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Motivation: Ocean-Climate Modeling

a High-Resolution ocean-climate modeling

a Future exascale machines

a Adding more physics and resolution
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Motivation: Ocean-Climate Modeling
• Models are more complicated not faster

• Biases and uncertainty still exist

• Infeasible applications
P. Uncertainty quantification
0. Data assimilation
0. Model spin-up initialization

o Model order techniques:

Machine learning, Reduced order modeling
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Model Order Reduction: Challenges for the Ocean

Challenges

• Long time-horizons

• Hyperbolic PDE's: waves and transport

• Multiple time-scales

• Highly nonlinear behavior

• Transient effects

• Conservation properties: mass and energy

Novel Contributions

• Hamiltonian-structure-preserving reduced order model in Hilbert space from Poisson bracket

• Use of novel inner product which improves accuracy

• Mass conservation derived for model: Any linear invariant - Casimir can be preserved

o Error analysis

o Lifting technique for potential vorticity

• Simulations 4/ 43



Rotating Shallow Water Equations (RSWE)

Serves as proxy to ocean model (primitive equations)

Variables: fluid thickness h and velocity 17. Domain C2 C S2

8h
= —V • (hv) in f2,

OV
= qh(k x V) — gV(h + b)— V K +g[h,171 in f2 ,

8t

V • n 0 on Of2 ,

• Kinetic energy: Km =102 /2
• Potential vorticity: q[h, v] = (k • V x ii+ f)/h

a Forcing: g[h, - wind, drag, diffusion,...
co Gravitational acceleration g, coriolis force parameter f, bottom topography b < 0, unit

vector normal to sphere k

• Mimetic TRiSK scheme is used in space discretization



Mimetic TRiSK Spatial Discretization Scheme

• Spherical Centroidal Voronoi tessellation -
Delaunay triangulation dual mesh:
Covolume scheme

o Normal velocity with respect to cell v

• Discrete quantities:

h E Hi = (RNI, (•, •)i) , (h, h)1 = hT ,

v E HE = NE (.7 ')E) (V, V)E = VT MeV
q E Hv (RA, 7 (.7 .)v ) 7 (q, q)v (IT mug

► Mi: Cell areas
IP. M,,: Triangle areas
► Me: "Edge" areas

• Discrete operator mimic properties of
continuous operators

(th, v)E = —(h,

113

•••
V2

114

6

6

Cell centers: I = i2, • . • • iN1

Cell vertices: V = {v1, v2, • • • vNv}
Edge centers: E = ez• • • • • eNe}

(kxv,z)E = —(v , kxz)E 6/ 43



Hamiltonian Framework

• Define monolithic variable u(t) = (h(t),v(t)), u E H = (118", (• , ti) , u: R H

(u , u)H = UT Mu = (h, h) (v , v)E

• Energy conservation at abstract level: Two ingredients required

• Skew-adjoint operator J[u]

J[u] =
—V qkx

• Hamiltonian (total energy), 11 denotes interpolation operator

H[u] = ({h}E * v, v)E + g(h, h + 2b)i

• Gradient of Hamiltonian

VH[u] =
{v2}1 + g(h + b))

{h}Ev

• RSWE are non-canonical Hamiltonian system:

Lit = J [u]VH[u]+G[u]

• G[u] is extraneous to the framework
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Symmetries

• J[u] is skew-adjoint in H

(y, J[u] z)H = —(J[u] y, z)H <=> MJ = —JT M

• Hessian of Hamiltonian V2H[u] is self-adjoint in H

(y, V2H[u] z)ti = (V2 H[u] y, z)fi <=> M72 H[u] = 72 H[u]T M

• lf the Hamiltonian is given by a quadratic form Hqf[u], then

Hqf [U] = V2 fiqf LOH

• Approximate energy space X = (., •)x), Let S2 = V2 H[u,cf]

