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3 
Decision-Driven Uncertainty Quantification (UQ) at
Sandia National Laboratories (SNL)

"`hxceptional service in the national interest"

Contributing novel decision-driven UQ research
methods that lead to better informed and
improved decision-making

Interested in mission-oriented and high-risk
national security applications



4 Motivating Example: Multimodal Image Analysis

Multimodal Imagery: images from different sensors (e.g. optical and lidar) covering the same scene

Optical

Core Questions:

Lidar

How do we know which images we need in order to have a complete and informative analysis?
• Does each image help our understanding of what's going on in the scene? Or could one even hurt our

understanding? That would be good to know.

•How do we know when to trust our analytic results?



5 I Outline

1. Uncertainty in Statistics and Machine Learning

Lessons Learned from Uncertainty

2. Bootstrapping Methods

3. Uncertainty Analysis Using Gaussian Mixture Model (GMM)

-, Uncertainty Analysis Using Bayesian Consensus Clustering (BCC)

5. Conclusions



6 I Uncertainty in Statistics and Machine Learning (ML)

Background

*Current ML algorithms and statistical models usually provide a point estimate to answer an analysis
task (e.g. estimate of mean or standard deviation, one classification of an image pixel).

•Potentially many sources of varying quality

•Many choices of how to model

•Targets may be rare or hard to detect

Core Questions

How do we know that our data anaYses are complete, accurate, and iqformative?

•How do we know when to trust our anaYtic results? Under what conditions?



7 I Rethinking Data Analysis

Much data science research focuses on

Volume — handling very large data sets

•Velocity — data arrives and must be processed quickly

•Variety — (recent) unified handling of data from many sources

Philosophy: Data-driven processing

This work focuses on

'Veracity — assessing the reliability of analytic results

Value — assessing the contribution of data to results

Variety — integrating sources to improve veracity and value

Communication — make information usable by decision makers

Philosophy: Decision-driven processing



8 I Big Picture: Sources of Uncertainty
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9 I What Can We Learn from Uncertainty?

Data sufficiency — Is there enough information in the data to identify stable decision boundaries?

Multi-source data contributions — Which data should be included in an analysis, and how
important is it relative to other data sources?

•Trustworthiness — How do we distinguish robust models from those that are sensitive to small
changes in the data?

Performance diagnosis — Under what conditions will a model perform well?

Alternate data interpretations — Less likely, yet plausible, data interpretations

Following examples focus on one source of uncertainty: model

Lessons are general: should apply to any L application



10 I Bootstrapping: Generating Distributions to Quantify Uncertainty

Proposed by Efron (1979), this is a method for estimating the properties of an estimator (mean,
standard error, confident interval, etc.) for a parameter.

•Given a random sample X= (X1,...,Xn), which are n independent and identically distributed (i.i.d.) k-
dimensional (k? 1) data points from a distribution function F, we wish to estimate the sampling
distribution of a random variable R(X,P).

Procedure:

1. Observed data: (x1,...,xn)

2. Compute the point estimate of R(X,P) using the observed data.

3. Generate B bootstrap samples by resampling the observed data with replacement. Each bootstrap
sample contains n observations. B should be a sufficiently large number to approximate the
sampling distribution of the parameter estimate.
• Bootstrap sample: (x1* ,...,xn*)

4. Compute the point estimate of R(X,P) using the bootstrap samples data.



Unsupervised Learning Example: Clustering, Image Segmentation, and
11 Multimodal Analysis (Stracuzzi et al, 2018)  

Multimodal Imagery Data: images from different sensors (e.g. optical and lidar) covering the same
scene

We wish to evaluate the relative contribution of each image.
• Which data do we really need?

• Which data do we wish we had?

•To do this, we will quantify the uncertainty surrounding the clustering results.

Data: one optical (RBG values) and one lidar (height of objects) image of the same scene in
Philadelphia.

