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2 1 High-fidelity simulations are crucial, but often too costly for
rigorous use within Sandia's mission

•High-fidelity simulation:
• Extreme-scale nonlinear computational models,

• Indispensable for a wide range of engineering and
scientific applications.

• Example: captive carry aerodynamics simulation

• Extreme-scale: 100 million cells, 200,000 time steps.

• High cost: 6 weeks on 5000 cores.

Mission problems:

• Time-critical:
• Model predictive control

• Health monitoring

• Many-query:
• Uncertainty quantification

• Design optimization

Turbulent reacting flows
courtesy J. Chen

Captive carry aerodynamics
courtesy M. Barone

Antarctic ice sheet modeling
courtesy R. Tuminaro

Magnetohydrodynamics
courtesy J. Shadid



3 We use model reduction to exploit high-fidelity simulation data for
use within many-query and time-critical mission applications

Model Reduction Criteria
1. Accuracy: achieves less than 1% error
2. Low cost: achieves at least 100x computational savings
3. Property preservation: preserves important physical properties
4. Generalization: should work even in difficult cases
5. Certification: accurately quantify the reduced order model (ROM) error
6. Extensibility: should work for many application codes



4 Model reduction at Sandia is a large multidisciplinary effort
supported by researchers spanning centers and institutions
•Started by Kevin Carlberg with 3 people in FY12, focused on applied math research

• Grown to 21 in FY19, with a leadership team spanning the Computing and Information Sciences (CIS)
and Engineering Science (ES) research foundations and institutions

•Applied Math (CIS+ES): method development and analysis

•Computer Science (CIS): generalized, minimally intrusive model reduction implementation

A„,„
•Engineering science (ES): deployment of model reduction in engineering applications and analysis

A-



5 The funding scope and technology readiness level of our work
are growing

• ASC (CIS + ES) • LDRD (CIS) LDRD (ES) • Truman Fellowship (CIS)
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6 I Historical model reduction approaches are ineffective for nonlinear
dynamical systems, which arise often in Sandia's mission applications

Historical model reduction work external to Sandia

• Linear time-invariant systems: mature [Antoulas, 2005]
O Balanced truncation [Moore, 1981; Willcox and Peraire, 2002;

Rowley, 2005]

O Transfer-function interpolation [Bai, 2002; Freund, 2003; Gallivan
et al, 2004; Baur et al., 2011]

.1 Accurate, generalizes, certified sharp a priori error bounds

J Inexpensive pre-assemble operators

.1 Property preservation: guaranteed stability

• Elliptic/parabolic PDEs: mature [Prud'Homme et al., 2002;
Barrault et al., 2004; Rozza et al., 2007]

O Reduced-basis method

J Accurate, generalizes, certified sharp a priori error bounds

J Inexpensive pre-assemble operators

J Property preservation: preserve operator properties

•Nonlinear dynamical systems: ineffective

o Proper orthogonal decomposition (POD)—Galerkin [Sirovich, 1987;
Colonius, 2004]

X Inaccurate, doesn' t generalize often unstable

X Not certified error bounds grow exponentially in time

X Expensive projection insufficient for speedup

X Structure not preserved physical properties ignored

X Not extensible highly intrusive implementation required

Model Reduction Criteria
1. Accuracy: achieves less than 1% error
2. Low cost: achieves at least 100x

computational savings
3. Property preservation: preserves important

physical properties
4. Generalization: should work even in difficult

cases and for many application codes
5. Certification: accurately quantify the ROM

error
6. Extensibility: should work for many

application codes



7 Our research is focused on satisfying model reduction criteria for
nonlinear dynamical systems

Our model reduction research at Sandia
Accuracy
➢ Least-Squares Petrov—Galerkin (LSPG) projection: our baseline approach

[Carlberg, Bou-Mosleh, Farhat, 2011; Carlberg, Barone, Antil, 2017]

• Low cost
➢ Sample mesh: use a fraction of the data for evalutaing nonlinear functions [Carlberg,

Farhat, Cortial, Amsallem, 2013]

➢ Space—time LSPG projection: learn and exploit structure in spatial and temporal data
[Carlberg, Ray, van Bloemen Waanders, 2015; Carlberg, Brencher, Haasdonk,
Barth, 2017; Choi and Carlberg, 2019]

• Property preserva tion
➢ Impose additional physical constraints (e.g. conservation) [Carlberg, Tuminaro, Boggs,

