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Decision-Driven Uncertainty Quantification (UQ) at
Sandia National Laboratories (SNL)

“Excceptional service in the national interest”

*Contributing novel decision-driven UQ research
methods that lead to better informed and
improved decision-making

*Interested in mission-oriented and high-risk
national security applications



4 | Motivating Example: Multimodal Image Analysis

*Multimodal Imagery: images from different sensors (e.g. optical and lidar) covering the same scene

Optical

Core Questions:

*How do we know which images we need in order to have a complete and informative analysis?

* Does each image help our understanding of what’s going on in the scene? Or could one even hurt our
understanding? That would be good to know.

*How do we know when to trust our analytic results?
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1. Uncertainty in Statistics and Machine Learning
* Lessons Learned from Uncertainty

Bootstrapping Methods
Uncertainty Analysis Using Gaussian Mixture Model (GMM)
Uncertainty Analysis Using Bayesian Consensus Clustering (BCC)

H o= B D

Conclusions
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Uncertainty in Statistics and Machine Learning (ML)

Background

*Current ML algorithms and statistical models usually provide a point estimate to answer an analysis
task (e.g. estimate of mean or standard deviation, one classification of an image pixel).

*Potentially many sources of varying quality
*Many choices of how to model

*Targets may be rare or hard to detect

Core Questions
*How do we know that our data analyses are complete, accurate, and informative?

*How do we know when to trust our analytic results? Under what conditions?

|

T Tl
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Rethinking Data Analysis

Much data science research focuses on

*Volume — handling very large data sets

*Velocity — data arrives and must be processed quickly

*Variety — (recent) unified handling of data from many sources

<>Philosophy: Data-driven processing

This work focuses on

*Veracity — assessing the reliability of analytic results

*Value — assessing the contribution of data to results

*Variety — integrating sources to improve veracity and value
*Communication — make information usable by decision makers

<> Philosophy: Decision-driven processing
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Big Picture: Sources of Uncertainty
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9 I What Can We Learn from Uncertainty?

*Data sufficiency — Is there enough information in the data to identify stable decision boundaries?

*Multi-source data contributions — Which data should be included in an analysis, and how
important is 1t relative to other data sources?

*Trustworthiness — How do we distinguish robust models from those that are sensitive to small
changes in the datar

*Performance diagnosis — Under what conditions will a model perform well?

*Alternate data interpretations — Less likely, yet plausible, data interpretations

Following examples focus on one source of uncertainty: model

Lessons are general: should apply to any ML application
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Bootstrapping: Generating Distributions to Quantify Uncertainty ]

*Proposed by Efron (1979), this 1s a method for estimating the properties of an estimator (mean,
standard error, confident interval, etc.) for a parameter.

*Given a random sample X= (X,...,X ), which ate » independent and identically distributed (i.i.d.) £&-
dimensional (£ = 1) data points from a distribution function F we wish to estimate the sampling
distribution of a random variable R(X,F).

Procedure:

j B

2.

2
J.

Observed data: (x,,...,X.)
Compute the point estimate of R(X,F) using the observed data.

Generate B bootstrap samples by resampling the observed data wizh replacement. Each bootstrap
sample contains 7 observations. B should be a sutficiently large number to approximate the
sampling distribution of the parameter estimate.

* Bootstrap sample: (x;",...,x_")

Compute the point estimate of R(X,F) using the bootstrap samples data.



Unsupervised Learning Example: Clustering, Image Segmentation, and
11 I Multimodal Analysis (Stracuzzi et al, 2018)

*Multimodal Imagery Data: images from different sensors (e.g. optical and lidar) covering the same
scene

*We wish to evaluate the relative contribution of each image.
> Which data do we really need?
> Which data do we wish we had?

*To do this, we will quantify the uncertainty surrounding the clustering results.

*Data: one optical (RBG values) and one lidar (height of objects) image of the same scene in
Philadelphia.

*For each image, we model each pixel as a Gaussian mixture model (GMM).
* In a GMM, each pixel is clustered into an unlabeled cluster.

* Each cluster follows a multivariate normal distribution with its own mean vector and covariance
matrix.

