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Computers vs the Human Brain 

106 Watt

1012 FLOPS -1 FLOPS
Machine learning can beat humans in certain tasks,

but are extremely energy intensive
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Example: autonomous driving 

EV: 5 kW in city driving

Chevy Bolt

Human brain: 10 Watt

—100 GB/sec

Computing: 1-4 kW

41 1

4-14 GPU per vehicle
—250 W/GPU

Nvidia
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r
Artificial

intelligence

We are using artificial
intelligence to discover new
methods for discovering
advanced materials

TRI

M

Materials
Science

ZQ_ 
We are designing new
materials to advance J 1
artificial intelligence,

especially with regards to
energy efficiency

Sandia



Artificial neural networks 

Which one of these images is a cat?

Image recognition
Autonomous driving

Natural language processing

Artificial neural networks: use training examples and error backpropagation to find the
matrix weights that correctly maps the input x onto the desired output y

[
Yi wi,1

Ym Wm,1

• • •

• • •

W1,nX11

Wm,nXn]

Inference and training are very energy expensive

Andrew Ng, Coursera
Nawrocki et al. IEEE Elec. Dev. 2016

n, m > 1000

input layer
hidden lnycr 1 hidden layer 2 hidden layer 3
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Digital and analog implementations of neural networks 
hidden layer 1 hidden layer 2 hidden layer 3

r
Yi wi,i

Ym Wm,1

• • •

• • •

W1,n

Wm,ni

n, m > 1000

Von Neumann Digital
Separate logic and memory structures

SRAM to store the Arithmetic logic unit
weights for multiplication

Data Bus

4- x1
Uses established CMOS technology
Data bus results in latency and power

input layer

In-memory Parallel Analog
Use non-volatile memory

Crossbar for matrix
multiplication

vl

v2

v3

Conductance of each
element can be changed
in a predictable manner

1 1 = V1W11 V2W21 V3W31

Simultaneous logic and memory
3 orders of magnitude less power

1

M. Marinella, IEEE Circuits and Systems, 8, 86-101, 2018
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po Energy consumption: analog vs digital 

V1=X1

V2=X2

V3=X3

Vt1=X4

Analog core: doing O(n2) operations using O(n) inputs and outputs

W1,1 W1,2

a 

W2,1

Integrator

ADC ADC ADC

001

001

M. Marinella, IEEE Circuits and Systems, 8, 86-101, 2018

Energy per operation per array,
1024X1024 synapses

1 Million multiply-and-accumulate

Challenge: analog non-volatile memory that
meets these requirements do not exist

111 Analog Digital

Vector matrix
multiply

Outer product
update

13 nJ 2600 nJ

2 nJ 3600 nJ

Analog energy breakdown:
Read: 0.4 nJ
Write: 1.66 nJ

Integrator: 2.8 nJ

ADC: 9.4 nJ

Analog: —200 Tera-OPS/watt
Digital: 1-5 Tera-OPS/watt



Two-terminal resistive memory
TaOx resistive memory cell

Ta (-15 nm)

Ta0x (-10 nm)

TiN

VTE

_L

Resistive memory switch between high
resistance and low resistance states

a)

0,41co

IFIFF:Hig7h 
resist:Ice

g -2 -1 0 1
Voltage (V)

2

Analog resistive memory is
nonlinear and unpredictable
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Pulse number

V1 V-AV V-26,1/

AV — Rwire Mdevice

4*,
R. Jacobs-Gedrim et al. /CRC, 2017

Q. Xia & J. Yang, Nat. Mater., 18, 303 (2019)

Target: Rdevice = 1 07-1 09 Q



Three-terminal memory 
Transistors store information by moving charge between the gate and the channel

Tretention = Cgate ROFF

Contr4 Gate

OAde

Floating Gate
-h

Oxide

Channel

A
Cgate = E0Er 10-6 F cm-2 = 10' F (A = 100 nm2)

tox

Option 1: transistor switch: ROFF - 1015 Q

Tretention< 1 s (Resistive Processing Unit, dynamic RAM)
S. Ambrogio, G. Burr, et al. Nature, 558, 60 (2018)

