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[EE] Computers vs the Human Brain

106 Watt

1012 FLOPS ~1 FLOPS

Machine learning can beat humans in certain tasks,
but are extremely energy intensive
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Example: autonomous driving

EV: 5 kW in city driving

whevy Solt ~100 GB/sec
Human brain: 10 Watt Computing: 1-4 kW |
4-14 GPU per vehicle
~250 W/GPU

Nvidia



Artificial
intelligence

We are using artificial
intelligence to discover new
methods for discovering
advanced materials

TRI

We are designing new
materials to advance
artificial intelligence,
especially with regards to
energy efficiency

Sandia

Materials
Science



Artificial neural networks

Which one of these images is a cat?

Image recognition
Autonomous driving
Natural language processing

Artificial neural networks: use training examples and error backpropagation to find the
matrix weights that correctly maps the input x onto the desired output y
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Inference and training are very energy expensive

hidden layer 1 hidden layer 2 hidden layer 3

input layer

n, m> 1000

Andrew Ng, Coursera
Nawrocki et al. IEEE Elec. Dev. 2016




@ Digital and analog implementations of neural networks
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n, m > 1000

Von Neumann Digital In-memory Parallel Analog
Use non-volatile memory

Separate logic and memory structures
Crossbar for matrix Conductance of each
element can be changed

. . . . multiplication
AMEhmetic logic umt in a predictable manner

SRAM to store the
weights for multiplication
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Uses established CMOS technology Simultaneous logic and memory
Data bus results in latency and power 3 orders of magnitude less power

M. Marinella, IEEE Circuits and Systems, 8, 86-101, 2018




Energy consumption: analog vs digital

Analog core: doing O(n?) operations using O(n) inputs and outputs

Energy per operation per array,
1024X1024 synapses
2 Wix 1 Million multiply-and-accumulate

Vector matrix 13 nJ 2600 nJ
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J: Analog energy breakdown:
— _— Read: 0.4 nJ
Write: 1.66 nJ

Integrator: 2.8 nJ
ADC ADC ADC ADC: 9.4 nJ

<

M. Marinella, IEEE Circuits and Systems, 8, 86-101, 2018 Analog: ~200 Tera-OPS/watt
Digital: 1-5 Tera-OPS/watt

Challenge: analog non-volatile memory that
meets these requirements do not exist



Two-terminal resistive memory

TaOy resistive memory cell

Resistive memory switch between high
resistance and low resistance states
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R. Jacobs-Gedrim et al. ICRC, 2017
Q. Xia & J. Yang, Nat. Mater., 18, 303 (2019)
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Channel Option 2: floating gate oxide switch, Rogp ~ =
Tretention = 10 yr (FIaSh memory)
J; 10V, high power, limited endurance (10%)
Improving retention by increasing C . ? C = %
Electrochemical double-layer transistors Redox transistors
Electrons stored at the interface Electrons (and ions) are stored in the bulk of the
Ceate~ 107 Fem ™ material (pseudo-capacitor)
try < 1nm Electron/ion neutral ambipolar pair enables AQ
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P. Gkoupidenis, G. Malliaras, Adv Mater, 27, 7176 (2015) E. Fuller, Adv Mater. 29, 1604310 (2017)

Y. van de Burgt, Nat. Mater., 16, 414 (2017)



Redox transistors based on electrochemical ion insertion
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Electrolyte
Li ho'f‘t
Li*
Metal Metal
Substrate

Dynamic control of the lithium doping level using current and voltage

In batteries, intercalation provides a high density of energy storage;
In redox transistors, intercalation provides a high density of information storage

10

Y. Li, W. Chueh. Ann. Rev. Mater. Res. 48, 137 (2018) |
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Outline

Part 1: Inorganic redox transistor
Lithium insertion into TiO,

©|LiTiO,| |©]
©| | (gate) '
Solid Electrolyte

T ® L, Ti0] [ .
b (channel)

Part 2: Organic redox transistor
Proton insertion into PEDOT:PSS

H*: proton; h*: hole

PEDOT:PSS
Part 3: Crossbar Array integration G G,
G2,1| Gz,z |

1=V.G, +V.G, +... |=V.G, +V.G

1 11,4 2721 2 1712 272




Symmetric redox transistor using TiO,
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Redox transistor using LiXTiOz (anatase)
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Redox transistor using LixTiO, (anatase)

