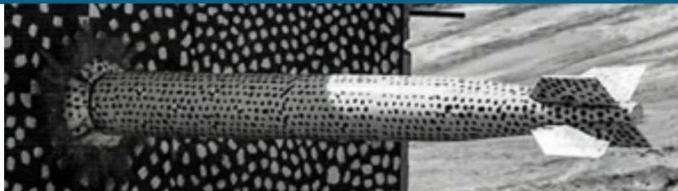


Machine-learned reduced-order modeling



PRESENTED BY

Patrick Blonigan

Collaborators: Kevin Carlberg, Brian Freno, Francesco Rizzi, Chi Hoang, Kookjin Lee, Eric Parish, Jaideep Ray, Yukiko Shimizu, John Tencer, Irina Tezaur

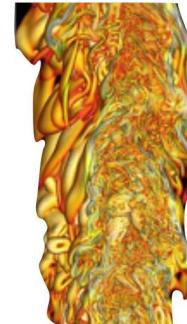
CIS External Review, August 26-29, 2019

SAND 2019XXX-XX

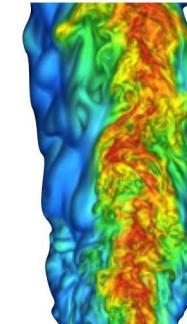
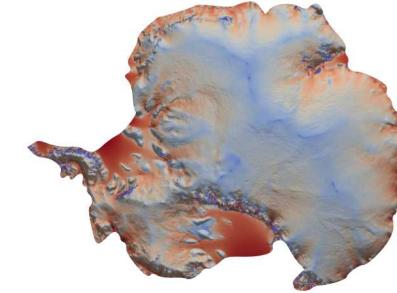
High-fidelity simulations are crucial, but often too costly for rigorous use within Sandia's mission

- **High-fidelity simulation:**

- Extreme-scale nonlinear computational models,
- Indispensable for a wide range of engineering and scientific applications.
- Example: captive carry aerodynamics simulation
 - Extreme-scale: **100 million cells, 200,000 time steps.**
 - High cost: **6 weeks on 5000 cores.**



Turbulent reacting flows
courtesy J. Chen



Antarctic ice sheet modeling
courtesy R. Tuminaro

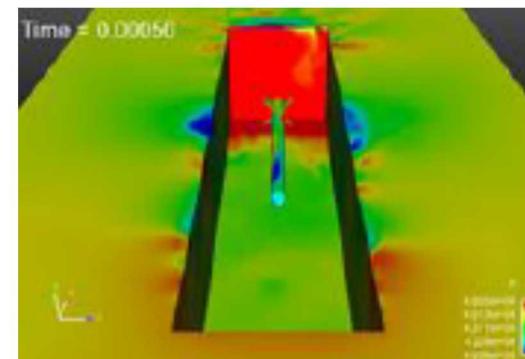
- **Mission problems:**

- **Time-critical:**

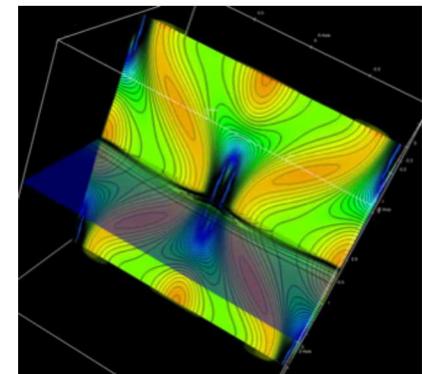
- Model predictive control
 - Health monitoring

- **Many-query:**

- Uncertainty quantification
 - Design optimization



Captive carry aerodynamics
courtesy M. Barone



Magnetohydrodynamics
courtesy J. Shadid

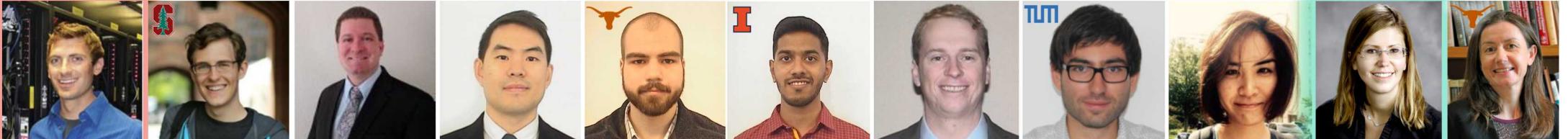
3 We use model reduction to exploit high-fidelity simulation data for use within many-query and time-critical mission applications

Model Reduction Criteria

1. *Accuracy*: achieves less than 1% error
2. *Low cost*: achieves at least 100x computational savings
3. *Property preservation*: preserves important physical properties
4. *Generalization*: should work even in difficult cases
5. *Certification*: accurately quantify the reduced order model (ROM) error
6. *Extensibility*: should work for many application codes

Model reduction at Sandia is a large multidisciplinary effort supported by researchers spanning centers and institutions

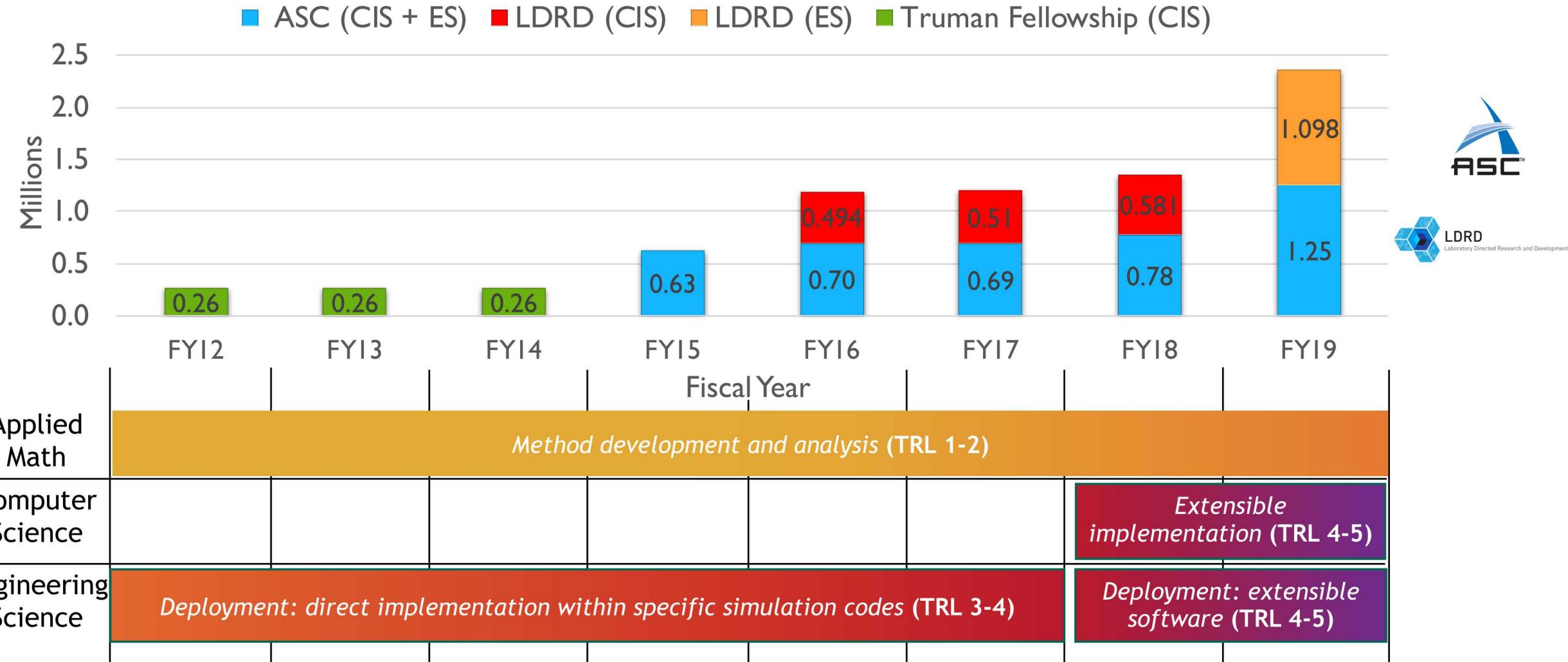
- Started by **Kevin Carlberg** with 3 people in FY12, focused on applied math research
- Grown to 21 in FY19, with a **leadership team** spanning the Computing and Information Sciences (CIS) and Engineering Science (ES) research foundations and institutions
- **Applied Math (CIS+ES)**: method development and analysis



- **Computer Science (CIS)**: generalized, minimally intrusive model reduction implementation

- **Engineering science (ES)**: deployment of model reduction in engineering applications and analysis

The funding scope and technology readiness level of our work are growing



Historical model reduction approaches are ineffective for nonlinear dynamical systems, which arise often in Sandia's mission applications

Historical model reduction work external to Sandia

- **Linear time-invariant systems:** **mature** [Antoulas, 2005]
 - Balanced truncation [Moore, 1981; Willcox and Peraire, 2002; Rowley, 2005]
 - Transfer-function interpolation [Bai, 2002; Freund, 2003; Gallivan et al, 2004; Baur et al., 2011]
- ✓ **Accurate, generalizes, certified:** sharp *a priori* error bounds
- ✓ **Inexpensive:** pre-assemble operators
- ✓ **Property preservation:** guaranteed stability
- **Elliptic/parabolic PDEs:** **mature** [Prud'Homme et al., 2002; Barrault et al., 2004; Rozza et al., 2007]
 - Reduced-basis method
- ✓ **Accurate, generalizes, certified:** sharp *a priori* error bounds
- ✓ **Inexpensive:** pre-assemble operators
- ✓ **Property preservation:** preserve operator properties
- **Nonlinear dynamical systems:** **ineffective**
 - Proper orthogonal decomposition (POD)–Galerkin [Sirovich, 1987; Colonius, 2004]
 - ✗ **Inaccurate, doesn't generalize:** often unstable
 - ✗ **Not certified:** error bounds grow exponentially in time
 - ✗ **Expensive:** projection insufficient for speedup
 - ✗ **Structure not preserved:** physical properties ignored
 - ✗ **Not extensible:** highly intrusive implementation required