Option 2: floating gate oxide switch, ROFF -

Tretention 10 yr (Flash memory)
10V, high power, limited endurance (105)

Improving retention by increasing Cgate? C =

Electrochemical double-layer transistors
Electrons stored at the interface

Cgate — 10-4 F cm-2

< 1 nm

Gate

Electrolyte

Channel

Redox transistors
Electrons (and ions) are stored in the bulk of the

material (pseudo-capacitor)
Electron/ion neutral ambipolar pair enables AQ

without electrostatic charging

Cgate 10-1 F cm-2 (100-nm film)

Gate 
0NM
•

Electrolyte

AINE=11111
P. Gkoupidenis, G. Malliaras, Adv Mater, 27, 7176 (2015) E. Fuller, Adv Mater. 29, 1604310 (2017)

Y. van de Burgt, Nat. Mater., 16, 414 (2017) 9



a Redox transistors based on electrochemical ion insertion 

e-

Li reservoir

Electrolyte

Li+ Metal

Substrate

Dynamic control of the lithium doping level using current and voltage

In batteries, intercalation provides a high density of energy storage;
In redox transistors, intercalation provides a high density of information storage

Y. Li, W. Chueh. Ann. Rev. Mater. Res. 48, 137 (2018)



Outline

Part 1: Inorganic redox transistor
Lithium insertion into TiO2

LixTi02
ID (gate)

Solid Electrolyte  ei.1 to Lpau 4) PtPt lo Dnanel)

Part 2: Organic redox transistor
Proton insertion into PEDOT:PSS

H+ NAFION

Fl÷: proton; h+: hole
PEDOT:PSS

Part 3: Crossbar Array integration

1 1=V1G1,1+V2G2,1+... 12=V1G1,2+V2G2
11 



Symmetric redox transistor using Ti02

Solid Electrolyte

r ^ LixTiO2 -
lb (channel)

20 pm LixTiO2 (gate)

-1-ijivTiO2 (channel)
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A. Talin

E. Fuller
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Redox transistor using LixTiO2  (anatase) 

Me NUOM
0MIVE2TIMM

e-

400

Electrolyte

wow Pt

➢ Linear and symmetric programming
➢ 150-mV write pulses

➢ Analog, non-volatile states

R
e
a
d
 c
ur
re
nt
 (
n
A
)
 

Vw = ±150 mV

_14-L
5 ms

160  

v1

v

v

11 12 13

150 —

140 —

130 -Pm

0.0

Pulses

0.2 0.4 0.6

Time (s)

0.8 1.0



Redox transistor using LixTiO2  (anatase) 
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Retention during
training

0 50 100 150 200 0 40 80 120

Pulse number Pulse number
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Linear programming and high accuracy
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LixTiO2 transistor Redox transistors store information
Voltage: ± 0.15 V continuously as dopants in a crystal
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TaOx Memristor
Voltage: ±1 V

4.0

3.5

3.0

2.5

2.0

0 500 1000 1500 2000

Pulse number

R. Jacobs-Gedrim et al. ICRC, 2017

Memristors store information at
filaments

Wang et al. Nat Mater. 2017 

Linearity is essential to train
an accurate neural network
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Low write energies 
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Device area Gim )

4 Flash
4 Phase-change
4 Memristor

Optimized
structures

Y. van de Burgt, Nat Mater, 16, 414(2017)
M. Sharbati Adv. Mater. 30, 1802353 (2018)

J. Yang et al. Nat. Nano. 8, 13(2012)



High resistance devices 
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+Voltage vs Li/Li 17



Part 2: Organic redox transistor based on PEDOT:PSS 
e lanas

9

PEDOT (hole conductor)
PSS (proton conductor)

PE DOT

crystallite

1-2 nm

PEDOT pss cations

,\V

t‘IN.