(u, u)x = (u, 12u)H = UTMSIU = UT Mxu

/ 43



The Poisson Bracket

• Time evolution of a functional of the solution u, F[u]

du• insert dt

dF[u] = OF[u] du)

dt dt) H

dF[u] 
= (7F[u]. J[u]VH[uDH

dt

• Skew-symmetric bilinear form —> Poisson bracket

J[u](F [u], H[u]) = (V F[u], AuF7 H [u]) H

• Invariant under of choice Hilbert space

d F

dt

[u] 
= J[u](F[u], H [u])



Conserved Quantities and Casimirs
• Quantities conserved by symmetry: Energy, momentum, angular momentum, etc.

co Energy conservation:
c 1 H[u] 

= J[u](H[u], H[u]) = 0;
dt

• Casimirs: Conversed quantities for non-canonical systems (degenerate J[u], ker(J[u]) is non
trivial)

• Consider Casimir C[u], defined by

J[u](C[u], F[u]) = 0 <=> VC[u] E ker(MJ[u])

which implies
dC[u] 

— J[u](C[u], H[u]) = 0;
dt

C[u(t)] = c , Vt

• Mass is Casimir and linear-invariant in RSWE

(1, h)1 = c,„...

• Casimir is
= (2, 1-1)i-i

= () H
0
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Weak Formulation of Hamiltonian Systems

• Weak formulation for Hamiltonian system

seek u E H , such that ,

(z, u) 

H 

=
(z,J[u]VH[u])H ,

\..„ dt 
VzEH.

• Time evolution of functional Fz[u] = (z, OH

d F z[u] 
J [u]( F z[u], V H[u])

dt

specified in the space H
(z, ddut)H =

(z, J[u]VH[u])i-i

where 7 F z[u] = z
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Weak Formulation of Hamiltonian Systems
• Utilize the invariance of the Poisson Bracket

• Consider discrete, weighted L2 space such as X

') = J[47)1-1 = x x[I-]Ox )x

• The gradient in X

[u ; z] = NH, z) H = x H[u], z)x <=>. VxH[u] = E2-1VH[u]

• The skew-adjoint operator in X

J[u](' *) = ALV)11 = x )(kV = (2-1.7 x[1-] 2-1V) x = x [02-1'7)H

implies that Jx[u] = J[u]S2

• Consider Fx[u] = (x,1-)x

dFx[u] ( x
, 
du

dt dt 
— 

=
) glullF x[u], H[u]) = (x, Jx [u]'7)(H[u])x

x

• Strong form doesn't change
du 
= J[u]VH[u]

dt
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Reduced Order Modeling (ROM)

• Physically constrained, data-driven method

• Ansatz: Solution lives on reduced manifold

o Build basis from data

o Galerkin Projection onto basis

High
Fidelity
model
/ Data

Acquisition

POD
Basis Con-
struction

Galerkin
Projection

Offline (Expensive)

Inexpensive
Model

Online (Very Cheap)
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Proper Orthogonal Decomposition (POD)

• Consider set of snapshots (in time) in matrix Y.

= (3f1, yz • • • Yin)

• Basis 0 E B."' which solves minimization problem in weighted L2 space such as X

min HY 00*ra
Rank(0)=r

subject to 0*0 = Ir

• Solve eigenvalue problem / SVD for most dominant r modes

YTMXY = VA M112Y = UEVT

• The reduced basis 0=Mx-1/2U; Adjoint: 0* = IT Mx, Projection:00*

• Reduced space Xr = (Rr, (•, •)X,), Euclidean inner product

: X, X

0*: X X,
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Coupled and Decoupled Basis

o Consider systems of equations where yi = (xi,z1)T

o Monolithic SVD over Y. Basis:
o= (ox)

)z)

• Does not preserve block structure of problem. One variable a

o SVD on each variable: Basis
0= (ox o

0 (13.z)

• Preserves block structure, variable number of basis functions. Two variables a = (ax, az)
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Galerkin Projection: POD-ROM

co Consider Hamiltonian System

• Test with 4w, w E Xr

du 
= J[u]VH[u]

dt

(4)14, du 

dt) 

