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V&V/UQ Background and Context

Transform today's wind plant operating environment through advanced physics-
based modeling, analysis, and simulation capabilities

Approach

Development of high fidelity models

Collection of existing data and generation of new data through an experimental
measurement campaign

Strategic linking of these efforts through a Validation Focused Program
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Project Overview and Objectives

• This project will ensure that the predictive capability of the suite of
models being developed across A2e is established through formal
V&V/UQ processes.
— Quantitatively establish where models are valid and where improvements are

necessary

• The result will be established V&V/UQ techniques applied to
computational modeling tools spanning a range of fidelities
— These tools will be adopted by the wind industry or used to improve in-house

softwa re
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VW/ Overview

• Verification and validation are integral parts of establishing a
model's predictive capability for an intended application.

• Validation is not a pass/fail exercise for a simulation.
— Assesses the uncertainty of the predictive capability that the user can utilize to

judge its suitability for a given application.
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What is V&V?

• Validation

— The process of determining the
degree to which a model is an
accurate representation of the
real world, from the perspective
of the intended uses of the
model

• Note that validation is not an
acceptance/ rejection/
endorsement of a model

• Verification

Code verification

• Software errors or algorithm
deficiencies that corrupt
simulation results.

Solution verification

• Human procedural errors or
numerical solution errors
that corrupt the simulation
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IN
What is Uncertainty Quantification?

• Methods to codify the assimilation of observational data
• UQ methods are critical for quantitative model validation focused on

enabling predictive numerical simulations in research and advanced
design

• The characterization of errors, uncertainties, and model inadequacies
• Forward predictions with confidence for untested/unstable regimes
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L;)
What is Uncertainty Quantification?

UQ Workflow
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Wind Turbine Power Curve Example

• Wind energy is non-deterministic, as wind is naturally stochastic.
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High Fidelity Modeling (HFM) and Verification & Validation (V&V)

• As wind turbine technology matures, the cost of testing and
the required level of uncertainty demand a new approach.

• High fidelity models enable reduced development risk
through pre-prototype qualification and optimization.

• Without a level of trust of our tools, there results are of
limited value

• Recently, our ability to simulate wind turbine and wind farm
simulations has outstripped our ability to know whether the
results are meaningful

• The Verification and Validation Framework is the process to
define the conditions where model predictions can be
trusted.

Virtuous Cycle
Validation

Model Development
Experimentation

Uncertainty Quantification

V-27 Nalu Simulation, M. Barone, S. Domino, and C. Bruner, 2017
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\My Process Overview

• V&V Framework

— Phenomena Identification and
Ranking Table

— Validation Hierarchy

— Prioritization

— Experiment Design, Execution
& Analysis

— Verification of Code

— Validation Metric
Determination

— Assessment

— Determination of level of
credibility

SANDIA REPORT
SAND2015-7455
Unlimited Release
Printed Septernber 2015

V&V F ramework

Richard G. Hills, David C. Maniaci, Jonathan W. Naughton

Prepared by
San [La Nallanal Labora1orles
Albuquerque, NEW Mexico 871115 an d Livermore, Callicinia SLISSD

Saila National Latorabories is a multi-program LaUwatary managed and apera1ed by Safirla Ccipnradan,
a WrIPUIFil owed subsidary oiLackheed Marlin Coccra1kin, fir tie U.v. Deparirnerrt ci Energy's
National Nixlear seeirrry Adrninistraticei Jrder ccfrinpul DE4,CC4-94AL9SCOD.