PSS-rich grain, PEDOT-rich grain,
20-30 nm 10-20 nm

Electrolyte

PEDOT: PSS

Substrate

Metal/electrolyte double-layer capacitance - 20
pF/cm2

Gate

PEDOT: PSS

Electrolyte

PEDOT: PSS

Substrate

A. Volkov, et al. Adv. Funct. Mater. 27, 1700329 (2017) Volumetric charge density: 40 F/cm3
- 400 pF/cm2 (100-nm film)



PEDOT:PSS Redox Transistor 

Flexible device

PEDOT: PSS

Electrolyte

PEDOT: PSS

Substrate

b

c

1,750

1.900

Linear weight updates

2,.000 2,540 3,000 3,500

Time (s)

4,500

Y. van de Burgt, et al. Nat Mater, 16, 414(2017) 19



Super-capacitative vs intercalation redox transistor 
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H+: proton; h+: hole
PEDOT:PSS

No charge transfer
Fast single-specie diffusion
Low capacitance: 40 F cm-3
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High resistance devices 

107 Ohm achieved by doping with filler PEI
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Part 3: Crossbar array integration

v1

v,

V_

Matrix multiplication
crossbar

willMEI

1
1111111

1
_

'I
-,-,

1
-

7

13

Gates and channels are
shorted to each other

Write

Read

12

Challenge: find a highly nonlinear switch with a
high ON/OFF ratio at low voltages

Tretention--Rswitch * Cdevice



rDiffusive memristor

Two-terminal switch

ON

Pd

Ag:Si02

Pt

"")

OFF

•••••••••""1.,

Pd

 cr c
Pt

Z. Wang et al. Nat. Mater. 16, 101 (2017)

J. Yang Z. Wang S. Asapu



1
High nonlinearity at low voltages

Diffusive Memristor: -1 mV/decade,
107 ON/OFF

-6
10 —

-14
10 —

\ z

i

I

1
-0.2 0.0 0.2

Voltage (V) I

I
Ideal diode: 60 mV/decade
Need much higher voltages

for same ON/OFF ratio 1



Low-voltage, Si-free electrochemical memory 

Pt

JEN NENNelli
INCINEENNECIL

o

Solid Electrolyte

•

Diffusive memristor (Ag in
SiOx): high ON/OFF ratio

Redox transistor: high charge
density via bulk storage

Both: Low switching voltages

Wang et al. Nat. Mater.  2017

Non-volatile memory that switches at just 6 times the thermal voltage
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Parallel weight updates in crossbar arrays 

Speed of a network - speed of a device *# of
devices switched in parallel

v1 © V2 V3 ©

2
1 3

AG0 ( AS)
0

-1 0 0 o

+41 0 +42

o
0 0 0 o

ov 

+100

0 V ov

0 -1 0

+2 +57 0

-1 0 +1

LOv OV
* * *

(1)
+69 0 +1 +66 0

o

r6

-1 0 0 o -1 -1 0

:F• +57 0 +44 :4. 0 +51 0

We can select the rows and columns in this crossbar to update the
weights of many synapses in a highly parallel fashion in accordance with

an outer product update

E. Fuller, et al. Science, 364, 570 (2019)



Gip Next step: learning demonstration 

Erik Isele
Summer inter
U of Michiga



Summary 

-In-memory analog computing can be much more energy efficient than
digital computing, but there exists significant materials challenges.

Redox transistors based on electrochemical ion insertion fulfill the energy
and accuracy needs for in-memory computing.

•Super-capacitative redox transistors attain sufficient speeds for most
neural applications

Crossbar arrays enable parallel weight updates at low energy.

LixTiO2 IDi 0
6 (gate)
j

Solid Electrolyte

b Lix-rio2
(channel)

 a

1 1=V1G11+V2G21+...
12 V1 1,2+V2G2



Evolution of Computing Machinery
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New paradigms:**
Neuromorphic, Z.
analog, quantum,
approximate

1 aJ l I I I I I I >1946  - 1 1 1980 1990 2000 2010 NOW 2025 2035

Just as artificial intelligence can be used to advance materials science,
materials science can be used to advance artificial intelligence
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