=
((Ow, J[u]VH[ullx

x

• Project to Xr, r < n undetermined system

(Iv, 0* du = (w, 0*.j[u]vti[u
])x

dt )xr

• Ansatz: u(t) =1::!a(t), a E Xr

itu da) =
(w, (12.*J[0a]VH[(Dallx,

dt)xr

• Strong Form
da 
=

*
J[4a[VH[4a]

dt

• 4*J[:120a] is not skew-symmetric in general! No Poisson bracket!
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Hamiltonian-Structure-Preserving ROM (HSP-ROM)

o Idea: Build Hamiltonian reduced order model

o Start with Poisson bracket. Ansatz that dynamics are in reduced space.

j[c., .) 
= 
(vx, „ix [coa]yx )x (yx, 

jxr[a]O
xr )x,

o Let H[a] = H[:Da]. Gradient in X,

1-1'[.:Da; low] = (Vx H[Oa], (1)w)x = (Vxr w)x,.

<=). Vxr Fl[a] = (1)*Vx H[Oa] = (1)*Q-1VH[1.a]

• Ansatz leads to Vx =1.3:00

J[a](., .) = (04)*Vx, Jx[(Palc1:40*Vx)x = Vx, 4)*Jx[a]dxD*Vx)x. = (Vxr , Jxr[arxr )x,

• Implies that Jx,[4)a] = .1)*Jx[a].120



Hamiltonian-Structure-Preserving ROM (HSP-ROM)

o Functional Fw[a] = (w,a)x,

• Strong form
da

dF.,[a] = j[a](Fw [a], ma])

dt

(IN da =
(w, Jx,[a]VxrH[a])xr

dt xr

dt 
= Jx [a]Vxr Fl[a] = (1)*J[(1)a]S2(1)(1)*S1-1VH[1)a]

o Conservation of energy
dH[a] 

= J[a](1-1[a], 1-i[a]) = 0
dt
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Hamiltonian-Structure-Preserving ROM (HSP-ROM)

• Assume continuity in time:

Theorem

Let u(t) be the solution of the time-continuous full model and let a(t) be the solution of the
time-continuous HSP-ROM, and with the initial condition a(0) = Vu(0), then the following
error estimate is satisfied

T Tfo HUM — l'a(t)11 dt < C(T)(fo — (01.*u(t)11X dt

1VX HMO] — 0.1)*VxH[U(t)]113( dt) ,
13

where C(T) = max{1 + q 
= 2 fo r e(2c1(T—r))ce(T)T , Cia(T)T1 , and cx(T) dr.

• .1)(D*VxH[(Da] —> new snapshots

Y = (ui, u2, • , um, VxH[ui], VxH[ui], , Mum]) ,
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Preserving Linear Casimirs: Mass Conservation

• In POD-ROM mass conservation is trivial

u(t) = (1)a(t) + us

Y = (ui — us, V2 — us, , um — us) ,

=(U l / 62/ /lim)

• us has correct mass. Initial condition or mean-flow

co Problem: V(H[u] has no conserved first integral (mass)

co Solution: Build "mass free' model

co Mass is linear invariant and Casimir in RSWE
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Mass Conserving Reduced Model

o Split solution u(t) = u(t) + us, ii E X,e, such that

u.] = (Zx 11)x ± (2x,l-h)x = (ex ,u.)x

o "Mass free gradient

(ex,vx H[u])x = (ex ,Vx H[u] + = 0

(Cx,Vx H[upx 
=

(ex, Cx)x

o Modify 'OH snapshots

•Y = (111 — Us, U2 — Us, • • . Um — Us, VXe H[Ui], Vxe H[u2], • • , Vxe H[um])

o Reduced Model: Modification to gradient is zero in Poisson bracket

da 
= 

dt 
Jx [Oa us]Vxr H[:Pa + us]
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Error Estimate

• Snapshots matrix

= • • . , Vx° H[u].], Vx2 H[u2], , Vx,c H[un]) ,

Theorem

Let u(t) be the solution of the time-continuous modified full model and let a(t) be the solution of
the time-continuous modified HSP-ROM, and with the initial condition a(0) = Vu(0), then the
following error estimate is satisfied