Appru red far public release; rirlher dls-sern in Hon unlimited.
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\My Framework (2015 Hills, Maniaci, Naughton)

Integrated Planning
• Program leaders,
modelers, software
developers,
experimentalists,
V&V specialists

Validation Planning
• Domain specific
program leaders,
modelers,
experimentalists, V&V
specialists,
data acquisition
specialists

Application: Specify system scenario and response
quantities (SRQ) to be predicted at plant scale

Integrated Program
Planning

Phenomena Identification: Identify and prioritize the plant scale phenomena
required for models to successfully predict the SRQ for system scenario

alidation Hierarchy: Identify and prioritize those phenomena for which the
odels should be tested, the scales and hierarchy required for the tests, and
onceptually how the validation tests should occur

Prioritize experiments within hierarchy based on program
eeds and resources

  Document

Experiment Design, Execution &
4nalysis through tightly coupled
.werimental/modeling effort

Document

Code Verification: Software and
algorithm quality assessment

Validation Metrics

Solution Verification:
Mesh convergence error

Assessment

Integrated
Experiment and

Model Planning and
Execution

Credibility of processes used

Document I
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Primary Stakeholders

• A2e Research Areas: HFM, Wake Dynamics, ISDA, Control Science,
MMC, WFIP, and offshore wind

• International Community: IEA Tasks 29, 31, 36

• DOE Wind Energy Technologies Office: improve understanding of wind
plant complex flow, exploration of novel wind technology advances and
validation of lower-fidelity models

• Manufacturers: improved energy capture and reliability of wind
turbines through technology development and environment definition

• Developers: design optimized wind plants, quantify and reduce
uncertainties in energy estimates

• Owners/Operators: maximize energy capture and reliability of existing
farms, improved day-ahead and hourly forecasting
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Application Use Cases

• Predict

Wind plant power performance and loads

— Power production of a wind plant in at terrain, with blade-root loads

— Diurnal flow field in complex terrain (pre-wind plant installation)

— Loads and wakes of a next-generation turbine (qualification)

— Forensics analyses with data assimilation to understand extreme or
unusual load events

• Discover

— Dominant phenomena governing wake evolution

— New modeling approaches for wind energy

• Innovate

— Explore the design space of next generation innovations to improve
turbine and plant performance

— Optimize new technology prior to demonstration testing
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Backbone of Prioritization Process: PIRT

PIRT: Phenomenon
Identification Ranking Table

• Consensus based

• Provides gap analysis of ability
to model phenomena

— Physics gaps

— Numerical gaps

— Data gaps

— Validation gaps

• Gap analysis used to prioritize
planning, including
experimental planning

Phenomenon Importance at
Application

Level

Model Adequacy

Physics Code Val

Turbine scale flow
phenomena
Blade Aero / Wake Generation

Blade load distribution effects and rotor
thrust

H M

Tip and root vortex development, and
evolution and merging

H M

Vortex sheet and rollup (in addition to
tip/root vortex)

M

Blade generated turbulence characteristics
(energetic scales)

H

Root flow acceleration effect ('hub jet') Unknown

Boundary layer state on turbine performance
(roughness, soiling, bugs, erosion)

Boundary layer state (Re)

BL details near TE and LE

Rotational augmentation H

Dynamic stall H

Unsteady inflow effect (turb. intensity,
spectra, coherence; veer, shear)

H

Blade flow control M L

Tower/rotor/nacelle wake interactions H M

Icing L
, — -.-
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PIRT Leads to the Validation Hierarchy
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Validation Hierarchy
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Wind Turbine Validation Hierarchy

Integrated Effects

(Benchmark)

Separate Effects

(Unit Problems)

Subsystem

Single Turbine Validation Hierarchy

Syste m Single
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Turbine In Field

Blade Flow Control
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Turbine in LWT Turbine In Field 

Pitching Blade
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with Swirl

Airfoil with TI

Pitching Airfoil

Single Turbine
in WT with TI

Fixed Aeroelastic Blade

Airfoil with Icing
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Single Turbine
in SWT with TI

Boundary Layer

Axisymmetric
Wake
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Root Vortex
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Fixed Blade
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Wind Plant Validation Hierarchy