For each image, we model each pixel as a Gaussian mixture model (GMM).

- In a GMM, each pixel is clustered into an unlabeled cluster.

- Each cluster follows a multivariate normal distribution with its own mean vector and covariance
matrix.

- Each image will have its own GMM, so they can have different numbers of clusters and the
clusters can have different meanings.



Unsupervised Learning Example: Clustering, Image Segmentation, and
12 Multimodal Analysis (Stracuzzi et al, 20 I 8)

GMM density function:

Density for pixel x:

  exp
f (x119 = 71-

k=

— P.OTEE 1(y — Pk)}

vAet.(2-.7rEk)

where is the mean vector r-ic1 is the covariance matrix of corriponent

Parameter of interest: cluster probabilities for each pixel (p

Bootstrap procedure for each image:

Observed data: (xi, ...,x,) for n pixels in the image

Fit a GMM to the observed data. All parameters in the model are estimated via an EM algorithm.

Obtain B bootstrap samples by sampling with replacement from the n observed pixels.

Fit a GMM to each of the B bootstrap samples.

We now have a sample of estimates of the cluster probabilities for each pixel being classified to
each cluster.



Unsupervised Learning Example: Clustering, Image Segmentation, and
13 Multimodal Analysis (Stracuzzi et al, 20 I 8)

High uncertainty implies data are insufficient to reliably categorize pixels

•Example: pixel color not predictive around trees

Source Max Likelihood Uncertainty



Unsupervised Learning Example: Clustering, Image Segmentation, and
14 Multimodal Analysis (Stracuzzi et al, 20 I 8)

Source

(b)

Max Likelihood

()

Probability Map

(d)

Delta Probability

Delta Uncertainty



1 5 I Bayesian Consensus Clustering (BCC) [Lock et al, 2013]

Consensus clustering (ensemble clustering): determination of an overall partition of the
observations in a dataset that agrees the most with the source-specific clusterings

•BCC presents a general Bayesian framework for estimating the integrative clustering model relative
to the source-specific clusterings
• Both the source-specific clusterings and the consensus clustering are modeled in a statistical way that allows

for uncertainty in all parameters.

• The source-specific clusterings and the consensus clustering are estimated simultaneously.

*Key assumption of BCC: source-specific clusterings adhere loosely to the consensus clustering



16 BCC:Assumptions
Integrative model:

• Source-specific and overall clusterings all have K clusters

• Data from 11/1 sources: (each data source may have disparate structure)

• Each data source is available for a common set of N objects

• Xmn: data m for object 17

• Probability model for each data source: 677(X, Om)

• Each X,77„ , n = 1. N, is drawn independently from a K-component mixture
distribution specified by the parameters Om K •

• G K}: component corresponding to

• C„ E {1. K1: overall mixture component for object n

• The source-specific clusterings L„, = (L„,i..... L„,N) are dependent on the overall
clustering C = CN):

k C„) = u(k, Cn, am)

where (k m adjusts the dependence function u.

• Data Xrn are independent of C conditional on the source-specific clustering Lm.

• Conditional model:

P( Lr77f7 — k mn• C n . rn k) 1,1 k ) X 177111 Omk )



17 BCC:Assumptions
• We assume v has the sirnple form

ii(Linn! Cn, am)

where rt rn — P( Lmn — Cn ).

{am, i f Cn —
l—oem otherwiseK-1 •

• Assume a DirichletC3) prior for 11 = (71. ,, K), where 7k = P(C„ = k)

• Probability that an object belongs to a given source-specific cluster:

P(L„,„ = klII) = 71-kcern + — 7rk)
K —1

1 —

• Conditional distribution of C:

M

P( Cn — k IL, IT, la) oc k Lmn k am)
m=1

• Joint marginal distribution of L1....,L,:

K M

PaLmn = In, oc ir v(km, k, am)

k=1 m=i



18 BCC: Estimation

Data:

• Xi. has a normal-gamma mixture vvith cluster-specific mean and variance

Xffi nL,rnn k AlCurnk. Emk)

• pmk is a D„, dimensional mean vector, vvhere Drivi is the dimension of the data
source in

• n Dm diagonal covariance matrix,ti K E k = ( Diag,gmki..•••{1-nrikom)

• Prior distribution for Omk: Dm dimensional hormal-inverse-gamma distribution

Omk — Nr )ko.Anrio. Bmo

vvhere Ao r Amo, and Brno are hyperparameters.