Jo

(1)

111-1(t) (1.a(t)+ us)113( dt < C( — 1.0*u(t)112x dt
13

fT H[u(O] - 041)*Vx H[u(t)] dt) ,

= C(T) E
i=r+1

where C(T) = max{1 qa(T)T , qa( T)T). , and a(T) = 2 L T e(2c1(T—T)) dT. d = dim(Y)
and A; , i = r 1, , d are the eigenvalues discarded in the POD process.
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Quadratic Hamiltonians and Approximate Energy Space

Theorem

lf the Hamiltonian H[u] is at most quadratic in u, and ueq is chosen to be the equilibrium state,
such that VH[ueq] = 0, and the snapshot matrix is given by

Y = (ui — ueq, U2 - ueq, . . • , Um — Ueq)

which means that us = ueq, then the projection of Vx H[(Da ueq] in the space X,
(12.1)*Vx H[:Da ueq], is exact

V)( H[ueq Oa] — 00* VX H[ueci + Oa] = 0 .
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Quadratic Hamiltonians and Approximate Energy Space

Theorem

lf the Hamiltonian H[u] is at most quadratic in u, ueq is chosen to be the equilibrium state, such
that VH[ueq], and the snapshot matrix is given by

Y = (1.11 — Us, U2 — Us, • • • , Um Us)

= (Ui — Ueq — (Us — Ueq), U2 — Ueq — (Us — Ueq), Um — Ueq — (Us — Ueq)) •

where us is some appropriate shift. Furthermore, also let the basis constructed from Y, be
enriched with the following basis function

=
11(1 00*C1)11x

to give the enriched basis (1) = [0, In and = us — usq. Then the projection 4)(1)*Vx H[us + Oa]
is exact

(2) H [us + Oa] = OO*VxH[us Oa] .

(l — 1.4%.*U)
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Equivalence of POD-ROM and HSP-ROM

Theorem

The HSP-ROM model in X for a Hamiltonian system with a quadratic Hamiltonian is equivalent
the POD-ROM derived in the space X. This means that

(3)
da(t)

dt — Jxr 
[a(t)]VXr H[a(t)] = (0*..1[4:.a(t)]VH[:Pa(t)] •

This means that the POD-ROM model in the space X also conserves energy for systems with
Quadratic Hamiltonians. Furthermore, in the more general case where the system is shifted by u5,
by using the enriched basis , this result also holds true.
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Error Esitmate Quadratic Hamiltonian

Theorem
Let u be the solution of the time-continuous full model and let a be the solution of linear Casimir
preserving, time-continuous HSP-ROM in X for a system with a quadratic Hamiltonian using a
basis (1) be constructed from the following snapshot matrix

Y = 62 , • • • 'I-1m) 7

and enriched to become using (1) for a shifted system. The error becomes

fo T T

MUM — (us + $a(t))112x dt = f Ila(t) - $a(t)113( dt
0

T d

.-.(7-) f Hu(t) - (ixti*u(t)11x dt = e(T) E Al< ,
k=r+1

where for a solution independent J we have, E(T) = 1 + qT, and for a solution dependent J
we have where E(T)= 1 + 4/3(nT , and /3(T) = 10T e(2e1(T-T)) dr,
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Application to the RSWE

• RSWE has cubic Hamiltonian, 3rd order term is small in magnitude

• Energy conservation to time-truncation error

• ue, = uref = (b, 0) the resting state. Recall Q = 72 H[ured

• ROM can use larger time-steps than full model

a Proper treatment of dissipative terms

• Efficient treatment of nonlinearities



Treatment of Extraneous Terms

o Extraneous term G[u] has the form

G[u] = S[u]u + Gwind

o Gwind contains prescribed wind forcing

Gwind =
(gwOind

o S[u] contains dissipative terms: Smoothing and dissipation (bottom drag) in v equation

o HSP-ROM can maintain dissipative behavior if

S[u]u = SIuIVH[u]

o Then system is

where

du
= Js[uFH[u]+ Gwind

dt

Js[u] = J [u] Š[U]
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Nonlinearities: Lifting and Tensor Methods