Wind Plant Validation Hierarchy

Single Wind

Turbine

Hierarchy

System

ndustrial Scale
Wind Plant

[S_caled WindFarm In Field

Scaled Wind Farm
in Wind Tunnel
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Interaction in 
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Separate Effects

(Unit Problems)
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Wind Plant
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PPERPrioritized Phenomenon Experiment Mapping)
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VV&UQ Program Area Organization

• Three main task areas:

1. Verification, Validation, and Uncertainty Quantification Coordination

across A2e

— Coordination of validation activities

— Outreach and support for application of UQ methods

— Common VV&UQ methodology and terminology

2. Uncertainty Quantification Method Development

New UQ methods necessary for wind applications, based on gaps in task area 1

Customization of existing methods for the wind application space

3. Validation and Uncertainty Quantification Application

— Test and example problems for UQ methods

— Validation applications bridging across A2e areas
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Project Team

SNL

• Mike Eldred

• Gianluca Geraci

• Myra Blaylock

• Brent Houchens

• Brian Naughton

• Thomas Herges

• Chris Kelley

• Robert Knaus

• Phil Sakievich

• David Maniaci

• Alan Hsieh

• Ken Brown

NREL

• Jason Jonkman

• Amy Robertson

• Patrick Moriarty

• Ryan King

• Matt Churchfield

• Mike Sprague

• Garrett Barter

PNNL

• Larry Berg

• Ben Kravitz

• Raj Rai

u\A/Y0

• Jonathan Naughton
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\/&\/ Coordination (J. Naughton)

Integrated Program Planning transitions to
Integrated Experiment and Model Planning and Execution

• Planning Stage Nearly Complete
— Some work related to specific

modeling efforts still needed

• Integrated Experiment and
Model Planning and Execution
Now Underway
— Efforts underway

— Better coordination and
interaction among participants
needed

• Streamline process

• Identification of roles

• Ensure best outcomes

Application: Specify system scenario and response
quantities (SRQ) to be predicted at plant scale

Integrated
Program Planning

Phenomena Identification: Identify and prioritize the plant scale phenomena
required for models to successfully predict the SRQ for system scenario

Validation Hierarchy: Identify and prioritize those phenomena for which
the models should be tested, the scales and hierarchy required for the tests,
and conceptually how the validation tests should occur

Prioritize experiments within hierarchy based
on program needs and resources

Document

Experiment Design, Execution &
Analysis through tightly coupled
experimental/modeling effort

Document

Code Verification: Software and
algorithm quality assessment

Solution Verification:
Mesh convergence error

Integrated
Experiment and
Model Planning
and Execution

Credibility of processes used

Document
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Integrated Experiment and Model Planning and Execution

• The Process

Validation Experiment Experiment Validation
Cases Past

Experiment
Evaluation

Planning Planning
Simulations

Execution Experiment
Archiving

Simulations

Existing
Experiments
for Validation

New
Experiments
for Validation

niL MP'
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Integrated Experiment and Model Planning and Execution

• Validation Cases

— Identified as part of the IPP

— Pick specific cases

• Past Experiment Evaluation

— Perform an evaluation of previous
experiments that address the
validation case of interest

— Results in two outcomes
• Past experiment fully meets

validation requirements

• Past experiment partially meets
validation requirements

• Experiment Planning

— Establish what are the Validation
Metrics

— Design experiment accordingly

• Planning Simulations

— Part of Experiment Planning

— Simulations support experiment
design

— Simulations identify issues early
on in validation process

• Experiment Execution

— Experiment is performed

— Data is analyzed

— Validation Metrics determined

• Experiment Archiving

— Data documented and efficiently
stored for use in validation efforts

• Validation Simulations

— Assessment of simulations
performed
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Integrated Experiment and Model Planning and Execution

Put the "Integration" into IEMPE

• What roles do the different A2E efforts play

Validation
Cases

V&V

MC (HP C/Offshore/I SDA/
MMC/PRUF/Controls)

EC (WFIP2/Wake Dynamics)