2015; Peng and Carlberg, 2017; Carlberg, Choi, Sargsyan, 2018]

• Generalization
➢ Projection onto nonlinear manifolds: high capacio nonlinear approximation [Lee,

Carlberg, 2018]

➢ h-adaptivity: trade cost for accurag [Carlberg, 2015; Etter and Carlberg, 2019]

• Certification
➢ Machine learning error model: quantift reduced model uncertainties [Drohmann and

Carlberg, 2015; Trehan, Carlberg, Durlofsky, 2017; Freno and Carlberg, 2019;
Pagani, Manzoni, Carlberg, 2019; Parish and Carlberg, 2019]

• Extensibility
➢ Pressio software: deploy methods for many application codes

Model Reduction Criteria
. Accuracy: achieves less than 1% error
. Low cost: achieves at least 100x

computational savings
3. Property preservation: preserves important

physical properties
4. Generalization: should work even in difficult

cases and for many application codes
. Certification: accurately quantify the ROM

error
6. Extensibility: should work for many

application codes

■



8 I We employ a machine-learned model reduction approach that has
four stages

1. Acquisition: Run high-fidelity simulation
at a few design points, save simulation data

2. Learning: Use machine learning
techniques to identify low-dimensional
structure in the high-fidelity simulation
data

3. Reduction: Build a reduced-order model
(ROM) with extracted data structures,
high-fidelity governing equations

4. Deployment: Use ROM at remaining
design points

D Design space
High-fidelity solution

ROM solution



Our baseline approach* Ieverages a linear basis computed with
9 unsupervised learning

*High-fidelity simulation = Ordinary Differential Equation (ODE): c(1): = f(x; t, tt)

1. Acquisition

r--
D

Solve ODE at different
design points

N
u
m
b
e
r
 o
f 
St

at
e 

Number of
time steps

1
Save solution data

2. Learning
Unsupervised Learning with Principal

Component Analysis (PCA):

x u V 
T

3.  Reduction 
Choose ODE
Temporal
Discretization

Reduce the
number of
unknowns

Minimize the
Residual

dx

f(x; tt)dt

rn(xn, /A) = 0, n = 1, , T

minimize

x(t);,,,i(t)=0i(t)I
A rn(i) itt)

I II I 
(II I

4=1 1

2

2

*Least-Squares Petrov—Galerkin (LSPG) Projection [Carlberg, Bou-Mosleh, Farhat, 2011; Carlberg, Barone, Antil, 2017]



Property preservation is enforced with additional constraints
10

dx
*High-fidelity simulation = Ordinary Differential Equation (ODE): dt = f(x; t, ft)
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11 Our baseline approach achieves high accuracy at a low cost for
captive carry application

LSPG: minimize Arn(00;

Sample mesh

LSPG ROM
• 32 min, 2 cores

High-fidelity
• 5 hours, 48 cores
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229x savings in core-hours
< 1% error in time-averaged drag

[Carlberg, Barone, Antil, 2017]



12
Manifold model reduction uses a nonlinear function instead of a
linear basis

dx
*High-fidelity simulation = Ordinary Differential Equation (ODE): Tit = f(x; t, tt)
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13
We achieve large improvements in the generalization criteria with
manifold model reduction
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14
We achieve large improvements in the generalization criteria with
manifold model reduction

2D Chemically reacting
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1 5 Pressio enables deployment of model reduction methods to a range
of simulation codes

•Previous ROM methods were implemented directly in
multiple application codes
X Highly intrusive: major changes to application code

XNot extensible: individual ROM implementation for each
application

XAccess requirements: developers need direct access to
application

•Pressio, a software package that addresses all three of
these issues:
VMinimally intrusive method implementation.

VLeverages modern software engineering practices (e.g. C++
template--metaprogramming)
> Portable implementation that works on different architectures, including
GPUs

> Restricted to practices used by mission application partners

VFacilitates contributions from external partners
> Undergoing open source copyright assertion

VClear separation between methods and application
> Enables methods work without access to restricted applications

(ITAR,Classified, etc.)

mpl utils containers qr svd optimization solvers ode
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int main()

Adapt er
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tricted

Schematic of Pressio software workflow (F. Rizzi)



16 We are building Pressio adapters for three simulation codes

SPARC
Hypersonic Aerothermodynamics
• Key Personnel: P. Blonigan, M.