Retention during
+ training
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[@ Linear programming and high accuracy

0.84

LixTiO, transistor Redox transistors store information
Voltage: £ 0.15V continuously as dopants in a crystal
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TaO, Memristor Memristors store informationh
Voltage: 1V filaments
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R. Jacobs-Gedrim et al. ICRC, 2017 Wang et al. Nat Mater. 2017
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Low write energies

Energy per write (J)
o
&)

10 10' 100 10
Device area (um )

4 Flash

< Phase-change
4 Memristor

Optimized
structures

Y. van de Burgt, Nat Mater, 16, 414(2017)
M. Sharbati Adv. Mater. 30, 1802353 (2018)
J. Yang et al. Nat. Nano. 8, 13(2012)



High resistance devices
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@ Part 2: Organic redox tra
2 AS X ;

PEDOT (hole conductor)
PSS (proton conductor)

PEDOT

crystallite PEDOT pgg

cations

'PSS-rich grain,  PEDOT-rich grain,

20-30 nm 10-20 nm

A. Volkov, et al. Adv. Funct. Mater. 27, 1700329 (2017)

Substrate |

Metal/electrolyte double-layer capacitance ~ 20
uF/cm?2

PEDOT:PSS

B s | PEDOT:PSS
Substrate
Volumetric charge density: 40 F/cm3
~ 400 pyF/cm? (100-nm film) 18




PEDOT:PSS Redox Transistor

Flexible device Linear weight updates

PEDOT:PSS
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Y. van de Burgt, et al. Nat Mater, 16, 414(2017)




@ Super-capacitative vs intercalation redox transistor

Read current (uA)

NAFION

H*: proton; h*: hole
PEDOT:PSS

No charge transfer

Fast single-specie diffusion
Low capacitance: 40 F cm-3
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High resistance devices

107 Ohm achieved by doping with filler PEI
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Part 3: Crossbar array integration

Matrix multiplication

crossbar

Gates and channels are
shorted to each other

Write

Read

Challenge: find a highly nonlinear switch with a

¥
b4

high ON/OFF ratio at low voltages

Tretention Nstitch o Cdevice
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Z. Wang et al. Nat. Mater. 16, 101 (2017) 23




High nonlinearity at low voltages

Diffusive Memristor: ~1 mV/decade,
107 ON/OFF

-0.2 0.0 0.2

Voltage (V)

Ideal diode: 60 mV/decade
Need much higher voltages
for same ON/OFF ratio

24




Low-voltage, Si-free electrochemical memory

Diffusive memristor (Ag in
SiOy): high ON/OFF ratio

Redox transistor: high charge
density via bulk storage

Both: Low switching voltages

Wang et al. Nat. Mater. 2017

Non-volatile memory that switches at just 6 times the thermal voltage
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‘Ul Parallel weight updates in crossbar arrays

Speed of a network ~ speed of a device * # of
devices switched in parallel

Ve Vo V.0
A
A 3
e

We can select the rows and columns in this crossbar to update the
weights of many synapses in a highly parallel fashion in accordance with
an outer product update

E. Fuller, et al. Science, 364, 570 (2019)



‘Ul Next step: learning demonstration

Erik Isele
Summer inter
U of Michiga




Summary

*In-memory analog computing can be much more energy efficient than
digital computing, but there exists significant materials challenges.

*Redox transistors based on electrochemical ion insertion fulfill the energy
and accuracy needs for in-memory computing.

*Super-capacitative redox transistors attain sufficient speeds for most
neural applications

-Crossbar arrays enable parallel weight updates at low energy.
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@ Evolution of Computing Machinery

Dennard
Scaling Era

*

Energy Per Mathematical Computation

TH— New paradigms’:’,
100 ad_| Neuromorphic,
analog, quantum,
10a) approximate

] T R Y R B b |
1946 | | 1980 1990 2000 2010 NOW 2025 2035

Just as artificial intelligence can be used to advance materials sciencs,
materials science can be used to advance artificial intelligence 29
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