DAP

Past
Experiment
Evaluation

Experiment
Planning Planning

Simulations

Experiment
Execution Experiment

Archiving

Validation
Simulations

.11
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Integrated Experiment and Model Planning and Execution Roles

• Validation and Verification Team

— Overall coordination and guidance for validation activities

— Most often will not do experiments or simulations themselves

• Modeling Campaign Teams (HPC, Offshore, ISDA, MMC, PRUF, Controls)

— Aid in identifying needs for validation experiments

— Support development of validation experiments

— Perform validation exercises

• Experiment Campaign Teams (Wake Dynamics, WFIP2, Offshore)

— Aid in identifying needs for validation experiments

— Develop validation experiments with support from other groups

— Perform experiments and analyze data

— Support data archiving effort

• Data Archive Portal Team

— Support development of validation experiments

— Lead data archiving effort
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A2e Validation Coordination Working Group

A2e Area Validation Leads

A2e Validation Coordinator

DAP

ISDA-Systems

Wake Dynamics

Jonathan Naughton (UWYO)

David Maniaci (SNL)

Matthew Macduff, Chitra Sivaraman (PNNL)

Amy Robertson (NREL)

Garrett Barter (NREL)

Jason Jonkman (NREL)

Mike Sprague(NREL), Shreyas Ananthan(NREL), Paul Crozier (SNL)

Pat Moriarty (NREL), Brian Naughton (SNL)

Caroline Draxl (NREL)

Larry Berg (PNNL), Matt Churchfield (NREL), Sue Haupt (NCAR)

Jason Fields (NREL)

Paul Fleming, Eric Simley (NREL)

• Bi-annual Meetings with smaller focus groups meeting more regularly
• Summary reports of A2e validation progress and plans
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Ongoing V&V Coordination Work

• Coordinating Efforts within A2e
— Have met with nearly all groups

with validation interest over the
last 4 months

• Documenting and Disseminating V&V
Materials
— IPP Document Published
— Interacting with Wind Community

• IEA Tasks 29, 30, 31

• Wind Energy Science Conference

• Finalizing Validation Experiment
Evaluation
— Applying to various previous

experiments and ensuring all
relevant issues addressed

• Validation Roadmap
— Collecting input to develop

roadmap(s)

• Developing a short-term experiment
as demonstration for V&V process
— Working with several possibilities

suggested by A2e tasks
• 006 experiments

• Unsteady aerodynamics
experiments

• Aero-elastic experiments

— One or more may be chosen for
demonstration purposes

— Considering what methods to
engage community
• Workshops

• Stakeholder Meetings
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V&V: Communication and Documentation

1. IEA Task 31, Wakebench. Working toward a collaborative validation process.
1. WAKEBENCH Best Practice Guidelines for Wind Farm Flow Models First Edition (2015)

2. WAKEBENCH Model Evaluation Protocol for Wind Farm Flow Models First Edition (2015)

2. VW/ Framework (September 2015): the development and execution of

coordinated modeling and experiential programs to assess the predictive capability

of computational models of complex systems through focused, well structured,

and formal processes.

3. A2e High Fidelity Modeling: Strategic Planning Meetings (November 2015) : A

report on the foundational planning for the A2e High Fidelity Modeling effort for

predictive modeling of whole wind plant physics.

4. VW/ Integrated Program Planning for Wind Plant Performance (June 2019): This

document outlines the integrated program planning (IPP) process and applies it to

wind plant performance prediction.

5. A2e High Fidelity Modeling Validation Roadmap (August 2019): This document

outlines a comprehensive validation program for high fidelity wind plant models.
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Uncertainty Quantification and High Fidelity Modeling

Uncertainty Quantification (UQ) is critical to enable predictive
numerical simulation for scientific discoveries and advanced
engineering design.

