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2 Objective/Approaches

°Objective of Project

• Explore and optimize grid remapping using machine learning

°Approaches

• Understanding and extraction of the remapping procedure and relevant data

• Understanding and implementation of machine learning

Eulerian

•
ALE

♦

Bavo, Alessandra M., et al. "Fluid-structure interaction simulation of prosthetic
aortic valves: comparison between immersed boundary and arbitrary Lagrangian-
Eulerian techniques for the mesh representation." P1oS one 11.4 (2016): e0154517.

•

Source Video

Source to Target Result

Detected

Chan, Caroline, et al. "Everybody dance now." arXiv preprint
arXiv: 1808.07371 (2018).



3 Remapping

■ Remapping Algorithm

• Lagrangian transformation into eulerian grid

• Eulerian grid by default

• Solving equations cause grid deformation, creating a temporary lagrangian grid

• Remapping algorithm brings deformed grid back to eulerian grid

Equations Remapping
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https://www.flow3 d.com/resources/cfd- 10 1 /general-cfd/grid-systems/

■ Challenge s

• Remapping algorithm is costly

• Remapping algorithm is hardwired



4 Machine Learning

■Machine Learning

ARTIFICIAL INTELLIGENCE
Programs with the ability to
learn and reason like humans

MACHINE LEARNING
Algorithms with the ability to learn

without being explicitly programmed

https://www.argility.comlargility-ecosystem-
solutions/iot/machine-learning-deep-learning/

Bias

Features

(X)

https://scikit-learn.org/stable/modules/neural_networks_supervised.html

■Advantages
■ Can easily compartmentalize algorithms into modules

■ Easily transferrable to different architecture once a model is trained

■



5 Creation of Training Data

°Synthetic Data

■ Aimed to cover widest range as possible

■ Uniform distribution of dataset to limit bias (Latin hypercube?)

■ Focused on 2D dataset, time-dependent problem

■ Random velocity components ranging between -1 to 1 are initially assigned

■ Data extracted from remapping at first time step to minimize other sources of error that
may dissipate the randomness of the initial profile

■ Displacement components due to remapping and velocity components before and after
remapping are used for training

■ Differences in velocity components before and after remapping are used as predictive values

■Pre-processing
■ Filtered input parameters to ensure uniformity of predictive values

■ Normalization of input parameters to ensure parameters mostly range between 0 to 1 or -1
to 1

■ Dataset from multiple runs are combined to create dataset ranging from 1000s (lower
accuracy) to 100,000s(higher accuracy)



6 Machine Learning Procedures

■Multilayer Perceptron (MLP)
■ Structured as: input layer, hidden layer, and output layer

■ Minimization of some loss function via manipulation of weight, learning rate, and many
other parameters through each node and layer

■ Feed-forward method

■ Simple structure yet accurate

■Current Progres s
■ Results from in-house machine learning code are not yet reliable

■ Help debugging the machine learning code

■ Machine learning test using simple multilayer perceptron code (available in python)

■Drawbacks
■ Large initial investment of computational resources for training

■ Sometimes difficult to verify the reliability of predictions based on trained model (bias, etc)

■



7 Machine Learning Procedures

EML code test

• Pytorch

• Simple structure with 3 hidden layer

• Smooth L1 loss function (alternating loss function between absolute value difference and
mean squared difference)

°Three ML code tests

• Uniform post-remap velocity distribution with training and validation using the same dataset
(highest accuracy expected)

• Uniform post-remap velocity distribution with training and validation using different
datasets

• Un-uniform post-remap velocity distribution with training and validation using different
datasets (lowest accuracy expected)



8 Machine Learning Procedures

EX-Velocity Component Test

• 1st Case: Average Deviation 0.54%
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• 2nd Case: Average Deviation 2.40%
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9 Machine Learning Procedures

EX-Velocity Component Test

• 3rd Case: Average Deviation 1.43%
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10 Machine Learning Procedures

Y-Velocity Component Test

• 1st Case: Average Deviation 0.27%
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• 2nd Case: Average Deviation 5.50%
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11 Machine Learning Procedures

EY-Velocity Component Test

• 3rd Case: Average Deviation 3.73%
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• Un-uniform velocity distribution had the worst accuracy in terms of maximum velocity
deviation (possibly caused by bias?)

• All cases had average velocity deviation around 1-5%

• Importance of proper accuracy metric selection (R2-0.99 for all)

•



12 Applications

°Complex Behavior

• Biological applications

• Materials behavior

°Image Processing

• Input with complex noise and distortion

• Restoration of images

°Many Others

Carnera-based Heart Rate Monitoring

Plane Orthogonal to Skin (POS)
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