* Each image will have its own GMM, so they can have different numbers of clusters and the
clusters can have different meanings.

)

|
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Unsupervised Learning Example: Clustering, Image Segmentation, and
Multimodal Analysis (Stracuzzi et al, 2018)

*GMM density function:
Density for pixel x

K Ty—1g
.. E-xp{——(x — ki) Xg (¥ — pk)}
f(x|d) =D m ,det(gﬁ y
k=1 v EeeT Sk

where 1y is the mean vector and X is the covariance matrix of component k.

*Parameter of interest: cluster probabilities for each pixel (p)).

*Bootstrap procedure for each image:
* Observed data: (x,,...,%x,) for n pixels in the image

* Fit a GMM to the observed data. All parameters in the model are estimated via an EM algorithm.
* Obtain B bootstrap samples by sampling with replacement from the » observed pixels.
* it a GMM to each of the B bootstrap samples.

* We now have a sample of estimates of the cluster probabilities for each pixel being classified to
each cluster.

()
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Unsupervised Learning Example: Clustering, Image Segmentation, and
Multimodal Analysis (Stracuzzi et al, 2018)

*High uncertainty implies data are insufficient to reliably categorize pixels

*Example: pixel color not predictive around trees

Source Max Likelihood Uncertainty

@)



Unsupervised Learning Example: Clustering, Image Segmentation, and |
14 I Multimodal Analysis (Stracuzzi et al, 2018) [

(a) (b)

o
Max Likelihood Probability Map




15 | Bayesian Consensus Clustering (BCC) [Lock et al, 201 3] L

*Consensus clustering (ensemble clustering): determination of an overall partition of the
observations in a dataset that agrees the most with the source-specific clusterings

*BCC presents a general Bayesian framework for estimating the integrative clustering model relative
to the source-specific clusterings

* Both the source-specific clusterings and the consensus clustering are modeled in a statistical way that allows
for uncertainty in all parameters.

* The source-specific clusterings and the consensus clustering are estimated simultaneously.

*Key assumption of BCC: source-specific clusterings adhere loosely to the consensus clustering
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BCC: Assumptions

Integrative model:

m Source-specific and overall clusterings all have K clusters

Data from M sources: Xj, ..., Xjy (each data source may have disparate structure)
Each data source is available for a common set of N objects

Xmn: data m for object n

Probability model for each data source: f,,(X,|0m)

Each Xmn, n=1..... N, is drawn independently from a K-component mixture
distribution specified by the parameters 6,1, .... 0k

m Lmny € {1,..., K}: component corresponding to Xmn

C, € {1,.... K}: overall mixture component for object n

m The source-specific clusterings IL,,, = (Ln1. .... L,,n) are dependent on the overall

clustering C = (Cq, ..., Cp):
P(Lin = K|Ca) = vk, Co. cvm)

where o, adjusts the dependence function v.

m Data X, are independent of C conditional on the source-specific clustering L.

Conditional model:

P(Lmn = k‘ans Ch. Hmk) X U(k, Cn.m )fm(.anka)



17 I BCC:Assumptions

m We assume v has the simple form

—_— 'f Cn . Lmn
T/(Lmnf Cn‘.'am) — {?_am |

1%, otherwise

where am = P(Lmn = Cn).
m Assume a Dirichlet(3) prior for IT = (71, .... Tk ), where m = P(C, = k)

m Probability that an object belongs to a given source-specific cluster:

1 —am
P(Lmn = k|II) = wxaem + (1 — k) K_1
m Conditional distribution of C:
M
P(C, = k|L,II, o) oc g H o L iars; & 081
=1

m Joint marginal distribution of Ly, ..., Lm:

K M
P({Lmn = km}m—1|TL, @) o< > "7 | | v(km, ky ovm)
k—1 m=1



BCC: Estimation
Data:

m X; has a normal-gamma mixture with cluster-specific mean and variance
an“—mn =k ~ N(#'mk! Emk)

B [i;mk is @ Dy dimensional mean vector, where D,, is the dimension of the data
source m

m X, is a Dy x Dy, diagonal covariance matrix, 2X,,x = Diag(omk1. ---. OmkD,, )

m Prior distribution for 6,,,,: D, dimensional normal-inverse-gamma distribution
Omk = NT (n‘me A0, Amo. Bm{})

where 7m0, Ao, Amo, and B,,0 are hyperparameters.
m It follows that

1
N p_ ~ Gamma(Ade,. Bmﬂd)
mkd o

o r
B [imikd ™ N(nmﬂa }‘Lgd) for d = 1, "':Dm‘

El

[.

