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Motivation: Ocean-Climate Modeling

@ High-Resolution ocean-climate modeling
o Future exascale machines

@ Adding more physics and resolution

MPAS-O
Model for Prediction Across Scales

NATIONAL LABORATORY
EST.1943

- Los Alamos E3SM

Energy Exascale
Earth System Model
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Motivation: Ocean-Climate Modeling
Models are more complicated not faster

Biases and uncertainty still exist

Infeasible applications
> Uncertainty quantification
> Data assimilation
> Model spin-up initialization

Uncertainty

Quantification

Model order techniques:
Machine learning, Reduced order modeling /

High

Fidelity Build Inexpensive

model Reduced Ensemble Assilr)'nailt:tion
/ Data Model Simulations
Acquisition
Offline (Expensive) Spin-up

Online (Very Cheap)
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Model Order Reduction: Challenges for the Ocean
Challenges

@ Long time-horizons
o Hyperbolic PDE’s: waves and transport

o Multiple time-scales

[

Highly nonlinear behavior
o Transient effects
o Conservation properties: mass and energy
Novel Contributions
o Hamiltonian-structure-preserving reduced order model in Hilbert space from Poisson bracket
o Use of novel inner product which improves accuracy
o Mass conservation derived for model: Any linear invariant - Casimir can be preserved
o Error analysis
o Lifting technique for potential vorticity

o Simulations 443
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Rotating Shallow Water Equations (RSWE)

Serves as proxy to ocean model (primitive equations)

Variables: fluid thickness h and velocity V. Domain Q C S2

% — V() in Q
%:7qh(12xV)ng(thb)fVKJrQ[h,\?] in Q,

V.-n=0 on 09,

Kinetic energy: K[V] = |V|2/2
Potential vorticity: q[h, V] = (k- V X @+ f)/h
Forcing: G[h, V] - wind, drag, diffusion,...

Gravitational acceleration g, coriolis force parameter f, bottom topography b < 0, unit
vector normal to sphere k

Mimetic TRiSK scheme is used in space discretization
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Mimetic TRiSK Spatial Discretization Scheme

@ Spherical Centroidal Voronoi tessellation -
Delaunay triangulation dual mesh:
Covolume scheme

@ Normal velocity with respect to cell v L7 ! Sso
-7 1 e
’,’ 1 ‘\\
o Discrete quantities: e 2 & M N
heH =®RM(,- h,h), =h"M;h ) e’
€ H=®R",(,-)), (hh) = ih,
N T
VEHE:(R Ev(':')E)v (V:V)E:V Mev ,
Ny T V3 Ve
qc HV = (R 7('7')V) P (q7q)V =q Mllq
€4 €6
> M;: Cell areas
» M,: Triangle areas p-
M.: “Edge” areas Ya 2 Vs
Cell centers: | = {i1,i2,...,in}
o Discrete operator mimic properties of Cell vertices: V = {v1,v2,...,vpn, }
continuous operators Edge centers: E = {el’ e, ..., eNE}

(eh7 V)E = _(h7 eJ'V)I

(IQXV,Z)E:—(V,IA(XZ)E 6/43



Hamiltonian Framework

Define monolithic variable u(t) = (h(t),v(t)),ue H=R", (-, )y), u: R—> H
(u,u)y =u"Mu= (h,h); + (v,v)g

Energy conservation at abstract level: Two ingredients required

0o -V
J[u]—<_6 ql?>i<>

Hamiltonian (total energy), {-} denotes interpolation operator

Skew-adjoint operator J[u]

Hu] = ({h}e * v,v)e + g(h,h + 2b),
Gradient of Hamiltonian on 2}, + £(h + b)
= (" aE )
RSWE are non-canonical Hamiltonian system:

ur = Ju]VH[u]+G[u]

G[u] is extraneous to the framework
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Symmetries