Model Reduction Criteria

1. **Accuracy:** achieves less than 1% error
2. **Low cost:** achieves at least 100x computational savings
3. **Property preservation:** preserves important physical properties
4. **Generalization:** should work even in difficult cases and for many application codes
5. **Certification:** accurately quantify the ROM error
6. **Extensibility:** should work for many application codes

Our research is focused on satisfying model reduction criteria for nonlinear dynamical systems

Our model reduction research at Sandia

• *Accuracy*

- **Least-Squares Petrov—Galerkin (LSPG) projection:** *our baseline approach* [Carlberg, Bou-Mosleh, Farhat, 2011; Carlberg, Barone, Antil, 2017]

• *Low cost*

- **Sample mesh:** *use a fraction of the data for evaluating nonlinear functions* [Carlberg, Farhat, Cortial, Amsallem, 2013]
- **Space–time LSPG projection:** *learn and exploit structure in spatial and temporal data* [Carlberg, Ray, van Bloemen Waanders, 2015; Carlberg, Brescher, Haasdonk, Barth, 2017; Choi and Carlberg, 2019]

• *Property preservation*

- **Impose additional physical constraints (e.g. conservation):** [Carlberg, Tuminaro, Boggs, 2015; Peng and Carlberg, 2017; Carlberg, Choi, Sargsyan, 2018]

• *Generalization*

- **Projection onto nonlinear manifolds:** *high capacity nonlinear approximation* [Lee, Carlberg, 2018]
- **h -adaptivity:** *trade cost for accuracy* [Carlberg, 2015; Etter and Carlberg, 2019]

• *Certification*

- **Machine learning error model:** *quantify reduced model uncertainties* [Drohmann and Carlberg, 2015; Trehan, Carlberg, Durlofsky, 2017; Freno and Carlberg, 2019; Pagani, Manzoni, Carlberg, 2019; Parish and Carlberg, 2019]

• *Extensibility*

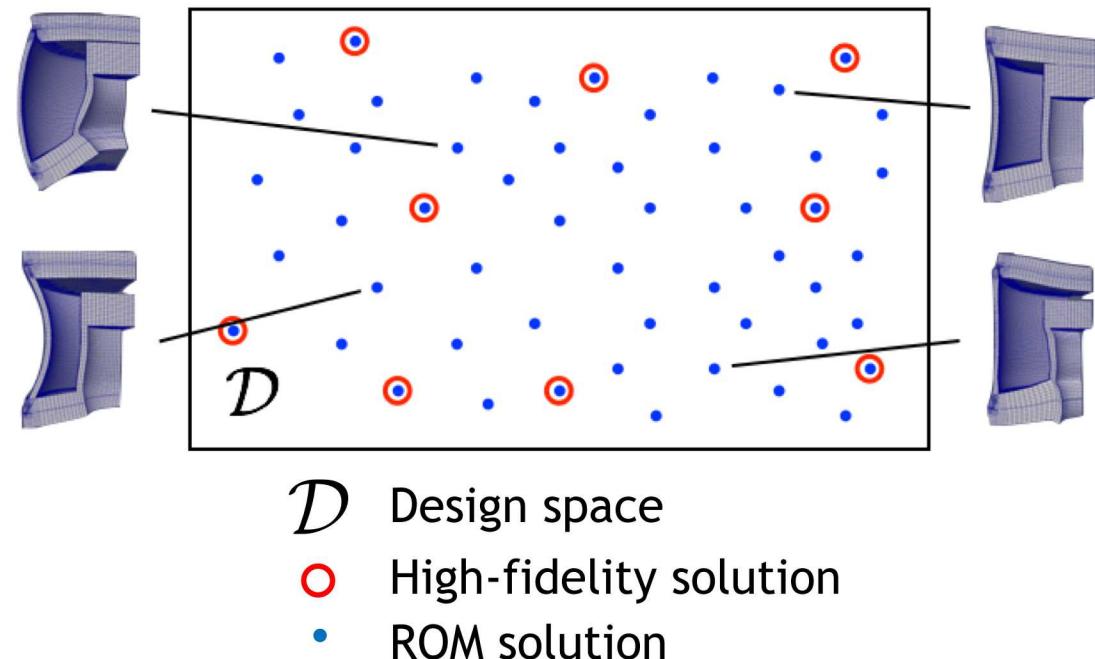
- **Pressio software:** *deploy methods for many application codes*

Model Reduction Criteria

1. **Accuracy:** achieves less than 1% error
2. **Low cost:** achieves at least 100x computational savings
3. **Property preservation:** preserves important physical properties
4. **Generalization:** should work even in difficult cases and for many application codes
5. **Certification:** accurately quantify the ROM error
6. **Extensibility:** should work for many application codes

We employ a machine-learned model reduction approach that has four stages

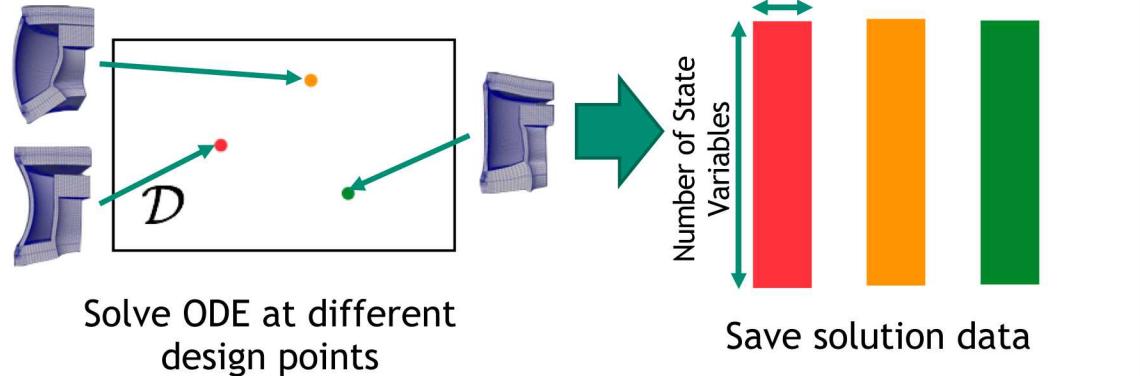
1. **Acquisition:** Run high-fidelity simulation at a few design points, save simulation data
2. **Learning:** Use machine learning techniques to identify low-dimensional structure in the high-fidelity simulation data
3. **Reduction:** Build a reduced-order model (ROM) with extracted data structures, high-fidelity governing equations
4. **Deployment:** Use ROM at remaining design points



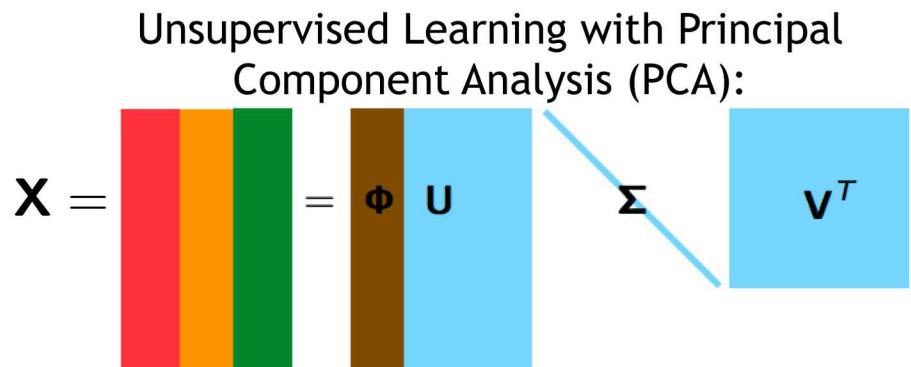
Our baseline approach* leverages a linear basis computed with unsupervised learning

- High-fidelity simulation = Ordinary Differential Equation (ODE): $\frac{dx}{dt} = f(x; t, \mu)$

1. Acquisition



2. Learning



3. Reduction

Choose ODE
Temporal
Discretization

$$\frac{dx}{dt} = f(x; t, \mu)$$

\downarrow

$$r^n(x^n; \mu) = 0, \quad n = 1, \dots, T$$

Reduce the
number of
unknowns

$$x(t) \approx \tilde{x}(t) = \Phi \hat{x}(t)$$

Minimize the
Residual

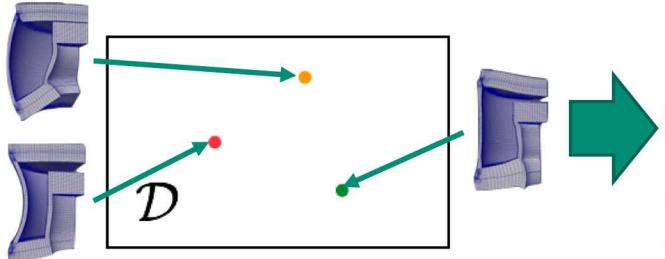
$$\underset{\hat{v}}{\text{minimize}} \| \begin{matrix} \text{A} \\ \text{B} \end{matrix} \begin{pmatrix} \text{Red} \\ \text{Orange} \\ \text{Green} \end{pmatrix} - \begin{pmatrix} \text{Black} \\ \text{Red} \\ \text{Black} \end{pmatrix} \|_2$$

