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2 Plasma lnterdiffusion

• Quantify interfacial mixing in ICF experiments

• Assess accuracy of transport models needed to design ICF experiments

Focus of this work

• Specifics:
High Z: Vanadium

• Low Z: CH Foam

Experimental Set-up

High Z ( Low Z High Z Low Z

Interfaces



3 I Inertial Confinement Fusion (ICF): Physical Regimes

ICF experiments explore very disparate regimes

Solids
• Ions are very strongly coupled, electrons are extremely degenerate
• Density Functional Theory (DFT) — uses on-the-fly N-body potential

• Warm Dense Matter (WDM)
• Ions are strongly coupled, electrons are partially degenerate
• Pair-potential molecular dynamics (PP-MD) — pre-computed pair potentials

• Hot Plasma
• Ions weakly coupled, electrons no longer degenerate
• Solve a kinetic equation - McBGK
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4 I Modeling Techniques for WDM

• The Yukawa (linear OF-DFT) model is a general purpose widely used pair
potential across plasmas physics. The following approximations are made:
1. The bound electrons have no physical extent which shrinks bound cloud to a point. This

gives us the effective ionization < Z >

2. Considers a linearization of remaining free electrons density. This gives a spherical
electron screening cloud with radius ATF

• Kohn Sham DFT (KS-DFT) includes richer QM effects and is a higher fidelity
method
• Solving the Kohn Sham equations gives the electron density

You can use either of the above methods in a molecular dynamics code to evolve
the ion species

• Yukawa PP-MD uses screened Coulomb potential for ion-ion interactions

• Sarkas — developed at MSU

• KS-DFT-MD uses bare Coulomb potential for ion-ion interactions

• Vienna ab initio Simulation Package (VASP)

o

[ What are the macroscopic properties, like self-diffusion, that each model predicts?



5 I Validating Results: Correlation Functions

• Radial Distribution Function (RDF): Spatial correlation function

• Helps identify the physical state of the system
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• Velocity-Autocorrelation Function (VACF): Time correlation function

• Give us information on individual particle motion
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6 Macroscopic Comparisons:Transport

• Macroscopic transport coefficients: Self-diffusion

• How far a particle moves over time as it moves from regions of high concentration to low
concentration

Two examples of how to compute the self-diffusion coefficient

p°• From the VACF: D = lo dt (v(t) • v(0))

• From Einstein's Relation: D — lim  ri(t) ri(0)
t—oo 6t

2

Can compare these expressions with those obtained from the Stanton and Murillo
analytic theory

Molecular dynamics evaluation of self-
diffusion in Yukawa systems

Cite as: Physics of Plasmas 7, 4506 (2000); https://doi.org/10.1063/1.1316084
Submitted: 30 May 2000.  Accepted: 15 August 2000.  Published Online: 19 October 2000

H. Ohta, and S. Hamaguchi

Value of D compared from

two expressions above — only
slight difference in values



7 Initial Comparisons for Vanadium: KS-DFT-MD and PP-MD

Comparison of RDFs:
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8 Why Do We Need a Pair-Potential?

• Goal: Can we avoid using KS-DFT to determine the electronic structure by
generating the "best" pair potential for a pair potential MD simulation?

Best = pair-potential that incorporates as much information from KS-DFT as possible

• Why do we care?

Temp [ev] PP-MD CPU Hrs KS-DFT-MD CPU Hrs

5 5.7e-1 1.20042e+4
10 4.6e-1 1.08590e+4
20 4.8e-1 5.80032e+3

CPUs: 1

Particles: 500
Timesteps: 30K

CPUs: 36

Particles: 54
Timesteps: <=12K

• Simulations that can take multiple weeks across many CPUs can be reduced to
minutes on a single CPU.

• This information can be used to inform transport coefficients in a hydro model.



9 Generating Effective Pair Potentials from Force Matching

• Main idea of FM: Take KS-DFT-MD data (e.g. positions, forces, energies,
stresses, etc.) and minimize a cost function to fit a pair-potential.

• To perform the force matching. We make use of the open-source software potfit

ot t potfit wiki
open source force-matching

On fitting a gold embedded atom method potential using the force

matching method

J. Chern. Phys. 123, 204719 (2005); hr doi.org/10.1063/1.2124667

Gregory Grocholaak Salvy P. Russo. and lan K. Snook

•The target function to be minimized can be defined as
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• The optimization routines in potfit include:

High-level optimization
Simulated annealing

Differential evolution

• Least-squares4- Low-level optimization
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io Analytic Potential Forms for Force Matching

• We use the VASP data to fit the analytic forms of the following potentials
1. Vanilla Yukawa

uY(r)
r

2. Yukawa with a short-range repulsion term (SRR Yukawa)

parameters to fit: 2

uY-I-SRR(r)

r4 r

3. The exact gradient-corrected potential (EGS)

umEGons(r) = 1

Z2euoEfs( 
 cos(r

' 2r

= 
3-VV8

XD-1/2(77)

+ (1

[-parameters to fit: 3

r À+

parameters to fit: 4

cos(r/91e 17-QjF

r gradient correction strength parameter:
When v > 1, the oscillatory form of EGS is

used



Comparison of Screening Functions
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12 Comparison of Screening Functions
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13 Force Matched Potentials: Fitted Analytic Forms

• Optimization parameters:
• Algorithm: Genetic Algorithm

• Number of configurations from VASP: —400
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14 Screening Functions for Force Matched Analytic Potentials

• Optimization parameters:
• Algorithm: Genetic Algorithm

• Number of configurations from VASP: —400
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IS Force Matched Potentials:Tabulated Form*

• Tabulated potentials: A series of splines fit to VASP data
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Pros: No restriction on the functional form of the potential
Cons: Number of nodes/knots results in a very high number of parameters to optimize
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*Preliminary results



16 Next Steps and Future Work

• Compare RDFs, VACFs, and self-diffusion coefficients for fitted potentials

• Finalize tabulated potential work

• Lots of options to play around with here, potfit metric for accuracy is ambiguous

• Obtain data for more temperature and densities to determine transferability to
other materials (e.g. Al, Be, Fe)


