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Plasma Interdiffusion

. [ High Z: Vanadium

Quantity interfacial mixing in ICF experiments

Assess accuracy of transport models needed to design ICF experiments

Focus of this work

Specifics:

Low Z: CH Foam

Experimental Set-up
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3 | Inertial Confinement Fusion (ICF): Physical Regimes

ICF experiments explore very disparate regimes
Solids

* Jons are very strongly coupled, electrons are extremely degenerate
¥ gly pled, y dcg

* Density Functional Theory (DFT) — uses on-the-fly N-body potential
* Warm Dense Matter (WDM)

* lons are strongly coupled, electrons are partially degenerate
* Pair-potential molecular dynamics (PP-MD) — pre-computed pair potentials

* Hot Plasma
¢ Ions weakly coupled, electrons no longer degenerate

* Solve a kinetic equation - McBGK 10
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Modeling Techniques for WDM

* The Yukawa (linear OF-DFT) model is a general purpose widely used pair
potential across plasmas physics. The following approximations are made:

1. The bound electrons have no physical extent which shrinks bound cloud to a point. This
gives us the effective ionization < Z >

2. Considers a linearization of remainin/% tree electrons density. This gives a spherical
electron screening cloud with radius App

* Kohn Sham DFT (KS-DFT) includes richer QM effects and is a higher fidelity
method
¢ Solving the Kohn Sham equations gives the electron density

You can use either of the above methods in a molecular dynamics code to evolve
the ion species

*  Yukawa PP-MD uses screened Coulomb potential for ion-ion interactions
* Sarkas — developed at MSU

* KS-DFT-MD uses bare Coulomb potential for ion-1on interactions
* Vienna ab initio Simulation Package (VASP)

{ What are the macroscopic properties, like self-diffusion, that each model predicts?
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Validating Results: Correlation Functions

* Radial Distribution Function (RDF): Spatial correlation function
* Helps identify the physical state of the system
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* Velocity-Autocorrelation Function (VACF): Time correlation function
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* Give us information on individual particle motion
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Macroscopic Comparisons: Transport

* Macroscopic transport coefficients: Self-diffusion

* How far a particle moves over time as it moves from regions of high concentration to low

concentration

Two examples of how to compute the self-diffusion coefficient

1 o0
* From the VACF: D = §/ dt (v(t) - v(0))
0

* From Einstein’s Relation:

D g O =T O)P

t—o0 Gt

Can compare these expressions with those obtained from the Stanton and Murillo

analytic theory

Molecular dynamics evaluation of self-
diffusion in Yukawa systems

Cite as: Physics of Plasmas 7, 4506 (2000); hti; doi.org/10.1063/1.1316084
Submitted: 30 May 2000 . Accepted: 15 August 2000 . Published Online: 19 October 2000
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Value of D compared from
two expressions above — only
slight difference in values
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Initial Comparisons for Vanadium: KS-DFT-MD and PP-MD

Comparison of RDFs:
T=05eV (a) T=1eV (b) T=10eV (c)
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Why Do We Need a Pair-Potential?

* Goal: Can we avoid using KS-DFT to determine the electronic structure by
generating the “best” pair potential for a pair potential MD simulation?

Best = pair-potential that incorporates as much information from KS-DFT as possible

* Why do we care?
| Temp [ev] | PP-MD CPU Hrs | KS-DFT-MD CPU Hrs |

5 5.7e-1 1.20042e+4

10 4.6e-1 1.08590e+4

20 4.8e-1 5.80032e+3
CPUs: 1 CPUs: 36
Particles: 500 Particles: 54
Timesteps: 30K Timesteps: <=12K

* Simulations that can take multiple weeks across many CPUs can be reduced to
minutes on a single CPU.

* This information can be used to inform transport coetficients in a hydro model.



Generating Effective Pair Potentials from Force Matching

* Main idea of FM: Take KS-DFT-MD data (e.g. positions, forces, energies,
stresses, etc.) and minimize a cost function to fit a pair-potential.

* To perform the force matching. We make use of the open-source software potfit

On fitting a gold embedded atom method potential using the force
L t potfit wiki matching method

open source fOrCe-matChing J. Chem. Phys. 123, 204719 (2005); https:/doi.org/10.1063/1.2124667

Gregory Grochola®, Salvy P. Russo, and lan K. Snook

*The target function to be minimized can be defined as

=S w(Fu(®) - F)*+ Y we(Ei(€) — ED? + Y ws(Si(€) — S9)?
k=1 I=1 =1

Force Components Energy Components

* The optimization routines in potfit include: . leferentlaSEﬁdllﬁtﬁﬁi(ﬁéﬁk@&lmgonthm)

Mutationschange the current state of the set.of
starting potentla s ;

°[Simulated annealing

High-level optimization 2 G

: : : : rossover: mix terms from otHer potentials in set
*(Differential evolution to'generate new set of potentials

o Least—squares — Tow-level optimiz ation 31 1 gflggttlpn determine is new fofms are favorable




o I Analytic Potential Forms for Force Matching

* We use the VASP data to fit the analytic forms of the following potentials
L. Vanilla Yukawa
UY(T) =S 7 g7/ ‘)‘TF [ parameters to fit: 2 ]
r

2. Yukawa with a short-range repulsion term (SRR Yukawa)

Y+SRR a) ZQ&A —r[ArH arameters to fit: 3

u

rd r

3. The exact gradient-corrected potential (EGS)

7202 oy ) |
Unnon (T) = *%i[(l *a)e A0+ (1 —@)e"’"@

parameters to fit: 4
(ﬂ/ﬁ
‘! Z2

uEGS (r) = \_;ﬁ

0SsC _

2 [cos (/) +a)eos(r/))e 70

radient correction strength parameter:
YN - {g gthp J

When v > 1, the oscillatory form of EGS is
used




i1 I Comparison of Screening Functions
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2 I Comparison of Screening Functions
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The heatmap to the right shows the regions
when the oscillatory behavior from the
EGS potential is expected (v > 1)
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3 | Force Matched Potentials: Fitted Analytic Forms

* Optimization parameters:
¢ Algorithm: Genetic Algorithm
* Number of configurations from VASP: ~400

Results for 0.5 eV VASP data

500
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400 —8— Yukawa Fitted are used as input to potfit
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14+ 1 Screening Functions for Force Matched Analytic Potentials

* Optimization parameters:
¢ Algorithm: Genetic Algorithm
* Number of configurations from VASP: ~400

Results for 0.5 eV VASP data
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s | Force Matched Potentials: Tabulated Form*
* Tabulated potentials: A series of splines fit to VASP data

Pros: No restriction on the functional form of the potential
Cons: Number of nodes/knots results in a very high number of parameters to optimize

14 —— Bare Yukawa
12 —&— Tabulated Potential
10
S Each point on the blue |
o, 8 curve is a parameter to
< 6 optimize (45 parameter
D optimization problem!)
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*Preliminary results



Next Steps and Future Work

* Compare RDFs, VACFs, and self-diffusion coefficients for fitted potentials

* Finalize tabulated potential work

* Lots of options to play around with here, potfit metric for accuracy is ambiguous

* Obtain data for more temperature and densities to determine transferability to
other materials (e.g. Al, Be, Fe)