Complex high fidelity models (HFM) and large numbers of uncertain
parameters lead to prohibitive computational cost for conventional UQ
methods

Multifidelity UQ aggregates several low accuracy models with a
handful of high fidelity simulations
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Uncertainty Quantification Workflow (M. Eldred)
•

Characterization of input uncertainties through assimilation of data
• Prior distributions based on a priori knowledge
• Observational data (experiments, reference solns.) 4 infer posterior distributions via Bayes rule

• Use of data can reduce uncertainty in obj./constraints (priors are constrained)
• Design using prior uncertainties can be overly conservative
• Reduced uncertainty of data-informed UQ can produce designs with greater performance

Random inputs
(prior)

0.2 0.1 0.0 0.8 1 0

Random inputs
(prior 4 posterior)

•
(b 0 0.2 0.1 0.0 0 1 0

Propagatio

Quantities of
interest (Qol)

Propagation of input uncertainties to response Qol
• Push forward of posterior distributions
• Compute statistics that reflect goals of OUU process (i.e., moments, failure probabilities)
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Optimal Experimental Design (OED) Workflow

Characterization of input uncertainties through assimilation of data
• Prior distributions based on a priori knowledge
• Observational data (experiments, reference solns.) 4 infer posterior distributions via Bayes rule

• Use of data can reduce uncertainty in obj./constraints (priors are constrained)
• Design using prior uncertainties can be overly conservative
• Reduced uncertainty of data-informed UQ can produce designs with greater performance

Random inputs
(prior)

0 0'2 0 6 U's 1 0

Maximize expected utility from new data d(i), e.g.
D-optimal: max information gain / relative entropy /
Kullback-Leibler (KL) divergence from Tho Tcpost(I)

E.„

Random inputs
(prior 4 posterior)

5F=T::„1̂
4

A.
C/ S 1.0

do)
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Optimization Under Uncertainty (OUU) Workflow

Roll up of capabilities Achieve desired statistical performance 
• Inference for parametric + model form • Common OUU goals:

uncertainties • Robustness 4 minimize Qol variance
• Scalable forward propagation • Reliability constrain failure probability
• Leverage surrogates: Active SS, ML-MF, ROM

Parameter
uncertainty

Model-forn4L
uncertainty

Inference

t

Optimization Under 
Uncertainty r)

Propagation

4

0
0 0 0.2 0 1 0.0 0.8 1 0

0.2 0.1 0.6 0.8 1 0

2.0

1.0

1.0

0.5u.% 0 0.2 0.4 0.6 0.8 1.0
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Summary of Wind UQ Studies under A2e

Previous: Forward UQ
• Cylinder wake in Nalu (initial demo at right)
• SWiFT Site with Nalu + OpenFAST

Current: Inverse UQ
• Infer upstream conditions from SwiFT data sets

• OpenFAST + WindSE (+ Nalu)

Coarse Mesh: 10 minute time to soln.

Medium Mesh: 4 hours time to soln.

Accuracy
Coarsest

Multilevel simulations
Coarser Coarse Medium

Equivalent
MLMC

Cost
MC

6.08e-05 28 20 4 1 18 221

6.08e-06 2796 194 37 3 167 2202

6.08e-07 27952 1935 364 25 1657 22140
6.08e-08 279520 19345 3640 242 16551 220130

41

o

14 3

1e-5

10-6
10.0

TABLE: Optimal MLMC samples allocation Vs MC allocation

Extrapolated Variance of the estimator
-0- MLMC

-I.- MC

1.1 1ei2 1.3

Equivalent HF simulations
10.1

35
ATMOSPHERE
TO ELECTRONS
us. DEPARTMENT OP ENERGY



36 I Computational Approach

•Low Fidelity: OpenFAST-AeroDyn-Turbsim (https://github.com/OpenFAST)

Turbsim generates turbulent atmospheric boundary layer flow field, semi-empirical

AereoDyn models the aerodynamic forces on the rotor

OpenFAST models the structural and controls response of the rotor (same for Nalu)

High Fidelity: Nalu (https://github.com/NaIuCFD)

LES, Solves the Navier-Stokes equations in the low-Mach number
approximation with the one-equation, constant coefficient, TKE
model for SGS, unstructured massively parallel.