B’
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BCC: Estimation @
Conjugate prior distributions:
W Oy~ TBetalag, = 1,0y = 1, %) (prior for cxm is uniformly distributed between
% and 1)
m 7™ ~ Dirichlet(50 = (1. 1. ..., 1)) (prior for 11 is uniformly distributed on the
standard (M — 1)-simplex

L ’Grnk ~ NI'™ L ("??.mﬂ s AD s ArnD . Brnﬂ)

Conditional posterior distributions (iteratively sampled via MCMC):
O @mlxmel"m ~ pm(9r11k|Xm-.Lm) for k =1,..., K

Hmk sy NF_]_(??mk-. )\k‘a AmDs BmD)
mL,|X,0.O9On an. C~ P(k|XmnnCh.Omi-m) for n = 1, .... N, where
P(k|an, Ko gmkg Cfm) 0. Ij(ka Ch, Qim)fm (an|9mk)°

W |G gy~ TBetal 3 + T B + N — Tims %) where 7, is the number of
samples n satisfying Ly,n = Cp.

| Can‘],H,a L P(kln,{pr}n,L]:fn}M 1) FOF n — ]..,,...., N, Where

m=

M
P(KIIL, {Lmn, am}m—1) o< 7 | | v(k, Lmn, am)

m=1

m II|C ~ Dirichlet(50 + p), where pg is the number of samples allocated to cluster
k in C

1 0 L e BB "
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Multi-modal Image Segmentation Uncertainty Analysis

m Use the variance as our measure of uncertainty

m Uncertainty of the overall consensus clustering: Var|P(C, = k)]

m Uncertainty of the source-specific clusterings: Var|P(Lmn = km)]

m Question: Can we relate the uncertainty of the overall consensus clustering to the

uncertainty of the source-specific clusterings?

Var[P(C, = k)] = f(Var[P(Lmn = km)|M_,)?

m—1

1 0 L e BB "
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Multi-modal Image Segmentation Uncertainty Analysis

P(C, = k|L,II, o) ox 7 H V(Lmn, k, )

Var|P(C, = k|L, II, )] ox Var|m,

For M = 2,

m=1

M

m=1

H L’(Lmne k. 'jfm)]

Var[P(C, = k|L, 11, «)] oc Var{mk[v(L1n, k, a1)][v(L2n, k, a2)]}

Var|

TRz,

| Var|

oy S22,

Var

| Var|

Tk

Ak

!
oy
1 2],
l—axq 1—

K—1

—1

if Lip =k, L2, =k
if Lln = k. LZH 7£ k
if L1, £ k, Loy = k

if Lln 7£ k. LZn 7£ k

1 0 L e BB " 5F e == |



22 I Multi-modal Image Segmentation Uncertainty Analysis

Since 7wk, a1, and a2 are all dependent,
Var(maiag) = Cov(ﬂ'f. O(%CI‘IQ) + (Var(my) + [E(Wk)]z)(Var('a*lag) + [E(Q‘lag)]g)
— [CDV(?T;(, Qﬁlﬂfg) + E(‘Wk)E({TlCEQHQ
Var(aias) = Cov(a2, a2) + (Var(a1) + [E(a1)]?)(Var(az) + [E(a2)]?)

_ [Cov('al, a2) + E(ﬂfl)E(a’z)]z

Var(mpaqas) = Cov(n2, aad) 4 (Var(my) + [E(mk)]?)(Cov(as, a3)

+ (Var(aq) + [E(a1)]?)(Var(az) + [E(a2))?) — [Cov(at, ag) + E(a1)E(az)]?
[E(a1a2)]?