• It follovvs that

• 
cr 

Garnma(Amod) Bmod)
mkd

2
• limk N m 0  ) for d _



19 BCC: Estimation
ConjugDte prior distributions:

■ ( 177 TBeta(ati, = 1. bm

tL.(- and 1)

■ 7 Dirichlet(i30 = (1, 1,
standard (M — 1)-simplex

■ Ofilk ---- NU— 1 (limo, AO, Arno

= 1, ) (prior for cern is uniformly distributed between

, 1)) (prior for II is uniformly distributed on the

Bm.)

Conditional posterior distributions (iteratively sampled via MCMC):

■ (3 E- m. I -X 
-n —rn P rn ( 4)rr7k Xfn • L„, ) for k = 1. .... K

rnk Air 1(7)mk, Ak 5 AMO Bf710 )

Om, cern, C P(klXmn, Cn, mk, 041-1) for n = 1. /V, where

P(k1X17117. Cfl• rrik Urn) CC 1- k Cn C rn) fm r77r7 19 rnk) -

M UmIC. Lrn TBeta(a, Lim ± Ai — ), where 7,„ is the number of
samples n satisfying Ln-in = Cn.

■CILm. II, et P(1(111. {Linn, cern}mm_i) for n = 1. N , where

P(10-1, {L,,,,,ctm}mm=1) DC 7F k v(k, Lmn,iarn)
rn=1

Dirichlet(30 p), vvhere pk is the number of samples allocated to cluster
k in C



20 I Multi-modal Image Segmentation Uncertainty Analysis

• Use the variance as our measure of uncertainty

• Uncertainty of the overall consensus clustering: Var,P(C, = k)]

• Uncertainty of the source-specific clusterings: Var[P(Lnit, = kni)]

• Question: Can we relate the uncertainty of the overall consensus clustering to the
uncertainty of the source-specific clusterings?

Var[P( = k)] _ f (\la r[P( L„,„ _ kr,,Y )?



21 I Multi-modal Image Segmentation Uncertainty Analysis

n. oc II u(Ltnn • k. m)
rn=i

Var[P( — kIL, a)] Var[7i, L. lc am)]
tn=

For M = 2,

Var[P(C,, — II, a)] oc Varf7rk [u(L1n, k,cti)][u(L2n. k. ct:2)]}

OC

Var[7ka1a2]1

Var[7kal 1K 

Var[7k (121'
Var[7k 

1—cti 1-042 I
K-1 K '‘

if L1„ = k, L2n = k

if Lln = k, L2n k

if L1„ k, L2n = k

if Lln k, L2n k



22 Multi-modal Image Segmentation Uncertainty Analysis

Since 7rk , al, and a2 are all dependent,

Var(7rkeeia2) = Cov(71, cticeD (Var(7k) [E (7012)(Var(aia2) [E(ctita2)]2)

— [Coven-k, aicx2) E(7k)E(a1(-12)]2

Var(ce1a2) = Cov(a1_, (Var(ai) [E(al)]2)(Var(ce2) [E(a2)]2)

— [Cov(cti, (12) + E(4a1)E(c/2)]2

Var(7rka1a2) = Cov(TrZ, cx?o:D (Var(7k) [E(7k)]2)(Cov(4, c-/D

▪ (Var(ai) [E(cel)]2)(Var(a2) [E (a2)]2) — [Cov(cci, a2) E(ai)E(a2)]2

[E(a1a2)]2

▪ [E(aict2)]2) ICOV(7k, aia2) E(7r0E(ceia2)?

