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2 ‘ High-fidelity simulations are crucial, but often too costly for
rigorous use within Sandia’s mission

*High-fidelity simulation:

* Extreme-scale nonlinear computational models,

* Indispensable for a wide range of engineering and
scientific applications.

* Example: captive carry aerodynamics simulation
* Extreme-scale: 100 million cells, 200,000 time steps.

o ngh cost: 6 weeks on 5000 cores. Turbulent reacting flows Antarctic ice sheet modeling
courtesy J. Chen courtesy R. Tuminaro

*Mission problems:
* Time-critical:
* Model predictive control

* Health monitoring

* Many-query:

* Uncertainty quantification

Captive carry aerodynamics Magnetohydrodynamics

* 1D csign Optlmlzatlon courtesy M. Barone courtesy J. Shadid



3 I We use model reduction to exploit high-fidelity simulation data for
use within many-query and time-critical mission applications

Model Reduction Criteria
1. Accuracy: achieves less than 1% error

2. Low cost: achieves at least 100x computational savings

3. Property preservation: preserves important physical properties
4. Generalization: should work even in difficult cases

5. Certification: accurately quantify the reduced order model (ROM) error
6. Extensibility: should work for many application codes




Model reduction at Sandia is a large multidisciplinary effort
supported by researchers spanning centers and institutions

*Started by Kevin Carlberg with 3 people in FY12, focused on applied math research

*Grown to 21 in FY19, with a leadership team spanning the Computing and Information Sciences (CIS)
and Engineering Science (ES) research foundations and institutions

°App11ed Math (CIS+ES) method development and analysis




s I The funding scope and technology readiness level of our work
are growing
m ASC (CIS+ ES) mLDRD (CIS) mLDRD (ES) ™ Truman Fellowship (CIS)
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6 ‘ Historical model reduction approaches are ineffective for nonlinear
dynamical systems, which arise often in Sandia’s mission applications

Historical model reduction work external to Sandia

*Linear time-invariant systems: mature [Antoulas, 2005]

> Balanced truncation [Moore, 1981; Willcox and Peraire, 2002;
Rowley, 2005]

o Transfer-function interpolation [Bai, 2002; Freund, 2003; Gallivan
et al, 2004; Baur et al., 2011]

Y Accurate, generalizes, certified shatp a priori error bounds
V' Inexpensive: pre-assemble operators

V' Property preservation: guaranteed stability

* Elliptic/parabolic PDEs: mature [Prud’Homme et al., 2002;
Barrault et al., 2004; Rozza et al., 2007]

o Reduced-basis method

Y Accurate, generalizes, certified: shatp a priori error bounds

¥ Inexpensive: pre-assemble operators
Y’ Property preservation: preserve operator propetties
*Nonlinear dynamical systems: ineffective

° Proper orthogonal decomposition (POD)—Galerkin [Sirovich, 1987,
Colonius, 2004]

X Inaccurate, doesn’t generalize: often unstable

X Not certified: error bounds grow exponentially in time
X Expensive: projection insufficient for speedup

X Structure not preserved: physical properties ignored

X Not extensible: highly intrusive implementation required

Model Reduction Criteria

. Accuracy: achieves less than 1% error

Low cost: achieves at least 100x
computational savings

Property preservation: preserves important
physical properties

Generalization: should work even in difficult
cases and for many application codes
Certification: accurately quantify the ROM
error

. Extensibility: should work for many

application codes



Our research is focused on satisfying model reduction criteria for

nonlinear dynamical systems

Our model reduction research at Sandia
Accuracy

» Least-Squares Petrov—Galerkin (LSPG) projection: our baseline approach
[Catlberg, Bou-Mosleh, Farhat, 2011; Carlberg, Barone, Antil, 2017]

Low cost

» Sample mesh: use a fraction of the data for evalutaing nonlinear functions [Carlberg,
Farhat, Cortial, Amsallem, 2013]

» Space—time LSPG projection: larn and exploit structure in spatial and temporal data
[Catlberg, Ray, van Bloemen Waanders, 2015; Catlberg, Brencher, Haasdonk,
Barth, 2017; Choi and Carlberg, 2019]

Property preservation

» Impose additional physical constraints (e.g. conservation) [Carlberg, Tuminaro, Boggs,
2015; Peng and Carlberg, 2017; Carlberg, Chot, Sargsyan, 20138|

Generalization

» Projection onto nonlinear manifolds: high capacity nonlinear approximation [Lee,
Carlberg, 2018]

» h-adaptivity: #rade cost for accuracy |Carlberg, 2015; Etter and Carlberg, 2019]
Certification