+ [E(c1a2)]?) — [Cov(my. araz) + E(my) E(araz)]?

= Cov(n2,a?a?) + (Var(my) + [E(m)]?)(Cov(ai, a3)

+ (Var(a1) + [E(a1)]2)(Var(az) + [E(a2)]2)) — [Cov(my. ara) + E(m ) E(a1az)]?
*We conclude that the uncertainty for the overall clustering is directly proportional to the

uncertainties for the adherence of the source-specific clusterings to the overall clustering,
which affect the results of the source-specific clusterings.

(@)



23 | Multi-modal Image Segmentation Uncertainty Analysis

We have that

I1|C ~ Dirichlet(8o + p), 8o = (1, 1, .... 1)

K
= m|C ~ Beta(1 + pi, > (1 + pi) — (1 + pi)) =Beta(l + px. K= L+ ) pi)

i=1 ik
~ 1+ px
E(m|C) =
K—14 Zi;ék Pi
| L+p)(K—=1+4 ) ik pPi
oty — (PO = 1 T )

(K+S K p)2(1+ K+ K oi)




24 | Multi-modal Image Segmentation Uncertainty Analysis )
We have that

.. 1 | |
C*ﬁ'mlcgﬂ-«'m ~ TBEta(am + Tm, bm + N — T, R) — TBEta(l +Tm, 14+ N — Tm, R)

Let B(x:a.b) = [§ t2~1(1 — t)>~1dt be the incomplete Beta function. Then

e | B(£:2+Tm. 1+ N—7pn) — B(Li2+ 7. 1+ N —7p)
(0m|C, Lim] = B(%;1+Tm 1+ N—7m) — B(1;1+ Tm, 1+ N — 7)
E[a2|C, L] = B(%:’? bl L i ' e e
B(eil+Tm 1+ N—7n)—B(L;1+7m, 1+ N—7nm)

e T B = B(%;B—k'rm 14 R — i i — 5(1:,:_3+frm,:1 + N — 1)
B(il+Tm1+N—7m)—B(1;14+7m 1+ N—7m)

0

Q—I—Tn}_]_—l_N—Tn})_ ("2—|—T;7]1—|—N—Tm) 2
J_—I—TmJ_—I_N—Tn})_ (111+TIT]*1_I_N_Tm)

|
—~—
uy
>:|H xli—*
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— [Cov(mg, v1an) +

Multi-modal Image Segmentation Uncertainty Analysis

Var(mear1a9)

‘ v%a%) +{- (1 +£k)(Kf 1 +Z:’;£k ,(:{,) y »1 + p
(K+ X1 p)?(L+ K+ 32 pi) K—1+ Zi;ék Pi
B(L;3+ 7,1+ N—71)—B(L;3+7.1+N—1)
B(£:1+71.1+N—71)—B(L;1+71,1+N—71)
B(i;2+m,1+N—7)—B(L;2+7,1+N—71) ,

12}

{Cov(a?,a3) + (

—{B(%:1+n,1—|—N—n)—B(1;1+T1,1—|—N—7'1)
[B(%:Q—i—n 1+ N—-711)—-B(1;24+ 711,14+ N—71) 5
B(£:1+71,1+N—71)—B(1;1+71,1+N—71)
(B(%;HTQHN—TQ) B(1;3 + 72,1+ N —72)
B(ti1+72.14+N—72)—B(li1+72,14+N—12)
_{B(%;2+frg.1+N—rz)— (1:2+Tz,1+N—Tz)}2)+

B(£:1+72,1+N—72)—B(1;1+ 72,1+ N—12)
B(%:‘2+T2.1+N—Tg)—B(1:2+T2,1+N—7'2)]2}
B(ii1+72,1+N—72)— B(l;1472,1+N—2)

1+ pi 2
- X E[Oﬂlatg]]
K—1+42 i2kpi

[




26 I Philadelphia Multi-modal Imagery

Opﬁcal Lidar

*Data: one optical (RBG values) and one lidar (height of objects) image of the same scene in
Philadelphia. (M=2)