Actuator Line model of the rotor

Single, uniform mesh (no nesting)

• Cost estimates for Nalu and OpenFAST simu

Nal u yl .p
SAND2014-15367M

u

Open Source: BSD license has been granted-c-i
Weak scaling demonstrated to 524,000 core with 10 billion unstructured hex mesh

Generalized unstructured (CVFEM and EBVC supported)

• • .

Backstep brodldty)

21:1/30 periodic

(E Sams

0 •

•

60.0030:0

2D/3D sliding mesh

Fir
Multiphysics CHT LES Jet

(cold and reacting)

Multiphysics Fluids/PMR

Case Mesh size Simulation time

(seconds)

CPUs Cost

(CPU-hours)

Cost

(relative)

OpenFAST 500 1 0.42 1

Coarse 100x50x50 2000 80 240 576

Medium 200x100x100 2000 160 960 2304

Fine 400x200x200 2000 400 6860 16500

Reference 800x200x200 2000 400 38400 91400

Domino, S. "Sierra Low Mach Module: Nalu Theory Manual 1.0", SAND2015-3107W, Sandia National Laboratories Unclassified Unlimited
Release (UUR), 2015. https://github.com/NaIuCFD/NaluDoc



Wind Turbine Sensitivity Analysis (Jonkman et al.)

Project Objective: Identify input
parameters with high uncertainty /
variability that are most influential
to ultimate & fatigue loads during
normal operation

• Related work:

o Sensitivity assessment of inflow
turbulence (profile, spectrum
coherence, correlations) — Paper /
presentation @ AIAA SciTech 2018;
updated in publication submitted to
Wind Energy Science

o Sensitivity assessment of
aerodynamic subset of turbine
properties — Paper / presentation @
AIAA SciTech 2019

I

Analysis -
Ilk I

• This work:

o Overview of sensitivity
assessment of inflow & full
turbine properties (aerodynamic,
structural, control) — Publication
submitted to Wind Energy Science

• Outcome of this research could
inform:

o Probabilistic design approaches

o Better site-suitability analyses

o Development of surrogate models

o Propagation of uncertainty to
support model valida nzmEoltmENs

U.S. DEPARTMENT OF ENERGY



IEA Wind Task 30 — V+V of Offshore Wind Modeling Tools

(Robertson)
• Offshore Code Comparison Collaboration (0C3) —

run under IEA Wind Task 30

• Verify and validate the engineering-level tools used
to design offshore wind systems to a dva n ce the
overall accuracy of offshore wind computer
modeling tools, to improve their predictive
capability for estimating structural loads.

— Project running since 2010
(0C3/0C4/005)

— Coupled tools (aero-hydro-servo-elastic)
used to predict motions/global loads in
a system, ensuring the design meets IEC
standards

— Example tools: FAST, Bladed, HAWC2,
FLEX

• Group models benchmark problems, and compares
solutions between codes and to measurement data
from scaled testing and full-scale prototypes

— Identify errors, examine differences in
modeling theories/approaches, improve
tools, train analysts, identify R+D needs

005 - Validation
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Mesoscale Uncertainty Quantification
(Berg, Kravitz, et al.)