» Machine learning error model: guantify reduced model nncertainties [Drohmann and
Catlberg, 2015; Trehan, Catlberg, Durlofsky, 2017; Freno and Carlberg, 2019;
Pagani, Manzoni, Catlberg, 2019; Parish and Carlberg, 2019]

Extensibility
» Pressio software: deploy methods for many application codes

Model Reduction Criteria

. Accuracy: achieves less than 1% error
. Low cost: achieves at least 100x

computational savings

. Property preservation: preserves important

physical properties

Generalization: should work even in difficult
cases and for many application codes
Certification: accurately quantify the ROM
error

Extensibility: should work for many
application codes




s I We employ a machine-learned model reduction approach that has

four stages

1. Acquisition: Run high-fidelity simulation
at a few design points, save simulation data

2. Learning: Use machine learning
techniques to identify low-dimensional
structure in the high-fidelity simulation
data

3. Reduction: Build a reduced-order model
(ROM) with extracted data structures,
high-fidelity governing equations

4.  Deployment: Use ROM at remaining
design points
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Our baseline approach* leverages a linear basis computed with

*High-fidelity simulation = Ordinary Differential Equation (ODE): % — f(x:t, 1)

9 . .
unsupervised learning
1. Acquisition o

Solve ODE at different

design points Save solution data

2. Learning

Unsupervised Learning with Principal
Component Analysis (PCA):

X = — u )X v’

3. Reduction

Choose ODE = f(x;t, n)
Temporal ]
Discretization v"(x" ) =0, n=1,.,T
x(t) = x(t) = ® x(t)
Reduce the |
number of
unknowns

mini\?mize|| A r"( U; )2

Minimize the
Residual

*Least-Squares Petrov—Galerkin (LSPG) Projection [Carlberg, Bou-Mosleh, Farhat, 2011; Carlberg, Barone, Antil, 2017]



Property preservation is enforced with additional constraints

10
*High-fidelity simulation = Ordinary Differential Equation (ODE): % — f(x:t, 1)
1 . AchIS]tlon Eﬂjn;bsetgs: 3. Reductlon
- hand
g Choose ODE % = f(x; t, )
R Temporal -
§§ Discretization "(xpu) =0, n=1,.,T
Solve ODE at different | x(t) = X(t) = ® "(f)
© ved b gnap Oilntseren Save solution data Reduce the
number of
2. Learning unknowns
Unsupervised Learning with Principal
Component Analysis (PCA): minimize ||Ar"(dU; p )13
N 1) — L
U x V7 Minimize the 5. Cri(®i; p) =10
Residual Enforce conservation over subdomains:

[Carlberg, Choi, Sargsyan, 2018]
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11 I Our baseline approach achieves high accuracy at a low cost for
captive carry application
LSPG: minimize ||Ar"(®U; p)l|5

Sample mesh

LSPG ROM
32 min, 2 cores

High-fidelity
* 5 hours, 48 cores

229x savings in core-hours

< 1% error in time-averaged drag
[Carlberg, Barone, Antil, 2017]




1 ® °
linear basis

*High-fidelity simulation = Ordinary Differential Equation (ODE); % — f(x:t, 1)

: ‘ Manifold model reduction uses a nonlinear function instead of a

Number of
time steps

=
| I
A 4

Save solution data

1. Acquisition

i
A Y
Number of State
Variables

™
.§{§)
-

Solve ODE at different
design points

2. Learning

Unsupervised Learning with non-linear
manifold approach (e.g. deep autoencoder):

3. Reduction

Choose ODE - = f(x;t, 1)
Temporal .
Discretization r(x";p) =0, n=1

Reduce the

number of %

unknowns

Minimize the
Residual

minimize||
\'

Manifold LSPG Projection [Lee & Carlberg, 2019]




We achieve large improvements in the generalization criteria with

13 ) )
manifold model reduction
2D Chemically reactin ow(Xx, t: . . .
Y reacting BB _ G (wVw(Z, 1)) — v YW, £ 1) + a(W(E, £ 1); o)
flow ot
high-fidelity LSPG w/ PCA
model ROM dimension=5
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We achieve large improvements in the generalization criteria with

14 , :
manifold model reduction
2D Chemically reactin ow(Xx, t: . . .
ogremicalyreacting - MW EH) _ g (5vw(, £ 1)) — v VW%, £ 1) + a(w(, £ 1); )
high-fidelity LSPG w/ PCA Manifold LSPG w/
model ROM dimension=5 autoencoder
ROM dimension=5
0.9 0.9
1500 1500
temperature 1000 1000
500 500
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[Lee & Carlberg, 2019] 0-00_0
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15 ‘ Pressio enables deployment of model reduction methods to a range

of simulation codes

*Previous ROM methods were implemented directly in
multiple application codes
X Highly intrusive: major changes to application code

