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21 Qverview

Simulations & analysis to compliment interface mixing experiments on the
/. Machine

° Synthetic x-ray radiography to compare simulations to experiment

o Uncertainty quantification on Z models in 1D kinetic simulations

(Haack et al. 2017b)




"I Interface Mixing
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° Interface mixing decreases ICF yields

° Studies on the Z Machine with vanadium as our high-7Z material,
and plastic as our low
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1 Synthetic X-Ray Radiography
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°! Radiography Space-Time
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"I Radiography Light Curves
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>l Flexible Radiography

° Design philosophy: one analysis tool tor multiple simulation types
> Works with our 2D rad-hydro sims as well

° Built on yt (yt-project.org) for uniform intertace to ditferent outputs

° Extensible to new geometries and codes




51 Connection to lonization

o Showed electric fields affect simulation evolution

° These are shaped by free electrons & 1ons

° Free electrons & ions are created through ionization
o Our ionization model should affect sim evolution

° But by how much?
And can we detect it? (model discrimination)

~ Uncertainty quantification (UQ)




' What is Z?

The mean 1onization state (mean charge Z) ot a collection of atoms

There 1s no one agreed-upon definition or theoretical framework

o Average atom models (spheres of plasma around one nucleus)
° Thomas Fermi is a simple example
° More in Murillo et al. 2013

> Phenomenological models
° Saha equation (balances free energy in ideal gases)

° Lee-More-Dejarlais* (electrical conductivity)




s1UQ on Z

o Z(n, T¢) currently a Thomas Fermi average atom model for each species
> Replace vanadium’s model with tabulated Z(n, Te)

° Vary these tables in a sensible, known way to see impact on x-ray

radiography




s Table Generation

° Sandia has tools originally designed for UQ on EOS models

° These tools also support a Lee-More-Desjarlais (LMD) B
electrical conductivity model, from which one can back out Z

° The methodology:
> Fit LMD to some data to give us a starting set of parameters
> Use MCMC to populate Bayesian posterior for the fit parameters

> Generate tables by sampling the posterior




"I Why use Bayesian Inference

We want to fit a model to some data.

We could just optimize for the “best” fit...

...but there’s almost certainly a distribution of parameters that all provide
acceptable fits, so we assign an uncertainty.

How we conceptualize this uncertainty 1s important.

Not using Bayes, these uncertainties might be confidence intervals.

But with a Bavesian approach. parameter uncertainties are drawn from the
y .p.p [ ] ’ .p [ ] [ ]
parameters’ probability distribution, which we can then sample.




*! Bayes’s Theorem

Likelihood

i |‘f| qi;‘
e | HYP(H)

P(H

Posterior Marginal

https://medium.com/@matk.rethana/bayesian-statistics-and-naive-bayes-classifier-33b735ad 7b 16

° Here, H is the LMD model with a given set of parameters.
° Priors can enforce physicality, such as bounds on parameters.

° The likelthood captures the difference between the data and the model,
while also considering data uncertainties.

° The marginal is just a normalization & 1s practically impossible to
compute, so it is often ignored in practice.

° The posterior tells us how likely H 1s the appropriate underlying model for
the data we observe (parameter probability distribution).



*1 More on the Posterior
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> Posteriors are often high-dimensional

° Visualized with “corner plots™ like above, showing marginal & joint
distributions for the model parameters

o Sample parameters from the posterior distribution as a systematic way of
varying our model




» I Workflow

Uncertainty Quantification




* I Project Status

> As you might have guessed, the synthetic radiography is working
> 1D kinetic code has been modified to support Z tables alongside TF

° Currently fitting LMD & populating posterior
o Simulations will be run after I leave

° Then, paper(s)!




21 Other Applications

° Radiography tools can be used to assess various questions of model
discrimination

° Current synthetic radiography for Z Machine modeling is slow (too much
detail) and GUI-based

° My tools are also designed to work with multiple simulation types

° Caveat:
yt’s current support for un- and semi-structured is minimal, limiting the
flexibility of the radiography (1.e., can’t do off-axis ray tracing)

> UQ workflow not restricted to Z from LMD or even Z at all