*Least-Squares Petrov–Galerkin (LSPG) Projection [Carlberg, Bou-Mosleh, Farhat, 2011; Carlberg, Barone, Antil, 2017]

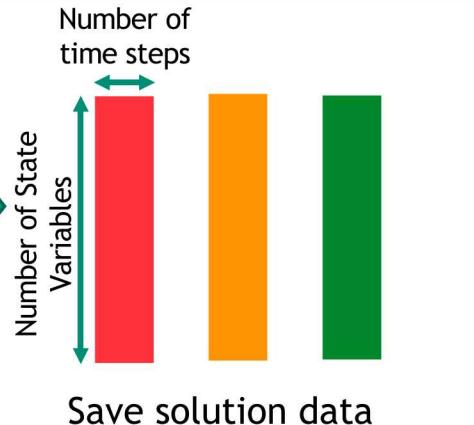
Property preservation is enforced with additional constraints

- High-fidelity simulation = Ordinary Differential Equation (ODE): $\frac{dx}{dt} = f(x; t, \mu)$

1. Acquisition



Solve ODE at different design points



2. Learning

Unsupervised Learning with Principal Component Analysis (PCA):

$$X = \begin{matrix} \text{Red} \\ \text{Orange} \\ \text{Green} \end{matrix} = \begin{matrix} \text{Brown} \\ \text{Blue} \end{matrix} U \Sigma \begin{matrix} \text{Blue} \\ \text{Light Blue} \end{matrix}^T$$

3. Reduction

Choose ODE
Temporal
Discretization

$$\frac{dx}{dt} = f(x; t, \mu)$$

\downarrow

$$r^n(x^n; \mu) = 0, \quad n = 1, \dots, T$$

Reduce the
number of
unknowns

$$x(t) \approx \tilde{x}(t) = \Phi \hat{x}(t)$$

Minimize the
Residual

$$\begin{aligned} & \underset{\hat{v}}{\text{minimize}} \quad \|\mathbf{A}r^n(\Phi \hat{v}; \mu)\|_2^2 \\ & \text{s.t. } \mathbf{C}r^n(\Phi \hat{v}; \mu) = 0 \end{aligned}$$

Enforce conservation over subdomains:

Our baseline approach achieves high accuracy at a low cost for captive carry application

$$\text{LSPG: minimize } \|\mathbf{A}\mathbf{r}^n(\Phi\hat{\mathbf{v}}; \mu)\|_2^2$$

Sample mesh

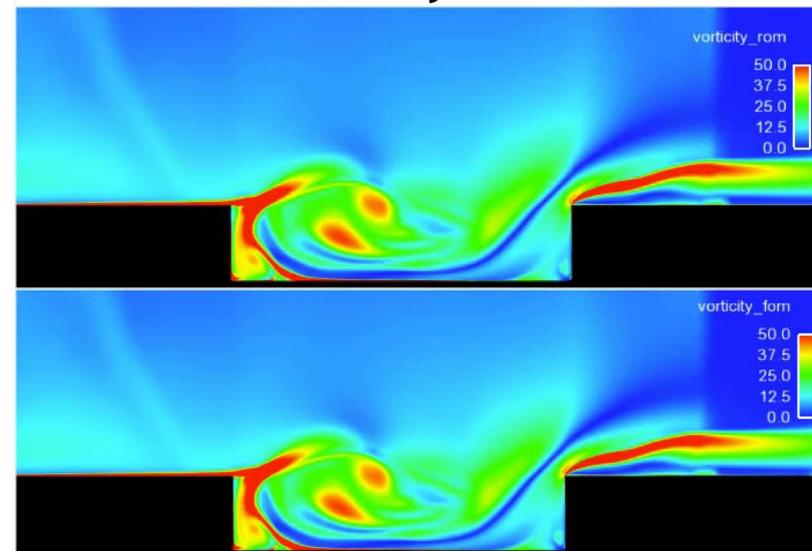
LSPG ROM

- 32 min, 2 cores

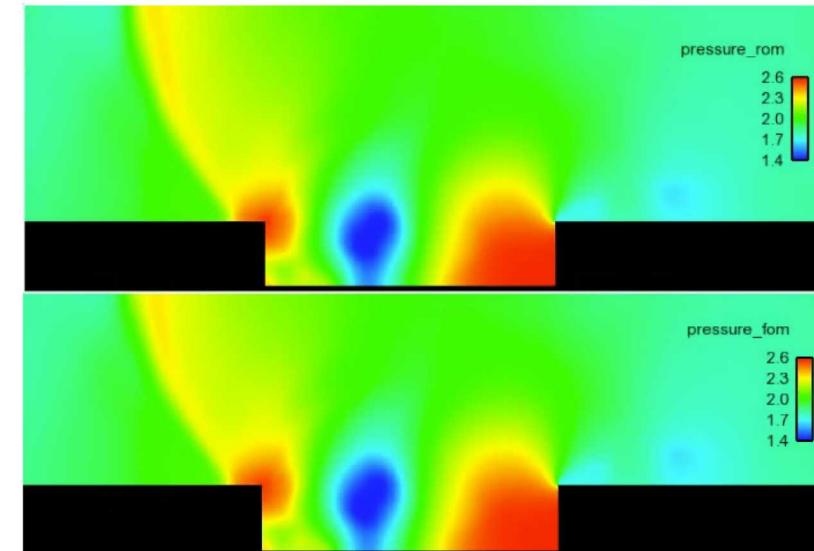
High-fidelity

- 5 hours, 48 cores

Vorticity Field



Pressure Field



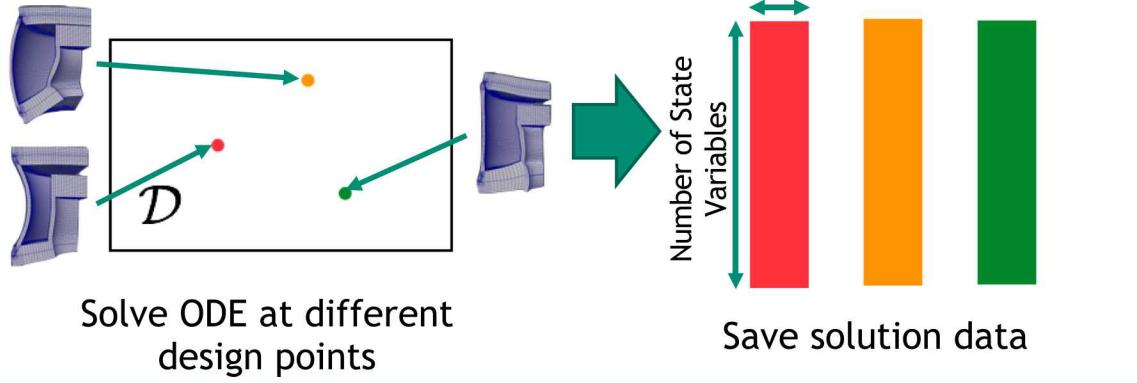
229x savings in core-hours
< 1% error in time-averaged drag

[Carlberg, Barone, Antil, 2017]

Manifold model reduction uses a nonlinear function instead of a linear basis

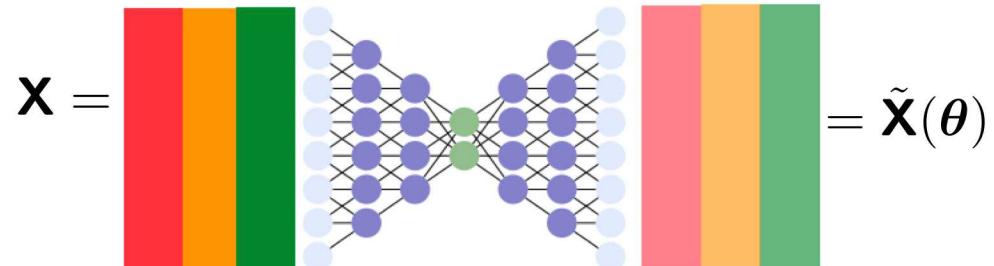
- High-fidelity simulation = Ordinary Differential Equation (ODE): $\frac{dx}{dt} = f(x; t, \mu)$

1. Acquisition



2. Learning

Unsupervised Learning with non-linear manifold approach (e.g. deep autoencoder):