= CovH, 4.4 (Varerrk) [E(7r012)(Cov(ce?, a3)

(Var(ai) [E(ozi)]2)(Var(oz2) [E(ce2)]2)) — [Cov k aict2) E(70E((lia2)'2

•We conclude that the uncertainty for the overall clustering is directly proportional to the

uncertainties for the adherence of the source-specific clusterings to the overall clustering,

which affect the results of the source-specific clusterings.



23 I Multi-modal Image Segmentation Uncertainty Analysis

We have that

n r%d Dirichlet(fio p), 00

K

7rk liC t-N-d Beta(1 + Pk,

E klc)

Var(7k1C)

i==

(1,1,...,

+ pi) — (1 + Pk)

1 + pk 
K — 1 + pi

pk)(K — 1 -FE4k pi) 

(K pi)2(1- K >fd ii<-1 Pi)

Beta(1+ pk. K — > :,01)



24 I Multi-modal Image Segmentation Uncertainty Analysis

We have that

TBeta (am + N "rm.

Let B(x; a. b)

E[am1C, Lm]

E[a!1C, Lin]

Var(a.m Lm)

1

K
= TBeta (1 + rm 1 + N —

ta 1(1 — t)b 1 dt be the incomplete Beta function. Then

B( /c; 2 + 7,, 1 + N — Tm) — B(1;2 + 1-„,„ 1 + N — Trn)

8( T,1 N — Tm) — B(1;1 + rm,1 N — Tm)

B( Tm N — Tin) — 8(1; 3 + T. 1 + N — Tm)

15(1; 1 ± Tin, 1 ± N — Tm) — B(1; 1 + rm. 1 + N — Trn )

B( ; 3 + 7,, 1 + N — 1-„,) — 8(1; 3 + rtn N — Tai)

15(1.; 1 ± N — Tm) — B(1; 1 + Tin 1 N — Tm)

B(11.-(_ ; 2 + Trn 1 1 N — Tm) — 8(1; 2 + Ttn • N — Tm)
{ 15(k; 1 + rm, 1 + N — Tm) — B(1;1 + rm. 1 + N —



25 Multi-modal Image Segmentation Uncertainty Analysis

Varerika1a2)

(1 + pk)(K — l +1-Ndik pi) 1 + pk  ]2}x
= Cove7r, aleeD + {

(Kr ± Eli(-1 Pi)2 (1 ± K -FEli(-1 Pi) 
+ [ 

K — 1 + Y-‘ °, L—,4k u i

B(1;3 + Ti. 1 + N — 71) — B(1;3 + 71,1 + N — Ti)
{Cov(al, aD + (  if 

B( k; 1 + Ti. 1 + N — Tl) — B(1;1 + T1,1 + N — Tl)

B(;2 + 71,1 + N — 71) — B(1;2 + T1,1 + N — TO
1
2
+

t B(ki ;1+ Til 1 + N — TO — B(1; 1 + T1, 1 + N — T1)

B( 11,-(.: 2 + 1 + N — —
[B(Tc: 1 + 71. 1 + N — —

B4:3+1-2,1+ N — T2)
(ot i i , iim DIA

uni,R; 1— T2, II— — T2) — .1-1 1/41.; —r T2, ± —r — T2)

B(—K;2 + T2,1 + N

B(17;1 + 7-2,1 + N

B(1;2 +T11 1+ N — Tl)
1
2
)x

B(1; 1 + Tl, 1 + N — Tl)

— B(1; 3 + T2. 1 + N — T2)

— T2) — B(1,2 + T2,1 + N — T2) 2
  )±

— r2) — 8(1;1+ T21 1+ N — T2)