P. Bottom line: If you get the inflow wrong, you get everything wrong.

► How "right" do we need to be? What are the key controls on uncertainty
in modeling the mesoscale flow? R. B' 
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go I Experimental Uncertainty Assessment and
40 I Propagation

Wake comparison, Measured and Simulated Lidar

El



" Nalu-Wind Wake Assessment, SWiFT
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Simulation Experiment

00P Blade Bending (kN m) 37.0 ± 6.0 37.1 ± 6.2

Rel. Flapwise DEM (sim./exp.) 1.06 1.00

Generator Power (kW) 88.4 ± 17.3 81.2 ± 19.3

Upstream turbine (WTGa1) comparison
between experimental and simulation results
of the 10-minute averages of the mean out-of-
plane (OOP) blade-root bending moment for
the three blades (kN m), relative flapwise DEM
(simulation/experiment) and generator power
(kW) for yaw = 0° case.
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VV&UQ Multi-year  Goals 

• Enable simulation and design of optimized wind plants

• Execute model validation campaigns across A2e to:

1. Improve the research community's physical understanding of wake dynamics
and turbine interaction 

2. Quantify model prediction uncertainty of wake flow dynamics and turbine 
interaction 

• Develop and demonstrate uncertainty quantification tools and
processes for wind energy applications

• Engage with the public to disseminate results and progress on a
regular basis.

42 )[1: TAMEOLSEPCHTERO"NS
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"lf a man will begin with certainties, he shall
end in doubts,- but if he will be content to
begin with doubts, he shall end in certainties."
- F. Bacon - 1605.
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A2e Project Dependencies

• V&V/UQ Project Dependencies:

— Models with verified and demonstrated capabilities req'd for validation campaigns

— Support for model deployment, including complete workflow

— Experimental data of validation quality, with QA/QC, UQ, and with instrumentation

that can be directly mapped to model Qol's and application SRQ's

— A2e validation leads engaged on coordination activities

— PRUF for Qol for uncertainty propagation and validation prioritization and impact

• Projects that depend on V&V/UQ:

— HFM, Wake Dynamics, ISDA, Control Science, MMC, WFIP, PRUF, and offshore wind

— Coordination of validation activities across A2e

— Definition of validation framework, terminology, and methodology

— Development and demonstration of UQ processes

— Methods to prioritize parameters, estimate variance, and propagate to SRQ's

44 )[1: TAMEOLSEPCHTERO"NS
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Uncertain Quantification Problems

• Turbine UQ:

— Quantify uncertainty of field measurements (inflow, blade root loads, tower loads,
generator power)

— Propagation of measurement uncertainty to quantities of interest (power, thrust, root
bending moment) and system response quantities (AEP, DEL).

— Inverse: given a set of turbine load measurements, what are the most likely inflow
and turbine model parameters?

• Wake UQ:

— Quantify uncertainty in wake Lidar measurements and tracking algorithms

— Propagate wake measurement uncertainty to deficit strength, movement, and
downstream turbine loads and power

— Inverse: given a set of wake measurements, what are the most likely inflow, turbine
loading, and model parameters?

• Wind Plant UQ:

— Uncertainty of measurements given limited information

— Inverse: Given set of limited and highly uncertain measurements, what are most likely
inflow, ABL, and turbine parameters

45 )F-LITAP ROMEOLSEPCHTERENS
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Interpretation & Reporting

*—

Take Data

* 

*
Data Archive

*
Experimental Data
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Mapping Current Work to Proposed Tasks

• Validation Coordination and Application
— A2e Validation Coordination Meeting, documents

• Meteorological Uncertainty Quantification
— Quantify uncertainty propagation through WRF based on model inputs and model

parameterizations (under MMC)

• Wind Turbine Uncertainty Quantification
— Sensitivity Analysis (under ISDA)

— SWiFT Wake Steering loading probabilistic analysis

• Wind Plant Validation and Uncertainty Quantification
— Rodsand II Analysis

— Validation Study of Nalu for the OWEZ Wind Plant

— Bigelow Canyon Validation

— SWiFT: Experiment UQ, Data Assimilation and OED

• Uncertainty Quantification Methodology Development and Application
— Successful deployment of Multilevel-Multifidelity Uncertainty Quantification (MLMF-UQ)

Publication/presentation of first MLMF-UQ wind application at ECCOMAS-2018
conference

— UQ with DAKOTA and FAST.Farm
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