3. Reduction

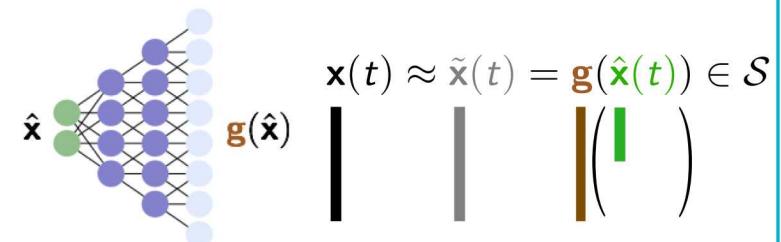
Choose ODE
Temporal
Discretization

$$\frac{dx}{dt} = f(x; t, \mu)$$

\downarrow

$$r^n(x^n; \mu) = 0, \quad n = 1, \dots, T$$

Reduce the
number of
unknowns



Minimize the
Residual

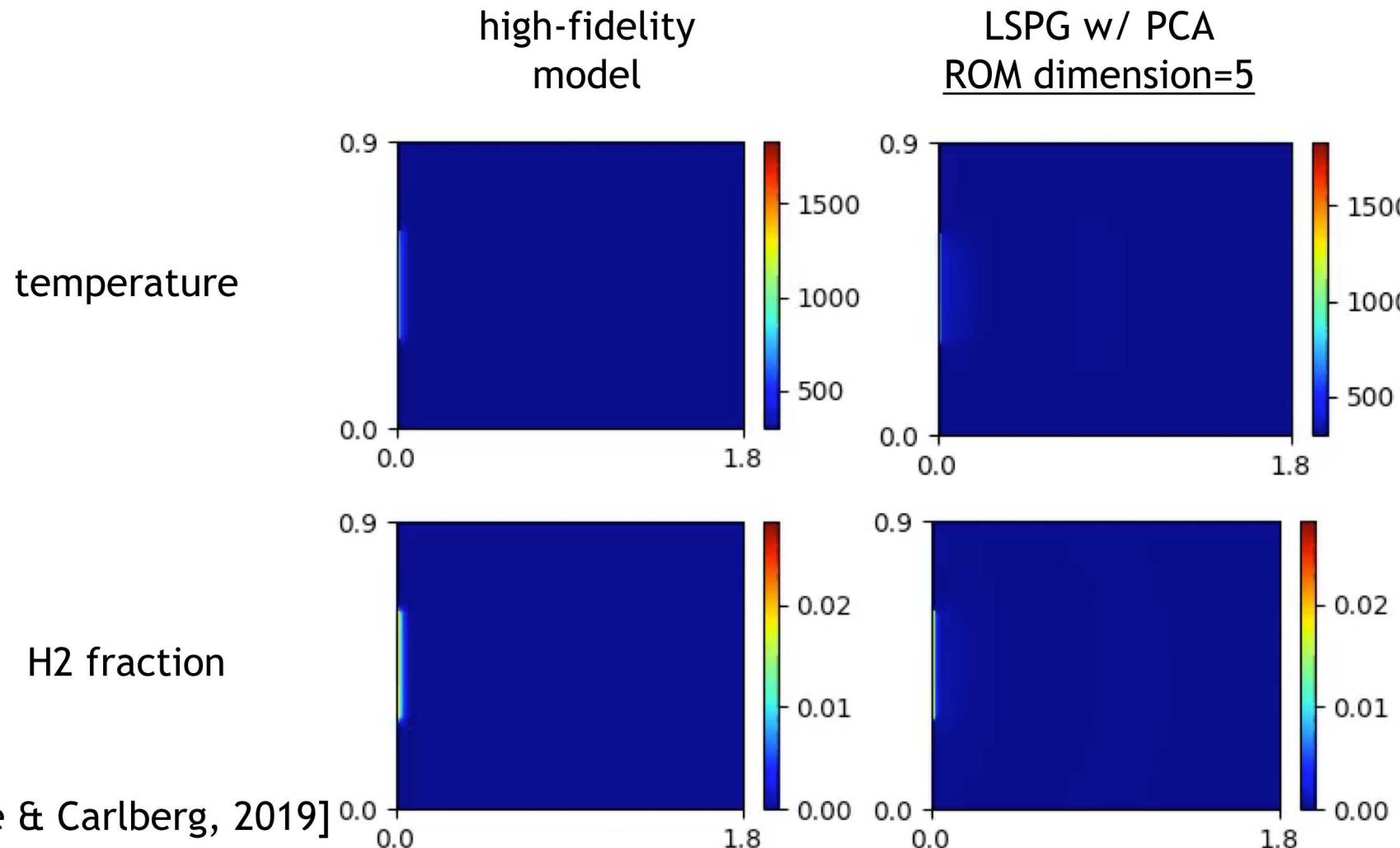
$$\min_{\hat{v}} \| A \ r^n(g(\hat{v}); \mu) \|_2$$

$\left(\begin{array}{c} | \\ | \\ | \\ | \end{array} \right)$

We achieve large improvements in the generalization criteria with manifold model reduction

2D Chemically reacting flow

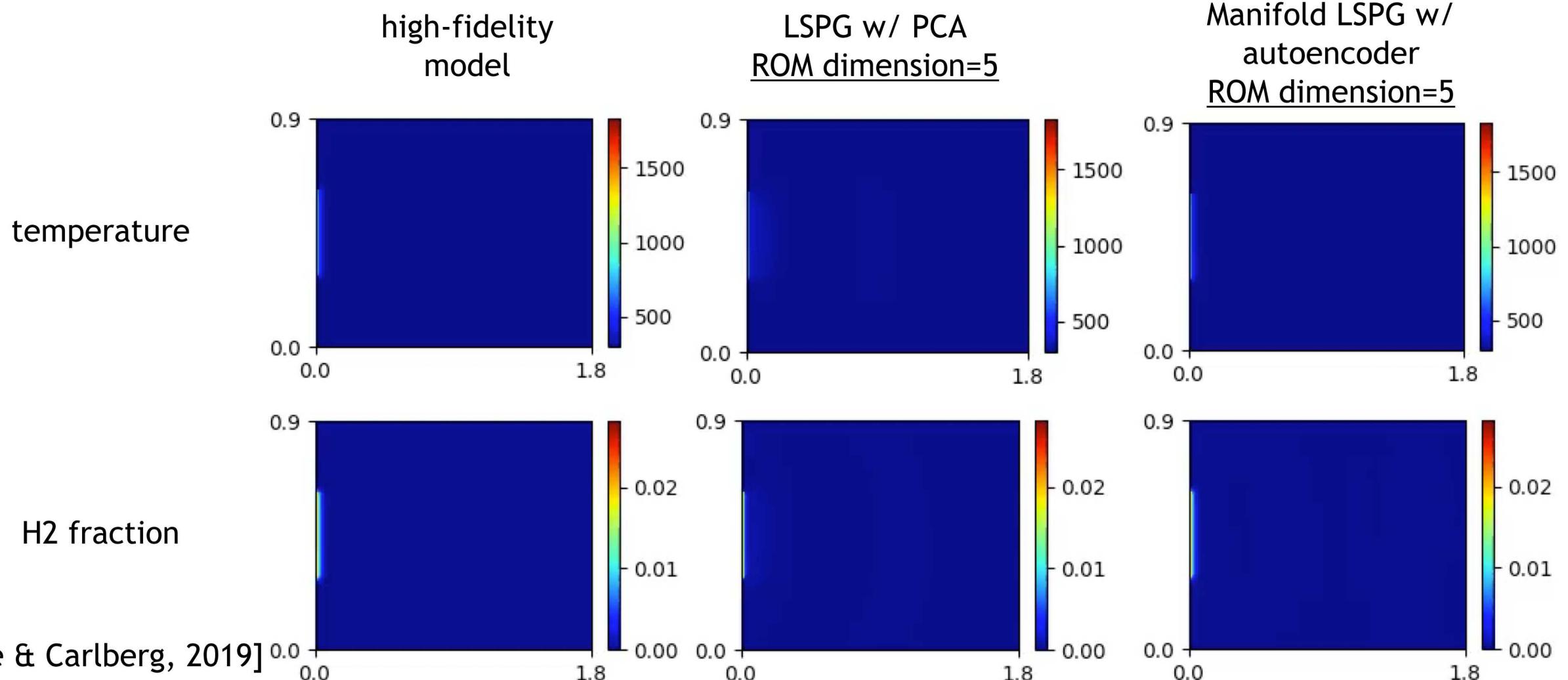
$$\frac{\partial \mathbf{w}(\vec{x}, t; \boldsymbol{\mu})}{\partial t} = \nabla \cdot (\kappa \nabla \mathbf{w}(\vec{x}, t; \boldsymbol{\mu})) - \mathbf{v} \cdot \nabla \mathbf{w}(\vec{x}, t; \boldsymbol{\mu}) + \mathbf{q}(\mathbf{w}(\vec{x}, t; \boldsymbol{\mu}); \boldsymbol{\mu})$$



We achieve large improvements in the generalization criteria with manifold model reduction