X Not extensible: individual ROM implementation for each
application

X Access requirements: developers need direct access to
application

*Pressio, a software package that addresses all three of
these issues:

v’ Minimally intrusive method implementation.

v'Leverages modern software engineering practices (e.g. C++
template-metaprogramming)

» Portable implementation that works on different architectures, including

GPUs

> Restricted to practices used by mission application pattners
v'Facilitates contributions from external partners

» Undergoing open source copyright assertion
v'Clear separation between methods and application

» Enables methods work without access to restricted applications
(ITAR,Classified, etc.)

Pressio

Adapter
(if needed)

lw,w Tf, 8o

Application Core Code
z = f(x,t;p)
z(0; p) = zo(p)

int main()

Application Side

Schematic of Pressio software workflow (F. Rizzi)



16 | Ve are building Pressio adapters for three simulation codes

SPARC

Hypersonic Aerothermodynamics

« Key Personnel: P. Blonigan, M.
Howard, J. Fike, F. Rizzi

* Progress: creating and running

ROMs for aerodynamics

ARIA

Heat Transfer
Key Personnel: J. Tencer, F.
Pierce, F. Rizzi
Progress: interface complete,
setting up basis computation

Sierra Aero

Compressible Aerodynamics
Key Personnel: J. Tencer, C.
Proctor, M. McWherter-Payne,

P. Blonigan
Progress: creating high fidelity

models



17 I We are integrating our model reduction tools with many-
query and time-critical applications

*“* Multi-fidelity Uncertainty Quantification -
. i LDRD
o R Blomgan’ G. Geracl, and M. Eldred ‘Q‘ Laborator y Directes d Research an d Development

“*Network Uncertainty Quantification with ROMs for system-component design:

£
o
* ]. Tencer, K. Carlberg, C. Proctor, M. McWherter-Payne, and P. Blonigan rl

‘ ’ Laboratory Directe d Researc h and Develo pment

“*Optimization under uncertainty
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* External collaboration, key personnel: M. Zahr, K. Carlberg, and D. Kouri rr/f>”|
»[Zaht, Catlberg and Kourd, 2019, TS
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2 Autonomy for hypersonics: path planning and adaptive control -
* DP. Blonigan, K. Carlberg, M. Howard, J. Fike, and F. Rizzi oy Rt 4 s




18 I The Autonomy For Hypersonics (A4H) mission campaign focuses
on time-critical problems for hypersonic vehicles
Mission Planning—\

Includes offline flight planner

Perception Q

e ———
Localization

.......... Autonomy for
A Hypersonics

Path Planning

.
(.0 LDRD o Flight Controls
A\ OFFBOARD —
“—Mission Analytics (Image by Hannah Stangebye)
Sandia’s A4H Mission Campaign seeks to: Inform tactics & engagement strategies
*Significantly decrease the time required for hypersonic missile flight planning using artificial intelligence. I

*Enable semi-autonomous hypersonic missiles to self-correct in flight to compensate for unexpected flight
conditions or a change in the target’s location.
» http:/ /www.sandia.gov/news/publications/labnews/articles /2019/04-26 /hypersonics.html



Our A4H project™ will use our model reduction tool chain to
accelerate path planning, design, and control of hypersonic vehicles

*Our project uses model reduction to: Time = 49.910000
1L, Generat.:e l.arge databases WiFh quantified i
uncertainties for path planning; 2.367e+03
2. Enable rapid interactive simulation for vehicle 1.846e+03
design and control. | 1.326e+03

8.051e+02

*We use Pressio (E Rizzi) and SPARC (M. Howard) to
create ROMs for hypersonic aerodynamics

2.844e+02

Solid Temp [K]
1.876e+03

*Joint work with aerosciences team (M. Howard, J.
Fike) and UT Austin (K. Willcox, S. Majors)

1.469e+03
1.061e+03
6.539e+02

2.463e+02

| LDRD
. é Laboratory Directed Research and Development

A\ A slender body in hypersonic flow simulated with

SPARC (courtesy M. Howard)

*Rapid high-fidelity aerothermal responses with quantified uncertainties via reduced-order modeling




20 I Preliminary results show that our model reduction tool chain will
be effective for this application space
Blottner Sphere: » Unsteady* Navier-Stokes  » Re =1.89x 106 * Mw=5.0 506400