*Fach image contains 10,000 pixels (100 pixels x 100 pixels). (N=10,000)

*Run BCC to obtain the following clusterings, each with six clusters: (IKK=0)
* Source-specific clustering for optical image
* Source-specific clustering for lidar image
* Overall clustering considering data from both images

1,000 MCMC iterations using R with the bayesCC package

*Point estimates of clustering probabilities: MAP estimates




27 | Philadelphia Multi-modal Imagery

Overall Clustering

Cluster Assignments

Variance Variance Overlayed
with Cluster
Assignments

Optical Clustering (= 0. 646)
(Var (a) = 0.0001248)

Cluster Assignments

Variance Variance Overlayed
with Cluster
Assignments

Lidar Clustering (a= 0.721)
(Var () = 0.0001689)

Cluster Assignments

Variance

Variance Overlayed
with Cluster
Assignments

i)
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Discussion iy

*Recent advances have made both data and the patterns they contain more accessible.
*However, simply finding patterns of interest is not sufficient to support high consequence decision making.

*We must also assess confidence in results, which includes consideration of uncertainty.

Lessons Learned:

*Measure the credibility of each prediction that the model makes on unseen samples (Performance
Diagnostics, Trustworthiness).

*Evaluate data sufficiency that considers not only the number of examples, but their usefulness in
identifying decision boundaries. (Multi-source data contributions)



u; )

29 I Discussion

*Presented preliminary work on mathematically relating the uncertainty in the results of source-
spectfic clusterings (clusterings of optical and lidar images separately) to the uncertainty of the
results of an overall consensus clustering

*Visually, we inspect the results of the clusterings and see how the uncertainty results for the source-
specific clusterings and the uncertainty of the estimated adherences factor into the uncertainty in the
overall consensus clustering;

*Main takeaway: overall consensus clustering uncertainty is directly proportional to the
uncertainties in the adherences of each source-specific clustering to the overall clustering
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Future Work: BCC

*Deriving expressions in closed form, particularly with the covariances
*Extending to the case of any number of M data sources

*Related to BCC implementation:
* Nonparametric distributions
* Different number of clusters and semantic meanings of clusters for each data source and overall clustering

¢ Computational scalability

(@)

|
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Future Work: Frequentist Approach L)

Probabilistic Feature Fusion (PFF) [Simonson et al, 2017]

*Combines evidence arising from multiple features and classifiers expressed in the form of (generally
dependent) hypothesis tests

*Used in one-class classification (finding one target class)

*Sum of transformed p-values approximately follows a Gamma distribution

Problem:
*PFF only works when you are testing for the same target class (1.e. same hypothesis)

*When we fit Gaussian mixture models (GMMs) to each image (optical and lidar), even with the same number
of clusters, the semantic meanings of the clusters in each image likely will be different.

*Questions:
1. How do we formulate a frequentist framework for fusine p-values tooether when thev are testing different
q ng p g _ y g
hypotheses, but they are related because they are describine the same scene of interest?
yp 5 Y y g

Can we do the same for uncertainty measures, such as variance or entropy?

W D

Is there a frequentist method for doing consensus clustering where information is shared between the overall
clustering and the source-specific clusterings?
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Future Work: Inverse Uncertainty Quantification

*Rigorous investigation of all sources of uncertainty

*Statistical properties of uncertainty propagation through the inverse UQ analysis pipeline, as well as
between multiple analysis tasks

*Evaluating the quality of benchmarks used for ML algorithm evaluation and UQ

()



33 I Thank you for your kind attention!

Questions?
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Future Work: Frequentist Approach

Probabilistic Feature Fusion (PFF) [Simonson et al, 2017]

*Combines evidence arising from multiple features and classifiers expressed in the form of (generally
dependent) hypothesis tests

*Used in one-class classification (finding one target class)

Steps:
m Data consists of N feature vectors each of length K. Let X;, i = 1,.... K, denote
the ith feature.

m [he marginal probability distribution function of X; for the target class is denoted
Fi. For X; drawn from the target distribution, the quantity F;(X;) will be
distributed U]0, 1].