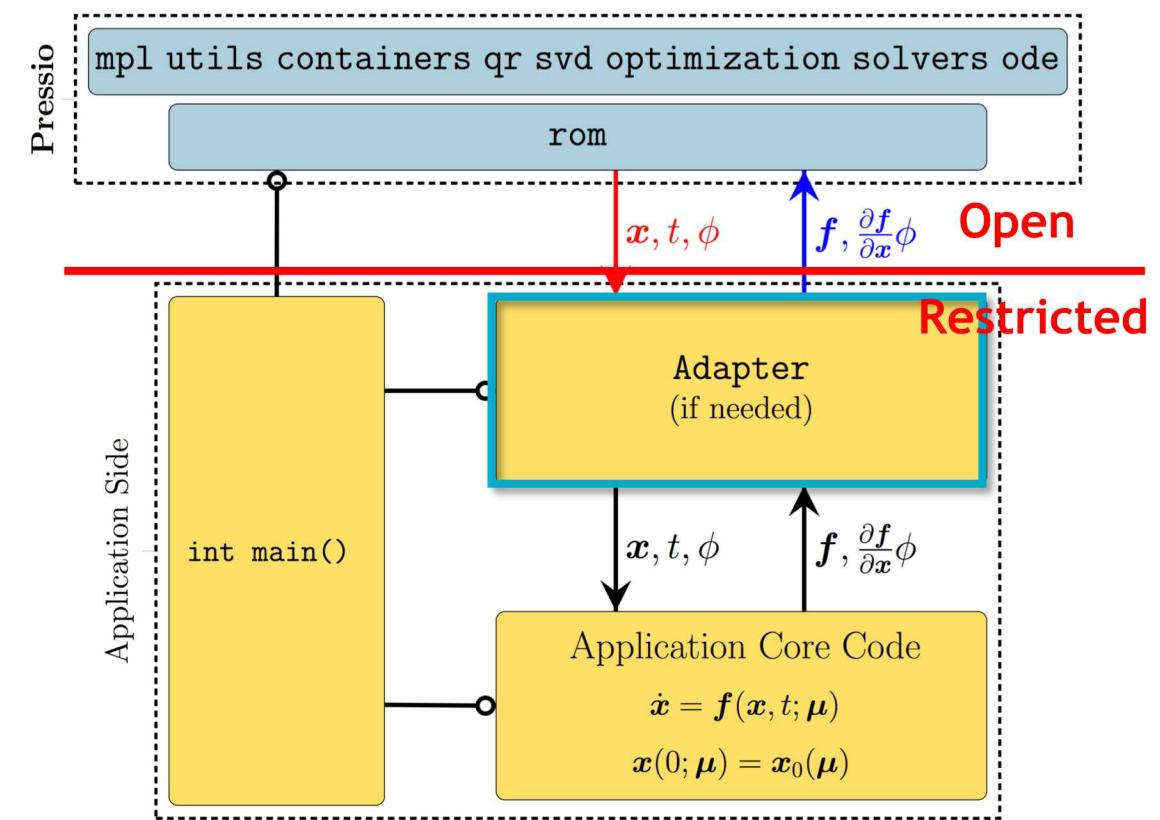
2D Chemically reacting flow

$$\frac{\partial \mathbf{w}(\vec{x}, t; \mu)}{\partial t} = \nabla \cdot (\kappa \nabla \mathbf{w}(\vec{x}, t; \mu)) - \mathbf{v} \cdot \nabla \mathbf{w}(\vec{x}, t; \mu) + \mathbf{q}(\mathbf{w}(\vec{x}, t; \mu); \mu)$$



Pressio enables deployment of model reduction methods to a range of simulation codes

- Previous ROM methods were implemented directly in multiple application codes
 - ✗ **Highly intrusive**: major changes to application code
 - ✗ **Not extensible**: individual ROM implementation for each application
 - ✗ **Access requirements**: developers need direct access to application
- Pressio, a software package that addresses all three of these issues:
 - ✓ Minimally intrusive method implementation.
 - ✓ Leverages modern software engineering practices (e.g. C++ template-metaprogramming)
 - Portable implementation that works on different architectures, including GPUs
 - Restricted to practices used by mission application partners
 - ✓ Facilitates contributions from external partners
 - Undergoing open source copyright assertion
 - ✓ Clear separation between methods and application
 - Enables methods work without access to restricted applications (ITAR, Classified, etc.)



Schematic of Pressio software workflow (F. Rizzi)

We are building Pressio adapters for three simulation codes

SPARC

Hypersonic Aerothermodynamics

- Key Personnel: P. Blonigan, M. Howard, J. Fike, F. Rizzi
- Progress: creating and running ROMs for aerodynamics

ARIA

Heat Transfer

- Key Personnel: J. Tencer, F. Pierce, F. Rizzi
- Progress: interface complete, setting up basis computation

Sierra Aero

Compressible Aerodynamics

- Key Personnel: J. Tencer, C. Proctor, M. McWherter-Payne, P. Blonigan
- Progress: creating high fidelity models

We are integrating our model reduction tools with many-query and time-critical applications

- ❖ Multi-fidelity Uncertainty Quantification
 - P. Blonigan, G. Geraci, and M. Eldred

- ❖ Network Uncertainty Quantification with ROMs for system-component design:
 - J. Tencer, K. Carlberg, C. Proctor, M. McWherter-Payne, and P. Blonigan

- ❖ Optimization under uncertainty
 - External collaboration, key personnel: M. Zahr, K. Carlberg, and D. Kouri
 - [Zahr, Carlberg and Kouri, 2019].

- ☒ Autonomy for hypersonics: path planning and adaptive control
 - P. Blonigan, K. Carlberg, M. Howard, J. Fike, and F. Rizzi

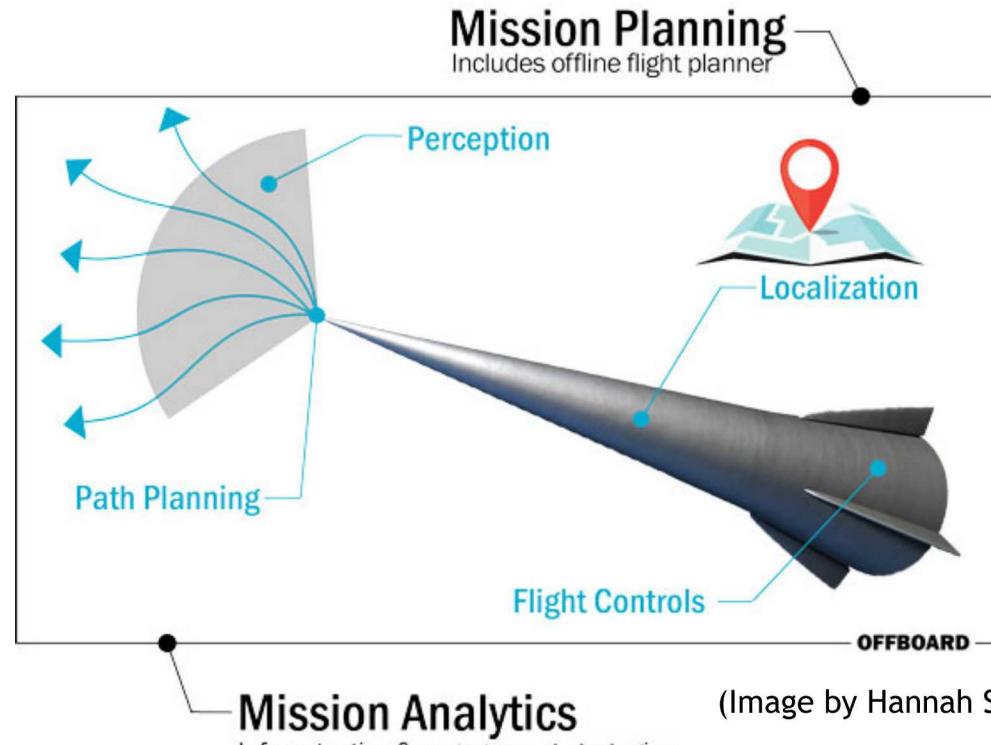
The Autonomy For Hypersonics (A4H) mission campaign focuses on time-critical problems for hypersonic vehicles

Autonomy for Hypersonics

Sandia's A4H Mission Campaign seeks to:

- Significantly decrease the time required for hypersonic missile flight planning using artificial intelligence.
- Enable semi-autonomous hypersonic missiles to self-correct in flight to compensate for unexpected flight conditions or a change in the target's location.

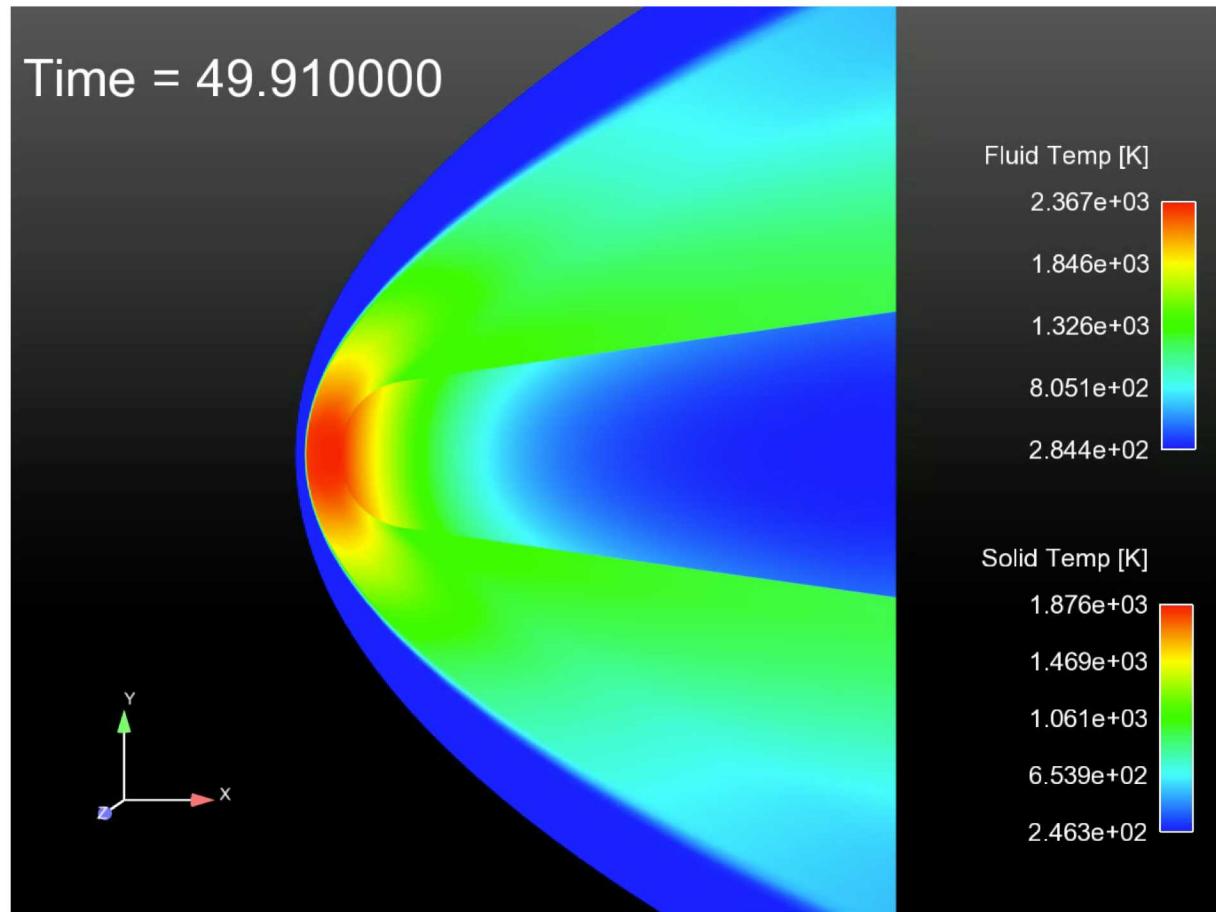
➤ <http://www.sandia.gov/news/publications/labnews/articles/2019/04-26/hypersonics.html>