J[u] is skew-adjoint in H

(y,Julz)y = —(July,2)y & MI=—JTM

Hessian of Hamiltonian V2H|[u] is self-adjoint in H

(y, V2H[u]lz)y = (V?H[uly, z)y <& MV?H[u] = V2H[u] M

If the Hamiltonian is given by a quadratic form Hg[u], then

qu[u] = (U, VZ quu)H

Approximate energy space X = (R", (-, -)x); Let Q = V2H[u,{]

(u,u)x = (u,Qu)y = u' MQu =u' Mxu
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The Poisson Bracket

Time evolution of a functional of the solution u, Flu]

dFfu] _ (8F[u] d_u)
H

dt Ou dt
d
Insert 57 4
u
~ 8 = (VF ], Sl V HLu)
Skew-symmetric bilinear form — Poisson bracket

Ju](Flu], Hu]) = (VFu], Ju]VH[u])n

Invariant under of choice Hilbert space

dFlu] _
S = Tlul(Flul, Hlu)
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Conserved Quantities and Casimirs
Quantities conserved by symmetry: Energy, momentum, angular momentum, etc.
Energy conservation:
dHJu]
dt

= J[u](H[u], H[u]) = 0;
Casimirs: Conversed quantities for non-canonical systems (degenerate J[u], ker(J[u]) is non
trivial)
Consider Casimir C[u], defined by
J[u](Clu], Flu]) = 0 < VCJu] € ker(MJ[u])

which implies
dCJu]
dt

= J[u](Clu], H[u]) = 0;
Clu(t)]=c, Vvt

Mass is Casimir and linear-invariant in RSWE

(17 h)l = Cmass

Casimir is
Cmass[“] = (27 U)H

L[
2= () en
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Weak Formulation of Hamiltonian Systems

o Weak formulation for Hamiltonian system
seek u € H, such that

du
(=) e sawmay, veen

o Time evolution of functional F;[u] = (z,u)y

dF;[u]
dt

. j[u](FZ[U],VH[U]) ;

specified in the space H

(z7 %) ; = (z,J[u]VH[u])y

where VFz[u] = z
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Weak Formulation of Hamiltonian Systems
Utilize the invariance of the Poisson Bracket

Consider discrete, weighted L2 space such as X
TI(-) = (VI V) = (V5 Ix[u] V) x

The gradient in X
H'[u;z] = (VH[u),2)y = (VXH[u],z)x < VXH[u] = Q 'V H]u]

The skew-adjoint operator in X
TM(5-) = (VIV)n = (V¥ Ix[u]V¥)x = (271, Ix[u]Q 1 V)x = (V, Ix[u]@ V)
implies that Jx[u] = J[u]Q

Consider Fx[u] = (x,u)x
dFx[u] _
dt

(x5 ), = THlCFlul, oD = (x o7 s

Strong form doesn’t change

du
— = J[u]VH
SV HI
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Reduced Order Modeling (ROM)

Physically constrained, data-driven method

Ansatz: Solution lives on reduced manifold

Build basis from data

Galerkin Projection onto basis

High
Fidelity POD

model Basis Con-
/ Data struction
Acquisition

Galerkin
Projection

Inexpensive
Model

Offline (Expensive)

—
Online (Very Cheap)
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Proper Orthogonal Decomposition (POD)

Consider set of snapshots (in time) in matrix Y.

Y = (y1,¥2, - ,¥m)

Basis ® € R"*" which solves minimization problem in weighted L2 space such as X
min  ||Y — ®®*Y|%
Rank(®)=r
subject to ®*d =1,

Solve eigenvalue problem / SVD for most dominant r modes

YTMxY = VA & MY?Y =usvT

The reduced basis ¢=M;1/2U; Adjoint: — ¢* = oMy, Projection: o™

Reduced space X; = (R', (-, -)x, ), Euclidean inner product
d: X - X
d*: X = X,
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Coupled and Decoupled Basis

Consider systems of equations where y; = (x;,z;) "

o= (iﬁ) .