• Defining reduced model independently of fulls model's DOF

• Polynomial nonlinearities: tensor methods

0*(0a * Oa) = TukaJak

• q = (V x u f)/{h}v presents another challenge

• Lifting technique:
{h}v*q=(VXu+f)

• Basis for q, E, in H space (Et is adjoint in H)

Et ({0>hahilly * (Eaq)) = Et (V x (Du au + f)

T[ah]aq = Et(VX(Pua. +f)

• For coupled basis, q still has own reduced variable
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Energy Conserving Test Case
o Demonstrate energy conservation to truncation error for HSP-ROM

o G[u] = 0 for this case

• 10 day, geostrophic initial condition

• RK4 time integrator with 75% of CFL constrained time-step in full model (approximately 80
seconds)

• Reproductive run
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Figure: The geostrophic initial condition for h (left) and v (right).
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Numerical Results

Method Space Basis Errort,..1,x Errorenergy, rel

HSP-ROM
HSP-ROM
HSP-ROM
HSP-ROM
POD-ROM
POD-ROM
POD-ROM
POD-ROM 2

2
>
<
>
<
2
2
>
<
>
<
 

CP 2.90e-2 4.20e-8
DP 2.45e-2 6.82e-7
CP 6.77e-1 8.86e-8
DP 1.79 1.06e-6
CP 2.13e-2 8.70e-3
DP 2.54e-2 3.83e-4
CP 7.45e-1 5.32e-1
DP 1.06 5.34e-2

Table: 15 basis functions and 10 times full model's time step

Method Space Basis Errort,n,d,x ErrorEn.rgy, rd

HSP-ROM
HSP-ROM
HSP-ROM
HSP-ROM
POD-ROM
POD-ROM
POD-ROM
POD-ROM 2

2
>
<
>
<
2
2
k
k
 

CP 2.90e-2 4.14e-13
DP 2.45e-2 1.04e-11
CP 6.77e-1 9.14e-13
DP 1.79 1.79e-11
CP 2.13e-2 8.71e-3
DP 2.52e-2 3.72e-4
CP 7.45e-1 5.32e-1
DP 1.06 5.34e-2

Table: 15 basis functions and same as full model's time step
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E7,, 3.5
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Numerical Results: 25 Basis Function

Method Space Basis Errort,..,,x ErrorEnemy, rel

HSP-ROM
HSP-ROM
HSP-ROM
HSP-ROM
POD-ROM
POD-ROM
POD-ROM
POD-ROM x

x
>
<
>
<
x
x
>
<
>
<
 

CP 2.82e-2 7.26e-7
DP 2.65e-2 1.47e-6
CP 4.84e-2 2.08e-6
DP 1.58 2.59e-6
CP 2.16e-2 8.44e-3
DP 2.59e-2 7.65e-5
CP 5.13e-1 1.26e-1
DP

Table: 25 basis functions and 10 times full model's time step

*BP-ROM
—POD-ROM

18
1.27272650909005  

1.27272650909

1.27272650909995

1.2727265090899

1.27272650908985

1.2727265090898

1.27272650908975

1 2727265090897  
2 3 6 5 0 4 6 8 10
Time (Days) Time (Days)

Figure: Energy of HSP-ROM and POD-ROM with a decoupled basis in H (left). Mass of HSP-ROM
method (right).
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SOMA Inspired Test Case

• Wind forcing, bottom drag, bi-harmonic smoothing

• Ten year spin-up initial condition

• Performance Test for HSP-ROM: ten times larger viscosity—r smaller basis

• 1 year test case with model in X with decoupled basis

• Reproductive run

Method At/AtFull SYPD Errortfirw

Full 1 2.09
HSP-ROM 15 10 576 2.85e-1
HSP-ROM 15 100 5743 2.85e-1
HSP-ROM 25 10 321 5.58e-2
HSP-ROM 25 100 3206 5.59e-2
HSP-ROM 45 10 103 1.14e-2
HSP-ROM 45 100 1026 1.15e-2