(Image by Hannah Stangebye)

Our A4H project* will use our model reduction tool chain to accelerate path planning, design, and control of hypersonic vehicles

- Our project uses model reduction to:
 1. Generate large databases with quantified uncertainties for path planning.
 2. Enable rapid interactive simulation for vehicle design and control.
- We use Pressio (F. Rizzi) and SPARC (M. Howard) to create ROMs for hypersonic aerodynamics
- Joint work with aerosciences team (M. Howard, J. Fike) and UT Austin (K. Willcox, S. Majors)



A slender body in hypersonic flow simulated with SPARC (courtesy M. Howard)

LDRD

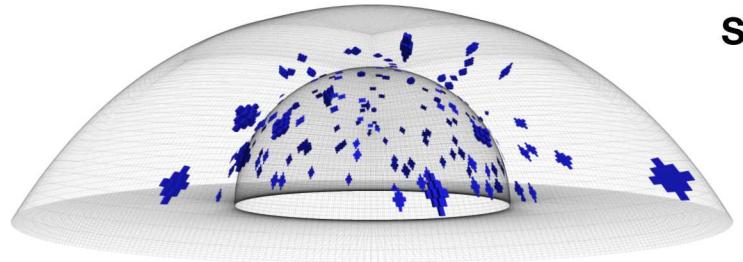
Laboratory Directed Research and Development

*Rapid high-fidelity aerothermal responses with quantified uncertainties via reduced-order modeling

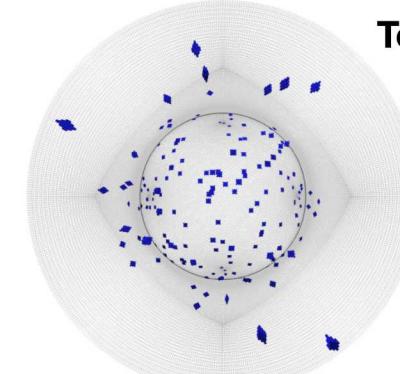
Preliminary results show that our model reduction tool chain will be effective for this application space

Blottner Sphere: • Unsteady* Navier–Stokes • $Re = 1.89 \times 10^6$ • $M_\infty = 5.0$

Sample mesh



Side view



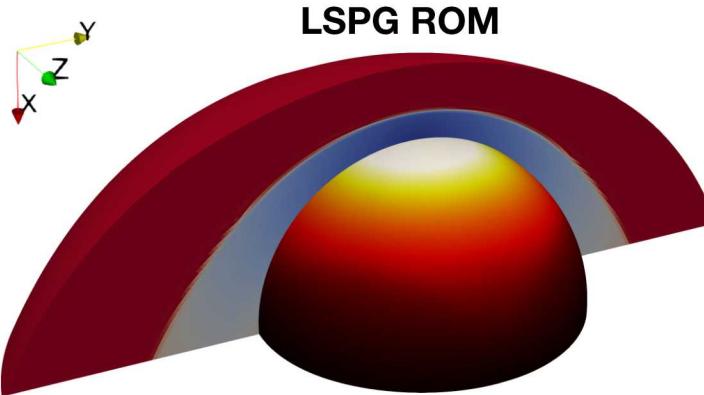
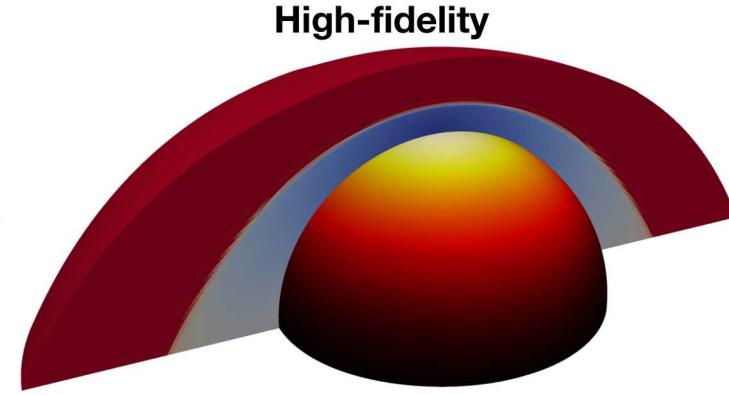
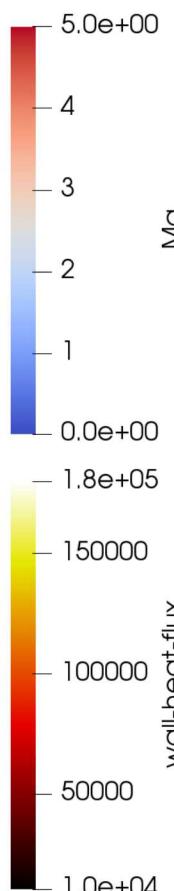
Top view

LSPG ROM:

- Sample mesh: 4,150 cells = 20,750 DoFs
- 1 MPI rank, ~18 seconds

High-fidelity:

- 4,194,304 cells = 20,971,520 DoFs
- 128 MPI ranks, ~147 seconds



1060x savings in core-hours

< 1% error in density, Mach number, and temperature fields

< 1% error in axial force, heat flux

Model reduction at Sandia is a large multidisciplinary effort supported by researchers spanning centers and institutions

- **Applied Math:** method development and analysis

- **Computer Science:** generalized, minimally intrusive model reduction implementation

- **Engineering science:** deployment of model reduction in engineering applications and analysis

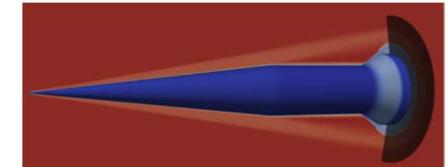
Future work will continue to span computer science, engineering science, and applied math research and development

- Computer Science R&D:

- Adding existing methods to Pressio
- Pathway to production for Pressio

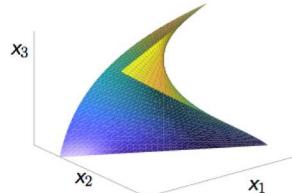
- Engineering Science R&D:

- Apply Pressio to increasingly complex physical systems
- New Pressio adaptors for additional simulation capabilities
- Integration of model reduction techniques with time-critical/many-query methods/frameworks:
 - Network UQ
 - Multi-fidelity UQ
 - Verification and Validation, Other UQ/Optimization approaches

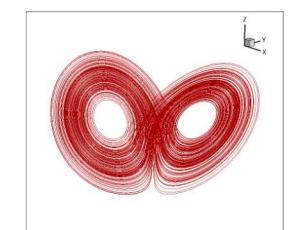


- Applied Math R&D:

- Nonlinear manifold model reduction methods
- Develop methods for chaotic dynamical systems



- Maintain current projects and create new projects with internal and external collaborators.



Summary of accomplishments and key references

Team grew from 3 in FY12 to 21 in FY19

2 keynote presentations
34 conference presentations
32 invited talks

23 Journal publications (7 in review)
6 Conference publications

#1 most-cited paper, 2011, IJNME
#1 most-cited paper, 2013, JCP
Featured article, 2015, SIAM JSC
Top 5 most-cited paper, 2017, JCP

- References

- E. Parish and K. Carlberg. Time-series machine-learning error models for approximate solutions to parameterized dynamical systems. arXiv e-print, (1907.11822), 2019.
- P. Etter and K. Carlberg. Online adaptive basis refinement and compression for reduced order models. arXiv e-print, (1902.10659), 2019.
- S. Pagani, A. Manzoni, and K. Carlberg. Statistical closure modeling for reduced-order models of stationary systems by the ROMES method. arXiv e-print, (1901.02792), 2019.
- K. Lee and K. Carlberg. Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders. arXiv e-print, (1812.08373), 2018.
- M. Zahr, K. Carlberg, and D. Kouri. An efficient, globally convergent method for optimization under uncertainty using adaptive model reduction and sparse grids. SIAM/ASA Journal on Uncertainty Quantification, Vol. 7, No. 3, p.877–912 (2019).
- K. Carlberg, L. Brenner, B. Haasdonk, and A. Barth. Data-driven time parallelism via forecasting. SIAM Journal on Scientific Computing, 41(3):B466–B496, 2019.
- B. Freno and K. Carlberg. Machine-learning error models for approximate solutions to parameterized systems of nonlinear equations. Computer Methods in Applied Mechanics and Engineering, 348:250–296, 2019.
- Y. Choi and K. Carlberg. Space–time least-squares Petrov–Galerkin projection for nonlinear model reduction. SIAM Journal on Scientific Computing, 41(1):A26–A58, 2019.
- K. Carlberg, Y. Choi, and S. Sargsyan. Conservative model reduction for finite-volume models. Journal of Computational Physics, 371:280–314, 2018.
- S. Trehan, K. Carlberg, and L. Durlofsky. Error modeling for surrogates of dynamical systems using machine learning. International Journal for Numerical Methods in Engineering, 112(12):1801–1827, 2017.
- 🏅 **K. Carlberg, M. Barone, and H. Antil. Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction. Journal of Computational Physics, 330:693–734, 2017.**
- K. Carlberg, J. Ray, and B. van Bloemen Waanders. Decreasing the temporal complexity for nonlinear, implicit reduced-order models by forecasting. Computer Methods in Applied Mechanics and Engineering, 289:79–103, 2015.
- M. Drohmann and K. Carlberg. The ROMES method for statistical modeling of reduced order-model error. SIAM/ASA Journal on Uncertainty Quantification, 3(1):116–145, 2015.
- 🏅 **K. Carlberg, R. Tuminaro, and P. Boggs. Preserving Lagrangian structure in nonlinear model reduction with application to structural dynamics. SIAM Journal on Scientific Computing, 37(2):B153–B184, 2015.**
- K. Carlberg. Adaptive h-refinement for reduced-order models. International Journal for Numerical Methods in Engineering, 102(5):1192–1210, 2015.
- 🏅 **K. Carlberg, C. Farhat, J. Cortial, and D. Amsallem. The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. Journal of Computational Physics, 242:623–647, 2013.**
- 🏅 **K. Carlberg, C. Farhat, and C. Bou-Mosleh. Efficient non-linear model reduction via a least-squares Petrov–Galerkin projection and compressive tensor approximations. International Journal for Numerical Methods in Engineering, 86(2):155–181, April 2011.**