Does not preserve block structure of problem. One variable a

_ (o 0
°=(¢ %)

Preserves block structure, variable number of basis functions. Two variables a = (ax, az)

Monolithic SVD over Y. Basis:

SVD on each variable: Basis
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Galerkin Projection: POD-ROM

Consider Hamiltonian System
du
— = J[u]lVH
= JulV Hu]
Test with dw, w € X,

du
(d>w, E)x = (dw, J[u]VH[u])x

Project to X, r < n undetermined system

(w "’*%)x, — (w, " Ju] VH[ul)x,

Ansatz: u(t) = da(t), a € X,

(w, $>X, — (w, &* J[®a] V H[¢a])x,

Strong Form
% = ¢*J[Pa]VH[da]

®*J[Pa] is not skew-symmetric in general! No Poisson bracket!
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Hamiltonian-Structure-Preserving ROM (HSP-ROM)

o lIdea: Build Hamiltonian reduced order model

Start with Poisson bracket. Ansatz that dynamics are in reduced space.

Jal(-,-) = (VX, Ix[@a] V) x = (VX7 Ix [a] V™" )x,

Let H[a] = H[®a]. Gradient in X,

H'[0a; dw] = (VX H[®a], dw)x = (VX H[a], w)x,
< VX H[a] = ¢* VX H[da] = ¢*Q 1V H[¢a]

o Ansatz leads to VX = dd* VX

Ja](, ) = (90* VX, Ix[da]dd*VX)x = (& VX, 0¥ Ix[a]dd* V) x = (VX Ix [a]V*7)x,

o Implies that Jx [Pa] = d*Jx[a]P
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Hamiltonian-Structure-Preserving ROM (HSP-ROM)

o Functional Fy[a] = (w,a)x,

dFw[a]

22— Tlal(Fulal, Hlal)

(W, %)X, = (w, Jx, [a]V* Ha])x,

@ Strong form g
dit' = Jx [a]V* H[a] = &* J[Ga]Qdd*Q 1V H[dal

o Conservation of energy
dHi[a]
dt

= Jlal(Aal, Afa]) = 0
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Hamiltonian-Structure-Preserving ROM (HSP-ROM)

@ Assume continuity in time:

Theorem

Let u(t) be the solution of the time-continuous full model and let a(t) be the solution of the
time-continuous HSP-ROM, and with the initial condition a(0) = ®*u(0), then the following
error estimate is satisfied

T T
/ llu(t) — da(8)|3 dt < C(T) (/ llu(t) — do*u(t)|% dt
0 0
T
+ [ Iv¥ (o] - 00T X Hu(oll at ) |

where C(T) = max{l + C3a(T)T , C2a(T)T}, and o(T) = 2f0T eRG(T=7)) dr.

o dd* VX H[da] — new snapshots

Y = (u1,uz,...,um, VXH[ui], VXH[uz], ..., VXH[um]) ,
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Preserving Linear Casimirs: Mass Conservation

In POD-ROM mass conservation is trivial
u(t) = ®a(t) +u,

Y =(u1 —us,u2 —us,...,un —Us) ,

Y = (ug,u,...,um),
us has correct mass. Initial condition or mean-flow
Problem: VX H[u] has no conserved first integral (mass)
Solution: Build “mass free” model

Mass is linear invariant and Casimir in RSWE
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Mass Conserving Reduced Model

Split solution u(t) = u(t) +us, u € Xg, such that

Crmass[U +us] = (£x,U)x + (Ex,us)x = (£x,us)x

“Mass free” gradient

(£x, VX Hu])x = (£x, VXH[u] + puLx)x =0

_ (&, VX H[u)x
(£x,Lx)x

Modify VX H snapshots

Y = (u1 —us,u2 —us,...,un — us, vXe Hluy], vXe Hluz],

Reduced Model: Modification to gradient is zero in Poisson bracket

; — Iy [ba + us] V¥ H[ba + u,]

., V¢ Hlum]) ,
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Error Estimate

@ Snapshots matrix

Y = (01,02, ..., Um, VXS H[w1], VX Huz], ..., VX Hlu]) ,

Theorem

Let u(t) be the solution of the time-continuous modified full model and let a(t) be the solution of
the time-continuous modified HSP-ROM, and with the initial condition a(0) = ®*u(0), then the
following error estimate is satisfied

T T
[ lu() - (®a(e) +ua) | de < (T) (/ [u(t) — GO u(t) |3 de
0 0
T
+ /0 7% Hlu(6)] — 0" TX H{u(t)]|1% dt) ,
1) = C(T) _Z N

where C(T) = max{1 + C2a(T)T , C2a(T)T}, and o T) =2 [;] eA(T=7) dr. d = dim(Y)
and \; , i=r+1,...,d are the eigenvalues discarded in the POD process.