BU; 2 -I- 72,1 N — r2) — B(1,2+72,1+ N r2) 2
  }
[,( 

)1
1,T; + T2,1. N T2) — B(1; 1 + , 1 + N — T2)

— [Cov(7rk, a1ia2) , , 
Rk  

x E[aict2112
n — Eiok pi



26 I Philadelphia Multi-modal Imagery

Optical Lidar

Data: one optical (RBG values) and one lidar (height of objects) image of the same scene in
Philadelphia. (M=2)

Each image contains 10,000 pixels (100 pixels x 100 pixels). (N=10,000)

Run BCC to obtain the following clusterings, each with six clusters: (K=6)
• Source-specific clustering for optical image

• Source-specific clustering for lidar image

• Overall clustering considering data from both images

•1,000 MCMC iterations using R with the bayesCC package

•Point estimates of clustering probabilities: MAP estimates



27 I Philadelphia Multi-modal Imagery

Overall Clustering

Cluster Assignments

Variance Variance Overlayed
with Cluster
Assignments

Optical Clustering ( a = 0. 646)
(Var ( a = 0. 0001248)

Cluster Assignments

Variance Variance Overlayed
with Cluster
Assignments

Lidar Clustering ( a = 0. 721)
(Var ( a = 0. 0001689)

Cluster Assignments

Variance Variance Overlayed
with Cluster
Assignments

1

1



28 Discussion

Recent advances have made both data and the patterns they contain more accessible.

However, simpl y findingpatterns of interest is not sufficient to support high consequence decision making.

We must also assess confidence in results, which includes consideration of uncertainty.

Lessons Learned:

Measure the credibility of each prediction that the model makes on unseen samples (Performance
Diagnostics, Trustworthiness).

Kvaluate data sufficiency that considers not only the number of examples, but their usefulness in
identifying decision boundaries. (Multi-source data contributions)



I

IILull
29 Discussion - 1

I

•Presented preliminary work on mathematically relating the uncertainty in the results of source-
specific clusterings (clusterings of optical and lidar images separately) to the uncertainty of the
results of an overall consensus clustering

•Visually, we inspect the results of the clusterings and see how the uncertainty results for the source-
specific clusterings and the uncertainty of the estimated adherences factor into the uncertainty in the 1
overall consensus clustering. g

Main takeaway: overall consensus clustering uncertainty is directly proportional to the
uncertainties in the adherences of each source-specific clustering to the overall clustering



30 I Future Work: BCC

•Deriving expressions in closed form, particularly with the covariances

•Extending to the case of any number of yI data sources

•Related to BCC implementation:

• Nonparametric distributions

• Different number of clusters and semantic meanings of clusters for each data source and overall clustering

Computational scalability



31 I Future Work: Frequentist Approach

Probabilistic Feature Fusion (PFF) [Simonson et al, 2017]

•Combines evidence arising from multiple features and classifiers expressed in the form of (generally
dependent) hypothesis tests

•Used in one-class classification (finding one target class)

-Sum of transformed p-values approximately follows a Gamma distribution

Problem:

PFF only works when you are testing for the same target class (i.e. same hypothesis)

When we fit Gaussian mixture models (GMMs) to each image (optical and lidar), even with the same number
of clusters, the semantic meanings of the clusters in each image likely will be different.

Questions:
i. How do we formulate a frequentist framework for fusing p-values together when they are testing different

hypotheses, but they are related because they are describing the same scene of interest?

2. Can we do the same for uncertainty measures, such as variance or entropy?

3. Is there a frequentist method for doing consensus clustering where information is shared between the overall
clustering and the source-specific clusterings?



32 I Future Work: Inverse Uncertainty Quantification

*Rigorous investigation of all sources of uncertainty

•Statistical properties of uncertainty propagation through the inverse UQ analysis pipeline, as well as
between multiple analysis tasks

•Evaluating the quality of benchmarks used for yIL algorithm evaluation and UQ



33 Thank you for your kind attention!

Questions?