- Contact information:

- Patrick Blonigan
- pblonig@sandia.gov / 925-294-6707
- <https://www.sandia.gov/~pblonig>
- ROM group email: wg-rom-group@sandia.gov

Backup slides

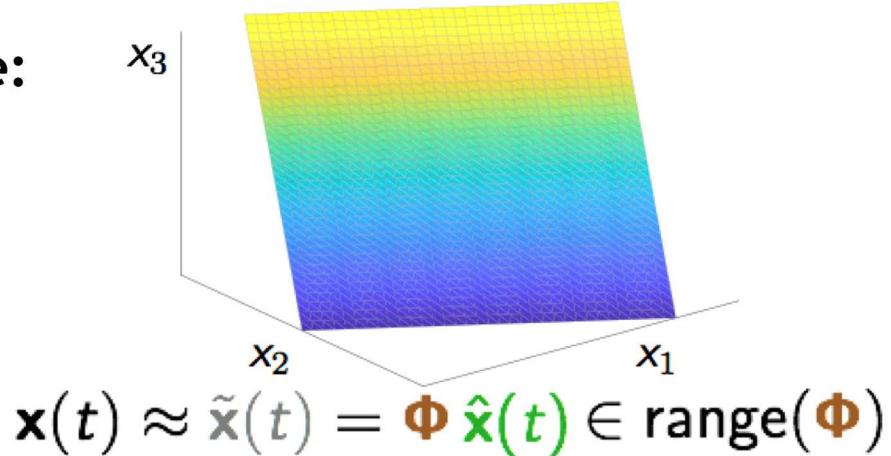
- Other References

- A. Antoulas. Approximation of large-scale dynamical systems. Society for Industrial and Applied Mathematics. Philadelphia, PA. 2005.
- B. Moore. Principal component analysis in linear systems: Controllability, observability, and model reduction. *IEEE Transactions on Automatic Control*, vol. 26, no. 1, pp. 17-32, February 1981. doi: 10.1109/TAC.1981.1102568
- K. Willcox and J. Peraire. Balanced Model Reduction via the Proper Orthogonal Decomposition. *AIAA Journal*. 40:11, 2323-2330. 2002.
- C. W. Rowley. Model Reduction for Fluids, using Balance Proper Orthogonal Decomposition. *International Journal of Bifurcation and Chaos*. 15:03, 997-1013. 2005.
- Zhaojun Bai, Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems, *Applied Numerical Mathematics*, 43:1–2) 9-44, 2002.
- R. W. Freund, “Model Reduction Methods Based on Krylov Subspaces.” *Acta Numerica* 12. 267–319. 2003.
- K. Gallivan, A. Vandendorpe, and P. Van Dooren, Model Reduction of MIMO Systems via Tangential Interpolation, *SIAM Journal on Matrix Analysis and Applications*. 26:2, 328-349. 2004.
- U. Baur, C. Beattie, P. Benner, and S. Gugercin, Interpolatory Projection Methods for Parameterized Model Reduction, *SIAM Journal on Scientific Computing*. 33:5, 2489-2518. 2011.
- C. Prud’homme, D. Rovas, K. Veroy, L. Machiels, Y. Maday, A. Patera, and G. Turinici. Reliable real-time solution of parameterized partial differential equations: Reduced-basis output bound methods. *Journal of Fluids Engineering*. 124:170–80. 2002.
- M. Barrault, Y. Maday, N. C. Nguyen, A. T. Patera. An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, *Comptes Rendus Mathematique*. 339:9, 667-672. 2004.
- G. Rozza, D. Huynh, and A. Patera. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations,” *Archives of Computational Methods in Engineering*. 15:3, 1–47. 2007.
- L. Sirovich. Turbulence and the dynamics of coherent structures. Part 1: Coherent structures. *Quart. Appl. Math.*, 45, 561–571. 1987.
- C. W. Rowley, T. Colonius, R. M. Murray. Model reduction for compressible flows using POD and Galerkin projection. *Physica D: Nonlinear Phenomena*. 189:1–2, 115-129. 2004.

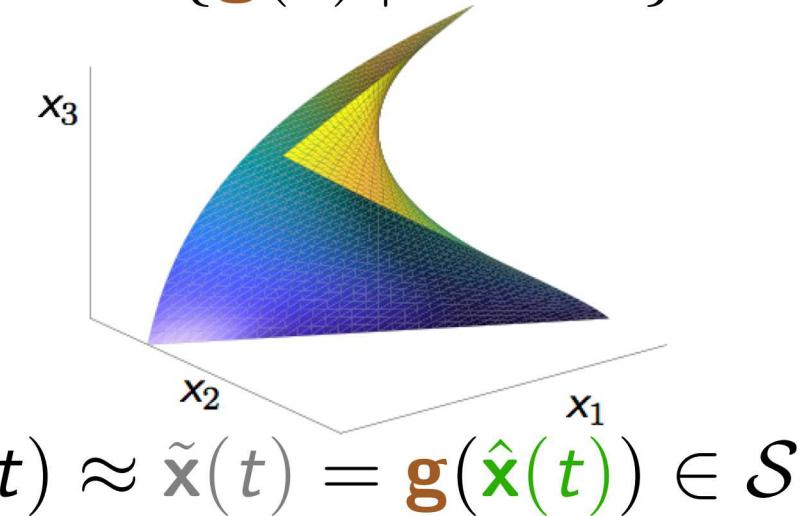
Manifold LSPG projection uses a nonlinear function instead of a linear basis, resulting in more capacity [Lee & Carlberg, 2019]

$$\text{range}(\Phi) := \{\Phi \hat{\mathbf{x}} \mid \hat{\mathbf{x}} \in \mathbb{R}^P\}$$

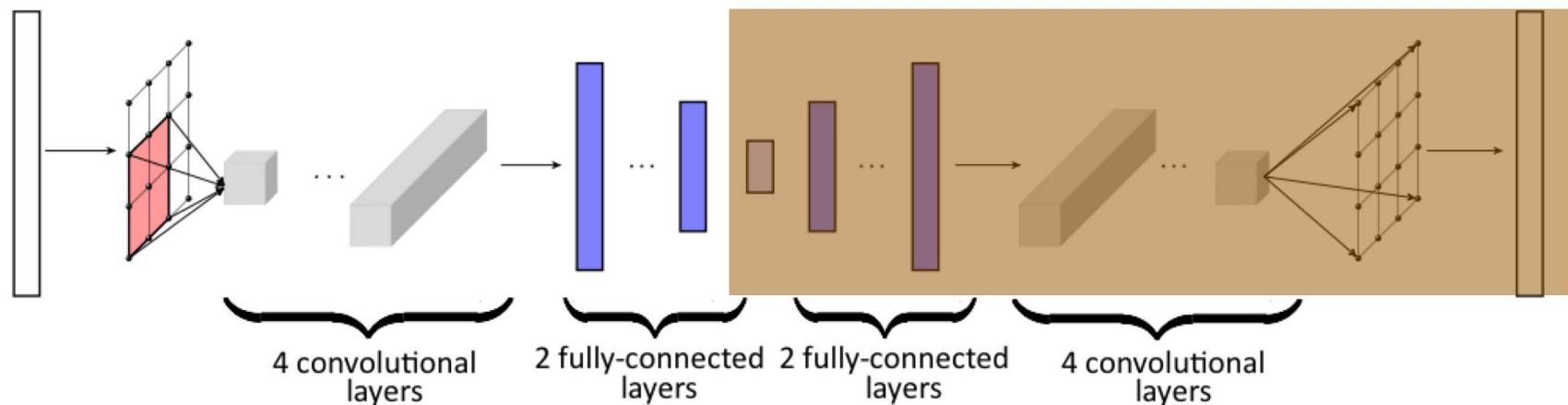
Example:
N=3
P=2



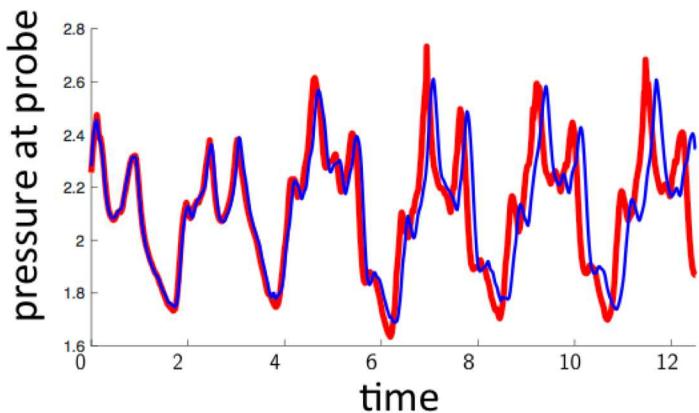
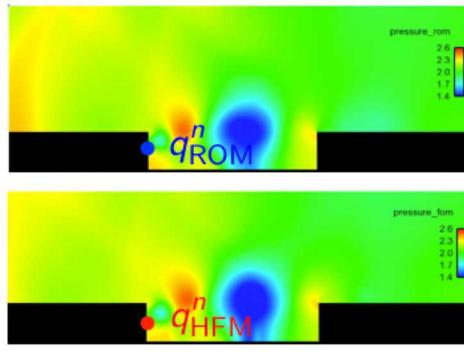
$$\mathcal{S} := \{\mathbf{g}(\hat{\mathbf{x}}) \mid \hat{\mathbf{x}} \in \mathbb{R}^P\}$$