22/43




Quadratic Hamiltonians and Approximate Energy Space

Theorem

If the Hamiltonian H[u] is at most quadratic in u, and ueq is chosen to be the equilibrium state,
such that VH[ueq] = 0, and the snapshot matrix is given by

Y:(ul_UEQ7u2_qu7"'7um_ueq)7

which means that us = ueq, then the projection of VX H[®a + ueg| in the space X,
d* VX H[da + ueg), is exact

VX Hueg + Pa] — O* VX Hlue, + a] =0 .
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Quadratic Hamiltonians and Approximate Energy Space

Theorem

If the Hamiltonian Hlu] is at most quadratic in u, ueq is chosen to be the equilibrium state, such
that VH(ueq], and the snapshot matrix is given by

Y = (u1 —us,uz —us, ..., Uy — us)

= (U1 —Ueg — (Us —Ueq), U2 — Ueg — (Us — Ueq), ..., Um — Ueg — (Us — Ueq)) ,

where us is some appropriate shift. Furthermore, also let the basis ®, constructed fromY, be
enriched with the following basis function

(I — dd*d)

Y= U —eema)x

to give the enriched basis ® = [®, )], and i = us — ueq. Then the projection ®®* VX H[us + ®a]
is exact

(2 VX H[us 4+ ®a] = &* VX H[us + ¢a] .
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Equivalence of POD-ROM and HSP-ROM

Theorem

The HSP-ROM model in X for a Hamiltonian system with a quadratic Hamiltonian is equivalent
the POD-ROM derived in the space X. This means that

da(t)

®3) I

=Jx, [a(t)]VX Hla(t)] = ¢*J[Pa(t)]VH[da(t)] .

This means that the POD-ROM model in the space X also conserves energy for systems with
Quadratic Hamiltonians. Fu::thermore, in the more general case where the system is shifted by us,
by using the enriched basis ® , this result also holds true.

»
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Error Esitmate Quadratic Hamiltonian

Theorem

Let u be the solution of the time-continuous full model and let a be the solution of linear Casimir
preserving, time-continuous HSP-ROM in X for a system with a quadratic Hamiltonian using a
basis ® be constructed from the following snapshot matrix

Y = (ug,uz,...,up) ,

and enriched to become using d for a shifted system. The error becomes
7 2 2 T & 2
) = (s + Ga(e)I de = [ a(e) - bae)k ae

— T AR o~ d
< C(T)/0 llu() — b u(o)lx dt = E(T) 3 A,

k=r+1

where for a solution independent J we have, c (T)y=1+ 622 T , and for a solution dependent J
we have where E(T) =1+ 6226(T)T ,and B(T) = foT eG(T-7) ¢r,
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Application to the RSWE

RSWE has cubic Hamiltonian, 3rd order term is small in magnitude
Energy conservation to time-truncation error

Ueqg = Uyes = (b, 0) the resting state. Recall Q = VZ2H[u,]

ROM can use larger time-steps than full model

Proper treatment of dissipative terms

Efficient treatment of nonlinearities
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Treatment of Extraneous Terms

Extraneous term G[u] has the form

G[U] = S[u]u i Gwind

Gind contains prescribed wind forcing

0
Gwind = (g . d)

S[u] contains dissipative terms: Smoothing and dissipation (bottom drag) in v equation

HSP-ROM can maintain dissipative behavior if

S[uju = S[u]VH[u]

Then system is
du = Js[u]VH[u] + Gyind
dt wn
where
Js[u] = J[u] + S[u]
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Nonlinearities: Lifting and Tensor Methods

