated to the midpoint of the two repositories (i.e., at the centerline of the
experimental region) for consistency with the radial-concentric flow assumption

Grid Cell Size, Cross-sectional Area, and Flaring Refinement

° The columns of cells adjacent to waste panel excavations should be sized equivalent to and maintain area and
volume ratios of unity with the waste panel cells to expand the starting location for flaring to ensure that
brine saturation of the waste panels 1s not governed by an arbitrary grid cell size and derived cross-sectional
area dependence
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13 1 TBM Grid Flaring Methodology Conclusions (cont.)

Base Volume to Grid Flaring

° To achieve unity in area and volume ratios of adjacent to waste panel cells, the grid flaring should not include
the adjacent to waste panel cells; flaring at the 2°¢ cell outside the adjacent waste panel cells and beyond will
continue to conserve volume surrounding the repository for transport calculation considerations

Left/Right Model Domain Boundary Cells

° To ensure that boundary conditions are not artificially moved closer to the repository excavations, the left
and right-most cells should be relatively small (Ax) in order to have the “cell center” boundary conditions not
inadvertently applied some 6000 meters closer than anticipated (as is the case for CRA19S with the leftmost
cell column with a +12000-meter width)

Domain Extents

° Establish a left/right domain boundary of 15 miles from the center of the repository experimental areas
(note further adjustments will need to be made once knowledge of the expanded repository design solidifies)
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Comparison of CRAI19S and CRAI9W vs CRAI95We L

Objective

° Hvaluate pressure, saturation, and brine /fas flow within the repository to determine the degree to which two
“isolated” vs one “integrated” model and revised grid flaring atfects the repository predictions

° Bvaluate impact of modifications to TMB grid flaring methodology for the integrated model

Scope
o Bvaluate the first 100 vectors (Replicate 1) for Scenario 1, Scenario 2, and Scenario 7
> Scenario 1 — undisturbed (no borehole)
> Scenario 2 — E1 intrusion through the “old” south repository waste panel into the undetlying Castile reservoir
> Scenario 7 — E1 intrusion through the “new” west repository waste panel into the underlying Castile reservoir [new scenario]

Note

> Box plots represent the temporal average values (integrated function average over the simulation duration) with
whiskers representing min and max values, box indicating the 15t and 3" quartiles, hotizontal black line indicating
the median, and white square box indicating the mean

Naming Conventions
o CRA19S — results for old “south” repository from two-grid uncoupled model

o CRA19W — results for new “west” repository from two-grid uncoupled model
> CRA19S8We_S — results for old “south” repository from one-grid integrated model
> CRA19SWe_W — results for new “west” repository from one-grid integrated model
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OPS_PRES (Pa)
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Brine Saturatin in Operations Area Scena r_io 1 Scen a r_io 2 / 7
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Brine Saturation in Experimental Area
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led Brine Flow Across Shaft Plane from MB139 to MB138
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1e8 Gas Generation from Rad+Fe+Cel in Total Waste Areas Scena r-io 1 Scen a r.io 2 / 7
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Conclusions

The primary impact on results predicted by a single “integrated” repository grid vs two “isolated” repository grids to
model expansion are scenario specific

° Scenario 1 — greatest impact is to waste panel brine saturations as influenced by the flared grid implementation and associated
selection of the “center of flow” and cell sizes adjacent to the excavations necessary to conserve volume surrounding the
excavations

° Scenario 2/7 — greatest impact to waste area pressures is influenced by the degree to which gas generated within the waste areas
flows towards the common experimental area

The comparison between a single “integrated” and two “isolated” repository BRAGFLO models clearly establishes

that significant quantities of brine and gas communicate across the planes defined by the old “south” and new “west”

shafts

o Greater quantities of gas generation in the “old” south waste areas (due to intrusion events that flood multiple panels without
separating panel closures) results in ~2 million cubic meters (temporal average for replicate 1) of gas flowing across the old
“south” shaft plane and influencing pressures and saturations within the new “west” repository

A single “integrated” grid model is recommended to support expansion

° Alsirﬁ%e-grid model will require an increase to at least 11 total BRAGFLO scenarios in order to model borehole intrusion under
E s > g .
waste panel)

Further development of the “integrated” grid approach, if pursued at this time, will require substantial rework when a

final expanded repository design becomes available, but infrastructure development to address Solaris run-control

changes and required CUTTINGS_S and CCDFGF code development needed to handle the expanded scenarios could

proceed now without substantial risk

and E2E1 conditions at different times in the two borehole locations (i.e., the old “south” waste panel and the new “west”