Howard, J. Fike, F. Rizzi
• Progress: creating and running

ROMs for aerodynamics

AIA

r.v LDRDLybotartyry Dnyyted Rebeyryil ynd Development

ARIA
Heat Transfer

• Key Personnel: J. Tencer, F.
Pierce, F. Rizzi

• Progress: interface complete,
setting up basis computation

-4 LDRD
Laboratory !attracted Research and Development

Sierra Aero
Compressible Aerodynamics

• Key Personnel: J. Tencer, C.
Proctor, M. McWherter-Payne,
P. Blonigan

• Progress: creating high fidelity
models

LDRD
ff.t. Laboratory Directed Research and Development



17 I We are integrating our model reduction tools with many-
query and time-critical applications

+Multi-fidelity Uncertainty Quantification arA
fav LDRD
,xr Laboratory Directed Research and Development• P. Blonigan, G. Geraci, and M. Eldred

+Network Uncertainty Quantification with ROMs for system-component design: mA
Are LDRD

• J. Tencer, K. Carlberg, C. Proctor, M. McWherter-Payne, and P. Blonigan

+Optimization under uncertainty

• External collaboration, key personnel: M. Zahr, K. Carlberg, and D. Kouri

➢ Vahr, Carlberg and Kouri, 2019].

•

frffflif 
I I I

BERKELEY LAB
Lawrence Bedolay Mama La*

YAutonomy for hypersonics: path planning and adaptive control arA
LDRD
Laboratory Directed Research and Devetopment• P. Blonigan, K. Carlberg, M. Howard, J. Fike, and F. Rizzi

1klak Laboratory Directed Research and Development

UNIVERSITY OF

NOTRE DAME



1 8  The Autonomy For Hypersonics (A4H) mission campaign focuses
on time-critical problems for hypersonic vehicles

Mission Planning—m,
Includes offline flight planner \I

Autonomy for
Hypersonics

LDRD
Laboratory Directed Research and Development

Sandia's A4H Mission Campaign seeks to:

4-

Path Planning '

Perception

Flight Controls

Mission Analytics
Inform tactics & engagernent strategies

Localization

OFFBOARD

(Image by Hannah Stangebye)

•Significantly decrease the time required for hypersonic missile flight planning using artificial intelligence.

•Enable semi-autonomous hypersonic missiles to self-correct in flight to compensate for unexpected flight
conditions or a change in the target's location.

➢ http://www.sandia.gov/news/publications/labnews/articles/2019/04-26/hypersonics.html



1 9 I Our A4H project* will use our model reduction tool chain to
accelerate path planning, design, and control of hypersonic vehicles

°Our project uses model reduction to:

1. Generate large databases with quantified
uncertainties for path planning.

2. Enable rapid interactive simulation for vehicle
design and control.

•We use Pressio (F. Rizzi) and SPARC (M. Howard) to
create ROMs for hypersonic aerodynamics

•Joint work with aerosciences team (I. Howard, J.
Fike) and UT Austin (K. Willcox, S. Majors)

me LDRD
Laboratory Directed Research and Development

Time = 49.910000

 ► x

Fluid Temp [K]

2.367e+03

1.846e+03

1.326e+03

8.051e+02

2 844e+02

k-

Solid Temp [K]

1.876e+03

1 469e+03

1 061e+03

6 539e+02

2 .463e+02

A slender body in hypersonic flow simulated with
SPARC (courtesy M. Howard)

*Rapid high-fidelity aerothermal responses with quantified uncertainties via reduced-order modeling



20 Preliminary results show that our model reduction tool chain will
be effective for this application space

Blottner Sphere: ► Unsteady* Navier—Stokes ► Re = 1.89 x 106 ► M.= 5.0

Sample mesh

LSPG ROM:
• Sample mesh: 4,150 cells=

20,750 DoFs
• 1 MPI rank, -18 seconds

High-fidelity:
• 4,194,304 cells=20,971,520 DoFs
• 128 MPI ranks, -147 seconds

Side view
Top view

LSPG ROM

4

•

High-fidelity

5.0e+00

4

3

2

— 1

0 Oe+00

— 1 8e+05

— 150000

50000

1 Oe+04

1060x savings in core-hours
< 1% error in density, Mach number, and temperature fields

< 1% error in axial force, heat flux



21 I Model reduction at Sandia is a large multidisciplinary effort
supported by researchers spanning centers and institutions