Table: Performance and errors for difFerent basis sizes and time-step sizes
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Coupled Versus Decoupled basis

co Prescribed bi-harmonic smoothing: harder test case

o In this case statistics will be compared, the RMSSSHA (square root of the variance in h)

co POD-ROM and HSP-ROM methods tested for 1 year with coupled and decoupled basis in X
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Figure: The spin-up initial condition in the SOMA test case for h (left) and v (right).
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Coupled Versus Decoupled Basis
Method Basis Type r SYPD Errort,..1 ErrorRMSSSHA,H,rel

Full 2.09
HSP-ROM Decoupled 45 1157 1.03 3.3685
HSP-ROM Decoupled 125 105.7 3.82e-2 4.94e-2
HSP-ROM Coupled 45 1153 1.07 2.49e-1
HSP-ROM Coupled 125 104.1 1.38e-2 5.Ole-3
POD-ROM Decoupled 45 9.69e-1 3.63e-1
POD-ROM Decoupled 125 1.79e-2 1.16e-2
POD-ROM Coupled 45 9.65e-1 6.78e-2
POD-ROM Coupled 125 1.02e-2 2.50e-3

Table: Errors in final solution and RMSSSHA
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Figure: (Example 3) The RMSSSHA for the full model over one year
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Coupled Versus Decoupled Basis: HSP-ROM
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Figure: The RMSSSHA for the coupled basis with 45 basis functions (top left), for the decoupled basis
with 45 basis functions(top right), for the coupled basis with 125 basis functions (bottom left), and for the
decoupled basis with 125 basis functions(bottom right) using the HSP-ROM method
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Coupled Versus Decoupled Basis: POD-ROM
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Figure: The RMSSSHA for the coupled basis with 45 basis functions (top left), for the decoupled basis
with 45 basis functions(top right), for the coupled basis with 125 basis functions (bottom left), and for the
decoupled basis with 125 basis functions(bottom right) using the POD-ROM method
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Prediction and Validation

• 10 year reproductive test case to build basis, 2 year prediction

o Coupled basis in X

o RK4 for reduced model with 100 times full model's RK4 time-step

• Dynamics behavior makes only statistics reliable

Method Sim. SYPD ErrorRMSSSHA,H,rel

HSP-ROM 10 yr. Rep. 103.2 4.79e-2
HSP-ROM 2 yr. Pred. 103.4 6.81e-2
POD-ROM 10 yr. Rep 5.18e-2
POD-ROM 2 yr. Pred. 5.082-2

Table: The performance in SYPD and relative error of the RMSSSHA in the H norm, compared to the full
model, for both the ten year reproductive run (10 yr. Rep) and the two year predictive run (2 yr. Pred).
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Figure: The RMSSSHA over ten years for the full model (left), for the HSP-ROM model (center), and the
POD-ROM model (right).
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Figure: The RMSSSHA over the additional two years for full model (left), for the HSP-ROM model
prediction (center), and the POD-ROM model prediction (right).

0 10

0 12

39 / 43



Century Predictions

a Prediction, no validation, over a century

a Demonstrates stability

a Previous 10 year basis is used
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Figure: The solution, h and v, at the end of the century time-horizon and the RMSSSHA over the century
time-horizon for the HSP-ROM method.
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Figure: The solution, h and v, at the end of the century time-horizon and the RMSSSHA over the century
time-horizon for the HSP-ROM method.
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Century Predictions: Mass and Energy
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Figure: The energy (top-left) and mass (bottom-left) for the HSP-ROM method, and the energy
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Conclusions and Future Research

Conclusions

• HSP-ROM method conserves energy and mass is conserved

• Either model in derived in the space X has much better accuracy

• Large speedups can be attained with the HSP-ROM method

• Coupled basis is better than decoupled for small basis

• Both methods are stable in the forced test-case over a century

Future Research

• Primitive equations

• Applications: uncertainty quantification, data assimilation, spin-up

• Potential vorticity dynamics and error

• Conserving more general Casimirs

• Hyper-reduction techniques for nonlinearities.
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