Defining reduced model independently of fulls model's DOF

Polynomial nonlinearities: tensor methods

d>*(d>a * ¢a) = 77jkajak
q= (ﬂu + f)/{h}v presents another challenge

Lifting technique: -
{h}v xq=(VXu+f)

Basis for q, =, in H space (ET is adjoint in H)
=M ({(Phan)} v * (Zaq)) = =T (V x Pyay + )

Tlan]aq = EH(Vx duay + f)

For coupled basis, q still has own reduced variable
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Energy Conserving Test Case
Demonstrate energy conservation to truncation error for HSP-ROM

G[u] = 0 for this case
10 day, geostrophic initial condition

RK4 time integrator with 75% of CFL constrained time-step in full model (approximately 80
seconds)

Reproductive run

Lon Lon

Figure: The geostrophic initial condition for h (left) and v (right).
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Numerical Results

Method Space  Basis  Errory. | x  Erorgpegy rel
HSP-ROM X CcpP 2.90e-2 4.20e-8
HSP-ROM X DP 2.45e-2 6.82e-7
HSP-ROM H CP 6.77e-1 8.86e-8
HSP-ROM H DP 1.79 1.06e-6
POD-ROM X CcpP 2.13e-2 8.70e-3
POD-ROM X DP 2.54e-2 3.83e-4
POD-ROM H CcP 7.45e-1 5.32e-1
POD-ROM H DP 1.06 5.34e-2

Table: 15 basis functions and 10 times full model’s time step

Method Space  Basis  Errory. . x  Erorgpegy rel
HSP-ROM X CcP 2.90e-2 4.14e-13
HSP-ROM X DP 2.45e-2 1.04e-11
HSP-ROM H CcpP 6.77e-1 9.14e-13
HSP-ROM H DP 1.79 1.79%e-11
POD-ROM X CP 2.13e-2 8.71e-3
POD-ROM X DP 2.52e-2 3.72e-4
POD-ROM H CcpP 7.45e-1 5.32e-1
POD-ROM H DP 1.06 5.34e-2

Table: 15 basis functions and same as full model’s time step
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Figure: Energy of HSP-ROM and POD-ROM with a decoupled basis in H (left). Mass of HSP-ROM

method (right).

Numerical Results: 25 Basis Function

Method Space  Basis  Errory. | x  ErrOrgnergy, rel
HSP-ROM X CP 2.82e-2 7.26e-7
HSP-ROM X DP 2.65e-2 1.47e-6
HSP-ROM H CcP 4.84e-2 2.08e-6
HSP-ROM H DP 1.58 2.59¢-6
POD-ROM X CP 2.16e-2 8.44e-3
POD-ROM X DP 2.59e-2 7.65e-5
POD-ROM  H CcP 5.13e-1 1.26e-1
POD-ROM  H DP — —

Table: 25 basis functions and 10 times full model’s time step

%1017

—— HSP-ROM
= POD-ROM

2 3
Time (Days)

x101°

127272650909

1.27272650908995

1.2727265090899

Mass

1.27272650908985

1.2727265090898

1.27272650908975

1

0 2 4 6

Time (Days)
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SOMA Inspired Test Case

Wind forcing, bottom drag, bi-harmonic smoothing

Ten year spin-up initial condition

Performance Test for HSP-ROM: ten times larger viscosity— smaller basis
1 year test case with model in X with decoupled basis

Reproductive run

Method r At/Atgy  SYPD  Errory
Full — 1 2.09 —
HSP-ROM 15 10 576 2.85e-1
HSP-ROM 15 100 5743 2.85e-1
HSP-ROM 25 10 321 5.58e-2
HSP-ROM 25 100 3206 5.59¢-2
HSP-ROM 45 10 103 1.14e-2
HSP-ROM 45 100 1026 1.15e-2

Table: Performance and errors for different basis sizes and time-step sizes
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Coupled Versus Decoupled basis

o Prescribed bi-harmonic smoothing: harder test case
@ In this case statistics will be compared, the RMSSSHA (square root of the variance in h)

o POD-ROM and HSP-ROM methods tested for 1 year with coupled and decoupled basis in X