•Applied Math: method development and analysis

• Computer Science: generalized, minimally intrusive model reduction implementation

•Engineering science: deployment of model reduction in engineering applications and analysis



22  Future work will continue to span computer science, engineering
science, and applied math research and development

°Computer Science R&D:

>Adding existing methods to Pressio

>Pathway to production for Pressio

•Engineering Science R&D:

>Apply Pressio to increasingly complex physical systems

>New Pressio adaptors for additional simulation capabilities

>Integration of model reduction techniques with time-critical/many-query methods/frameworks:

• Network UQ

• Multi-fidelity UQ

• Verification and Validation, Other UQ/Optimization approaches

•Applied Math R&D:

>Nonlinear manifold model reduction methods

>Develop methods for chaotic dynamical systems

°Maintain current projects and create new projects with internal and external collaborators.
lIVIna:isthatcehrfetts

I Technology El UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

ILLINOIS UNIVERSITY OF
MICHIGAN

UNIVERSITY OF

NOTRE DAME Stanford
University

TO Cy TEXAS
Technische Universität München The University of Texas at Austin

X3

X2

TAT UNIVERSITY of

ifir WASHINGTON



23 Summary of accomplishments and key references
2 keynote presentations•.• Team grew from 3 in

FY12 to 21 in FY19 Tall 34 conference presentations
32 invited talks

• References
➢
➢

➢

➢

➢

➢

➢

➢

➢

➢

➢

➢

➢
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23 Journal publications (7 in review)
6 Conference publications
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O

• Contact information:
• Patrick Blonigan

• pblonig@sandia.gov / 925-294-6707

• https: / /www sandia.gov/ —pblonig

• ROM group email: wg-rom-group@sandia.gov

#1 most-cited paper, 2011, IJNME
#1 most-cited paper, 2013, JCP
Featured article, 2015, SIAM JSC
Top 5 most-cited paper, 2017, JCP
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25 I More Information
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26 Manifold LSPG projection uses a nonlinear function instead of
a linear basis, resulting in more capacity [Lee & Carlberg, 2019]  
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27  Machine Learning Error Models [Carlberg & Freno, 2018]
Example: Component Structural Model

QJ a8 -

2 a6 -

1.6

inputs tt

4 8

time
10 12
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1 I

• .
D • • • • e. • . •

reduced-order model outputs 401,A, n = 1, , T

features p" , n = 1, , N

regression model
stochastic error prediction
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[ qHFM CIROM Sn]

+ Statistical model of high-fidelity-model output

Physics-based feature engineering to determine P11

-8 -6 -2 0 2

random forest
error prediction

O

-e -4 -2 2

support vector machine
error prediction

-8 -6 -4 -2 0 2

k-NN
error prediction

ML methods yield low-variance error
predictions



28 Our vision statement informs our current and future research
Establish . res- . rch-to-productio capability, based on projection-based reduced- • rder models
(ROMs), that enables deployment of high-fidelity physics Et engineering simulations in time-
critical (e.g., control, rapid analysis) and many-query applications (e.g., uncertainty
quantification, design optimization, parameter-space exploration), in support of
the Department of Energy mission.

Software-specific Technology Readiness Level (TRL) https://trl.sandia.gov

X=1 a a

U.S. DEPARTMENT OF

ENERGY



29  Sandia Parallel Aerodyanmics and Reentry Code (SPARC)

•Compressible CFD code focused on aerodynamics and
aerothermodynamics in the Transonic and Hypersonic regimes
• Being developed to run on today's leadership-class supercomputers
and exascale machines.

• Performance portability: SPARC leverages Kokkos to run on
multiple machines with different architectures (e.g. CPU vs.
CPU/GPU)

•Physics Capabilities include:
• Navier—Stokes, cell-centered finite volume method

• Reynolds-Averaged Navier—Stokes (RANS) , cell-centered
finite volume method

• Transient Heat Equation, Galerkin finite element method.

• Decomposing and non-decomposing ablation equations, Galerkin
finite element method.

• One and two-way coupling between ablation, heat equation, RANS.

Time = 49.910000
Fluid Temp [K]

2.367e+03

1.846e+03

1 326e+03

8.051e+02

2.844e+02

Solid Temp [K]

1 876e+03

1 469e+03

1 061e+03

6 539e+02

2 463e+02

A slender body in hypersonic flow
simulated with SPARC