m For each feature, compute the p-value 1 — F;(X;).

m Transform the p-values using the transformation Y; = —log(1 — F;(Xj)), which
has a standard exponential distribution under the null hypothesis.

i)



37 I Future Work: Frequentist Approach

m Sum the transformed values
K
Sfused — g st
i=1

which follows the gamma distribution with shape parameter &« — K and 8 =1
when the individual tests are independent. However, since the tests are likely
dependent, we have an approximate gamma distribution. Let rjj be the sample
correlation coefficient between exponential random variables Y; and Y;. We

estimate the mean and variance of the sum 55,4 With the quantities Er and V4,
respectively:

Ex = K

A K

Uk =K+23 35
i=1 j>i

The estimates of the shape and rate parameters are

E2
& — K

Vik
. E
g ==K

Vi

m Compute the fused p-value as Ppieed(Stused) = 1 — Frused (Stused ) -

]

p—
B’

[.




Supervised Learning Example: Classifying URLs of Malicious VWebsites
33 ¥ (Darling et al, 2015)

*Observed data: » URLs
*Task: Classity the URLs as benign or malicious.

*UQ task: How confident should we be in a classifier’s performance to accurately classify a URL as
benign or malicious? We need to know how much variability 1s in the classifier we construct.

Approach:

*Obtain § bootstrap samples, each with #» URLs, by sampling with replacement from the observed 7
URLs. Denote the bootstrap samples (x'!,....x™)

*For each of the § bootstrap samples, fit a CART decision tree and obtain probability p,, estimates for
£ candidate labels y,, for each x".

*The § values of p,, provide a probability distribution for each candidate label for each sample.

)

|
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Supervised Learning Example: Classifying URLs of Malicious Websites

(Darling et al, 2015)

Probability

Standard Deviation

Most-likely class: malicious

(@)

Accuracy
05 - Percentage
o * . 25
[ e .. 66.3%
C 04 b .
= 89,
@ . . 74.2%
W
. 191
® o ® “ 4
o a e 77.8%
_g 02 . .o
c o o ° 399,
= * o - 89.6%
N ety &
® [ _J
1626,
'n 97.7%
0.0
0.0 0.2 1.0

Left panel: Probability distribution of predicting most-likely class for a particular URL
Right panel: statistics of prediction distributions. Color bars annotate the accuracy for the samples they contain.

* Lower left-hand corner of right panel: classifiers are consistently classifying URLs incorrectly
* Upper-middle of right panel: classifiers do not know how to classify the URLSs

|



Event/Anomaly Detection Example: Time Series Analysis
40 I (Vollmer et al, 2017)

m M (noise model):
Y v N{{],{IE]
where 02 < ccfort=1,...,k — 1.

m M5 (signal model): auto-regressive, moving-average (ARMA) model with
auto-regressive terms of order p and moving average terms of order g:

p q
Ye =c+ Z Qi Ye—i + Zﬂift—i + €t
i=1 i—=1

where €; ~ N(0,02) for t = k. ..., T, and o2 is the finite variance of the noise
component of the signal model.

€



Event/Anomaly Detection Example: Time Series Analysis
#1 I (Vollmer et al, 2017)

m Log-likelihood for M :

k P L
;{H”Fl? "Flrf} — _E lﬂ{?ﬂ’] o E IH(JH} o Eﬂ'ﬁ tz:;.}"f:
m Log-likelihood for Ms:
i T—k—,
[(O2lyks1, - yT) = — ~ In(2n)
(T —k—p) 1«
L N D DI
5 t=k+p+1

where st = Y — ¢ — A‘:-leﬁiﬂ’t_,— — E}T:l Oier_jfort=p+1,p+2,...,T.



Event/Anomaly Detection Example: Time Series Analysis
(Vollmer et al, 2017)

m Akaike Information Criterion (AlIC) criterion to minimize for arrival time
estimation:
(M) =1(01|Y1,..., Y&) + (02| YE+1, 20y YT)

k k u
Z

=g In(2m) — — ln{e:r

"" H-‘
-..|
'.I:‘
|
=