-15 -10 -5 0 5 10 15 -
Lon Lon

Figure: The spin-up initial condition in the SOMA test case for h (left) and v (right).
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Coupled Versus Decoupled Basis

Method Basis Type r SYPD E|r|r0|rtﬁmII ErrorgmsssHA, H, rel
Full — 2.09 — —

HSP-ROM Decoupled 45 1157 1.03 3.3685

HSP-ROM Decoupled 125 105.7 3.82e-2 4.94e-2

HSP-ROM Coupled 45 1153 1.07 2.49¢-1

HSP-ROM Coupled 125 104.1 1.38e-2 5.01e-3
POD-ROM Decoupled 45 — 9.69e-1 3.63e-1

POD-ROM Decoupled 125 — 1.79e-2 1.16e-2
POD-ROM Coupled 45 — 9.65e-1 6.78e-2
POD-ROM  Coupled 125 — 1.02e-2 2.50e-3

Table: Errors in final solution and RMSSSHA

-15

0
Lon

Figure: (Example 3) The RMSSSHA for the full model over one year
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Coupled Versus Decoupled Basis: HSP-ROM

Lon Lon

Figure: The RMSSSHA for the coupled basis with 45 basis functions (top left), for the decoupled basis
with 45 basis functions(top right), for the coupled basis with 125 basis functions (bottom left), and for the
decoupled basis with 125 basis functions(bottom right) using the HSP-ROM method
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Coupled Versus Decoupled Basis: POD-ROM

- 0
Lon Lon

Figure: The RMSSSHA for the coupled basis with 45 basis functions (top left), for the decoupled basis
with 45 basis functions(top right), for the coupled basis with 125 basis functions (bottom left), and for the
decoupled basis with 125 basis functions(bottom right) using the POD-ROM method
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Prediction and Validation

@ 10 year reproductive test case to build basis, 2 year prediction

o Coupled basis in X

[

Dynamics behavior makes only statistics reliable

RK4 for reduced model with 100 times full model's RK4 time-step

Method Sim. SYPD ErrorRMSSSHA7H7,e|
HSP-ROM 10 yr. Rep. 103.2 4.79%-2
HSP-ROM 2 yr. Pred. 103.4 6.81le-2
POD-ROM 10 yr. Rep — 5.18e-2
POD-ROM 2 yr. Pred. — 5.082-2

Table: The performance in SYPD and relative error of the RMSSSHA in the H norm, compared to the full
model, for both the ten year reproductive run (10 yr. Rep) and the two year predictive run (2 yr. Pred).
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Prediction and Validation

Lon Lon Lon

Figure: The RMSSSHA over ten years for the full model (left), for the HSP-ROM model (center), and the
POD-ROM model (right).

Lon Lon Lon

Figure: The RMSSSHA over the additional two years for full model (left), for the HSP-ROM model
prediction (center), and the POD-ROM model prediction (right).
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Century Predictions

@ Prediction, no validation, over a century
o Demonstrates stability

@ Previous 10 year basis is used
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Century Predictions

Lon Lon Lon

Figure: The solution, h and v, at the end of the century time-horizon and the RMSSSHA over the century
time-horizon for the HSP-ROM method.

Lon Lon Lon

Figure: The solution, h and v, at the end of the century time-horizon and the RMSSSHA over the century
time-horizon for the HSP-ROM method.
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Century Predictions: Mass and Energy
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Conclusions and Future Research

Conclusions

o HSP-ROM method conserves energy and mass is conserved

o Either model in derived in the space X has much better accuracy
o Large speedups can be attained with the HSP-ROM method

o Coupled basis is better than decoupled for small basis

o Both methods are stable in the forced test-case over a century

Future Research

o Primitive equations

o Applications: uncertainty quantification, data assimilation, spin-up
e Potential vorticity dynamics and error

o Conserving more general Casimirs

e Hyper-reduction techniques for nonlinearities.
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