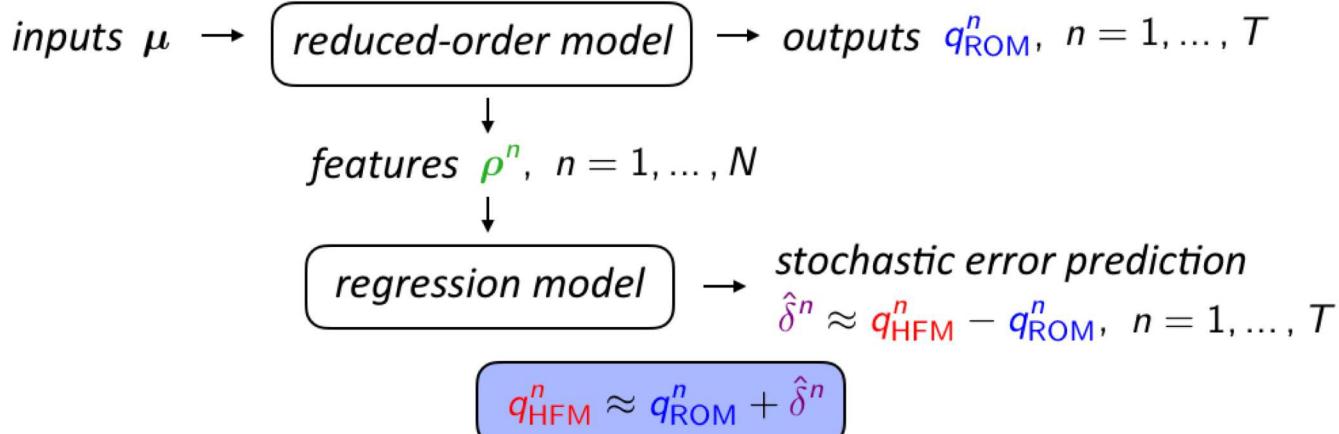
Decoder:
One choice of
nonlinear
function



Machine Learning Error Models [Carlberg & Freno, 2018]



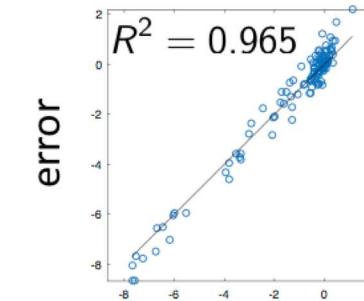
$$\mathcal{D} \quad \begin{matrix} \text{blue dots} \\ \text{orange dot} \\ \text{blue dots} \end{matrix}$$



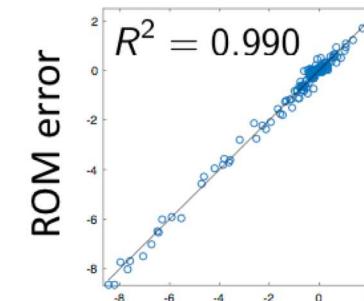
+ Statistical model of high-fidelity-model output

Physics-based feature engineering to determine ρ^n

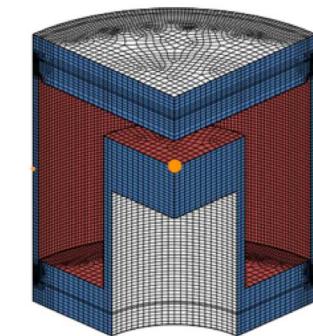
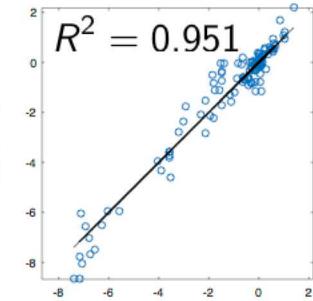
Example: Component Structural Model



random forest
error prediction



support vector machine
error prediction



k -NN
error prediction

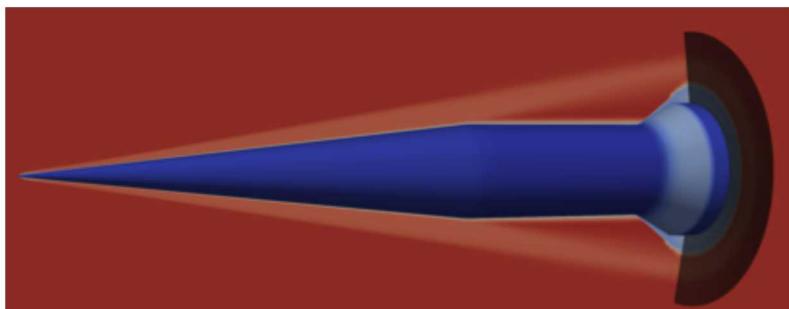
ML methods yield low-variance error predictions

Our vision statement informs our current and future research

Establish a research-to-production capability, based on projection-based reduced-order models (ROMs), that enables deployment of high-fidelity physics & engineering simulations in time-critical (e.g., control, rapid analysis) and many-query applications (e.g., uncertainty quantification, design optimization, parameter-space exploration), in support of the Department of Energy mission.

Software-specific Technology Readiness Level (TRL) <https://TRL.sandia.gov>

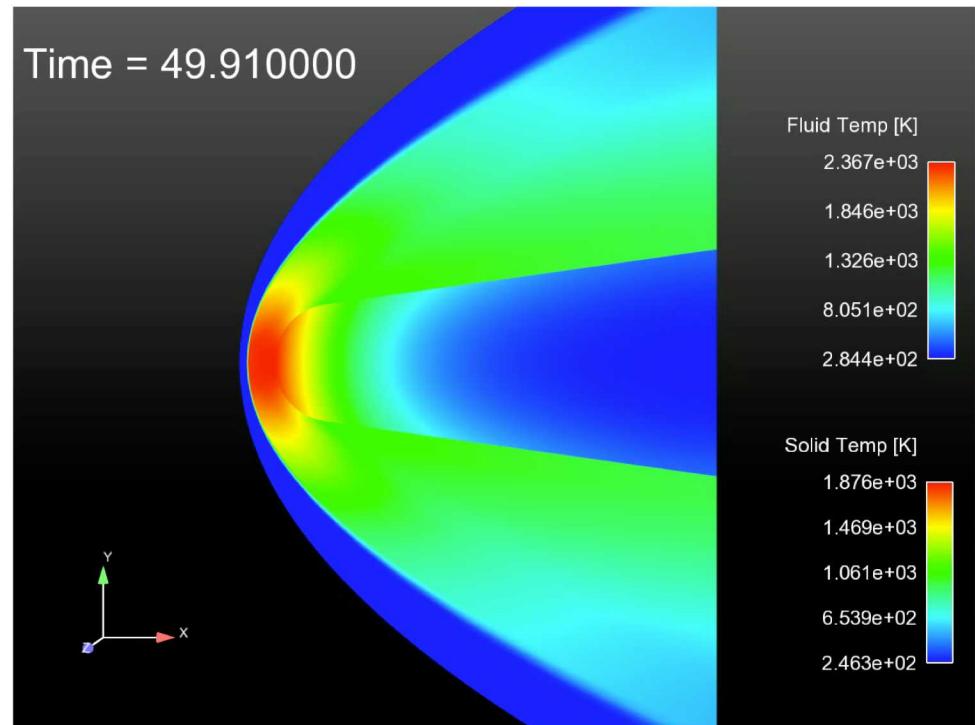
$$X = \begin{array}{c|c} \text{Red} & \text{Green} \end{array} \xrightarrow{\text{Neural Network}} \begin{array}{c|c} \text{Red} & \text{Green} \end{array} = \tilde{X}(\theta)$$



U.S. DEPARTMENT OF
ENERGY

Sandia Parallel Aerodynamics and Reentry Code (SPARC)

- Compressible CFD code focused on aerodynamics and aerothermodynamics in the Transonic and Hypersonic regimes
 - Being developed to run on today's leadership-class supercomputers and exascale machines.
 - Performance portability: SPARC leverages Kokkos to run on multiple machines with different architectures (e.g. CPU vs. CPU/GPU)
- Physics Capabilities include:
 - **Navier—Stokes, cell-centered finite volume method**
 - **Reynolds-Averaged Navier—Stokes (RANS) , cell-centered finite volume method**
 - Transient Heat Equation, Galerkin finite element method.
 - Decomposing and non-decomposing ablation equations, Galerkin finite element method.
 - One and two-way coupling between ablation, heat equation, RANS.



A slender body in hypersonic flow simulated with SPARC