Top view [4

Side view

Sample mesh 3

Ma

2
1

.
“';,A ...- _"',!',
ol
LI
0.0e+00

I-_ SPSaE]%fI/\ei mesh: 4,150 cells= o LSPG ROM High-fidelity [
20,750 DoFs
1 MPI rank, ~18 seconds

— 150000

100000

wall-heat-flux
B e

High-fidelity:
« 4,194,304 cells=20,971,520 DoFs
* 128 MPI ranks, ~147 seconds

50000

|

1.0e+04

1060x savings in core-hours

< 1% error in density, Mach number, and temperature fields
< 1% error in axial force, heat flux
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: ‘ Model reduction at Sandia is a large multidisciplinary effort
supported by researchers spanning centers and institutions

°App11ed Math method development and analysis




2 | Future work will continue to span computer science, engineering
science, and applied math research and development

*Computer Science R&D:

» Adding existing methods to Pressio %_‘_’ _' aaaaana.

» Pathway to production for Pressio

*Engineering Science R&D:
» Apply Pressio to increasingly complex physical systems
»New Pressio adaptors for additional simulation capabilities

» Integration of model reduction techniques with time-critical/many-query methods/frameworks:

= Network UQ
= Multi-fidelity UQ
* Verification and Validation, Other UQ/Optimization approaches

*Applied Math R&D:

» Nonlinear manifold model reduction methods

»Develop methods for chaotic dynamical systems

*Maintain current projects and create new projects with internal and external collaborators.

mmm  Massachusetts UNIVERSITY OF 25 o
i &5 JILLINOIS [V MICHIGAN B Stanford M ©TEXAS YA wastiinoron

nolog . .
Ul'llVCI'Slty Technische Universitat Miinchen e Universits I
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25 ‘ More Information
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26 I Manifold LSPG projection uses a nonlinear function instead of
a linear basis, resulting in more capacity [Lee & Carlberg, 2019]

range(®) := {®dx|x € RP} S :={g(x)|x € RP}
Example: %3
N=3
P=2

x(t) = x(t) = CDS‘((t)E range(®)

Decoder:
One choice of
nonlinear j -

function
PP N e ——

4 convolutional 2 fully-connected 2 fully-connected 4 convolutional
layers layers layers layers




27 I Machine Learning Error Models [cariberg & Freno, 2018]
Example: Component Structural Model
2
o
Q.
)
©
&
5
O @
Q. . <
random forest
e % ote % error prediction

. 152 _ noon o2
inputs p — [reduced—order model | — outputs qrom, N=1,.... T 5 |R"= 0-993?@’ |

} T b A S

features p", n=1,...,N g . /;-C’*” o
l o 6;}1’6
: stochastic error prediction A ‘ - R
regression model | — . e e s
0" = gliem — 9rom, n=1,.... T support vector machine k-NN
error prediction error prediction

[qﬁFM ~ grom t+ 3"]
+ Statistical model of high-fidelity-model output

Physics-based feature engineering to determine " ML methods yield low-variance error

predictions
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28 ‘ Our vision statement informs our current and future research

Establish a research-to-production capability, based on projection-based reduced-order models
(ROMs), that enables deployment of high-fidelity physics & engineering simulations in time-

critical (e.g., control, rapid analysis) and many-query applications (e.g., uncertainty
quantification, design optimization, parameter-space exploration), in support of

the Department of Energy mission.

L{o(o(o(o(o(a(o(o(

Software-specific Technology Readiness Level (TRL) https://trl.sandia.gov

. Qlll. '@Plr:
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29 | Sandia Parallel Aerodyanmics and Reentry Code (SPARC)

*Compressible CFD code focused on aerodynamics and
aerothermodynamics in the Transonic and Hypersonic regimes

* Being developed to run on today’s leadership-class supercomputers
and exascale machines.

* Performance portability: SPARC leverages Kokkos to run on
multiple machines with different architectures (e.g. CPU vs.
CPU/GPU)

*Physics Capabilities include:
* Navier—Stokes, cell-centered finite volume method

* Reynolds-Averaged Navier—Stokes (RANS) , cell-centered
finite volume method

* Transient Heat Equation, Galerkin finite element method.

* Decomposing and non-decomposing ablation equations, Galerkin
finite element method.

* One and two-way coupling between ablation, heat equation, RANS.

Time = 49.910000

Fluid Temp [K]
2.367e+03

1.846e+03
1.326e+03
8.051e+02

2.844e+02

Solid Temp [K]
1.876e+03

1.469e+03
1.061e+03
6.539e+02

2.463e+02

A slender body in hypersonic flow

simulated with SPARC