0
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36 I Future Work: Frequentist Approach

Probabilistic Feature Fusion (PFF) [Simonson et al, 2017]

•Combines evidence arising from multiple features and classifiers expressed in the form of (generally
dependent) hypothesis tests

Used in one-class classification (finding one target class)

Steps:

• Data consists of N feature vectors each of length K. Let Xi, 1. K, denote
the ith feature.

• The marginal probability distribution function of Xi for the target class is denoted
For Xi drawn from the target distribution, the quantity Fi(Xi) will be

distributed U[0.1].

• For each feature, compute the p-value 1 — Fi(X1).

• Transform the p-values using the transformation Yi — log(1 — F1(X1)), which
has a standard exponential distribution under the null hypothesis.



37 I Future Work: Frequentist Approach

• Sum the transformed values

Sfused = Yi,
i=1

which follows the gamma distribution with shape parameter a = K and = 1
when the individual tests are independent. However, since the tests are likely
dependent, we have an approximate gamma distribution. Let be the sample
correlation coefficient between exponential random variables Yi and We

estimate the mean and variance of the sum Sf used with the quantities Ek and c/k,

respectively:

EK = K

= K ± 2 > 4
i=1 j> i

The estiniates of the shape and rate parameters are

=

V K

• Compute the fused p-value as P- fused (Sfused ) — Ffused (Sfused ) •



Supervised Learning Example: Classifying URLs of Malicious Websites
38 (Darling et al, 2015)  

*Observed data: n URLs

•Task: Classify the URLs as benign or malicious.

•UQ task: How confident should we be in a classifier's performance to accurately classify a URL as
benign or malicious? We need to know how much variability is in the classifier we construct.

Approach:

-Obtain S bootstrap samples, each with n URLs, by sampling with replacement from the observed n
URLs. Denote the bootstrap samples (x*l ,...,x*s)

*For each of the S bootstrap samples, fit a CART decision tree and obtain probabilitypik estimates for
k candidate labelsÿik for each x*.

a The S values of pik provide a probability distribution for each candidate label for each sample.
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Supervised Learning Example: Classifying URLs of Malicious Websites
39  (Darling et al, 2015)  
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Event/Anomaly Detection Example:Time Series Analysis
40  (Vollmer et al, 2017)

• Ivii (noise model):
Yt eN) N({) io-D

where o-2, < cc for t= 1, ..., k — 1.

• Ivi2 (signal model): auto-regressive, moving-average (ARMA) model with
2 uto-regressive terrns of order p and moving average terms of order cl:

P q 
-k

Yt- = c + L q'ii Yt—i + > : °JCt-i + t
i=l J=1

where € t r\-.1 NO, o-52) kr t = k,.... T, and oil is the finite variance of the noise
component of the signal model.



Event/Anomaly Detection Example:Time Series Analysis
41  (Vollmer et al, 2017)  

• Log-likelihood for A41:

c
k 1 k

/(6111Y17 •••7 A) — 
2 
ln(27) — —

2 in(crn2) 20-2 E q
R t = 1

• Log-likelihood for A42:

1(021Yk+i)--)YT) =
T — k — p

ln(27)
2

(T — k — p) 2 1
  ln(o-5)

2 2o-

T

E
t=k-hp+1

P+11-43+25... T.



Event/Anomaly Detection Example:Time Series Analysis
42  (Vollmer et al, 2017)  

• Akaike Information Criterion (A1C) criterion to minimize for arrival time
estimation:

1(61111Y1! '•', Yk) + 1(1921Y1C-h11"', YT)

k 1 k k
— —
k 

1 n ( 2 7 ) ln(o-n2)
20-2 

Y.-v? — 
T — — p

2 2 20 t=i
ln(27)

(T — k 0 
l 

1
  n(o-52)

2 2cq

T
>_: 2

Et .
t=k-hp+ 1


